
HAL Id: hal-00341342
https://hal.science/hal-00341342

Submitted on 19 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A note on scheduling to meet two min-sum objectives
Eric Angel, Evripidis Bampis, Aleksei V. Fishkin

To cite this version:
Eric Angel, Evripidis Bampis, Aleksei V. Fishkin. A note on scheduling to meet two min-sum objec-
tives. Operations Research Letters, 2007, 35 (1), pp.69–73. �hal-00341342�

https://hal.science/hal-00341342
https://hal.archives-ouvertes.fr

A Note on Scheduling to Meet Two Min-Sum Objectives∗

Eric Angel1 Evripidis Bampis1 Aleksei V. Fishkin2

1. LaMI, CNRS UMR 8042, Université d’Évry, France
{angel, bampis}@lami.univ-evry.fr

2. University of Kiel, Olshausenstr. 40, 24118 Keil, Germany
avf@informatik.uni-kiel.de

Abstract

We consider the problem of scheduling a set of independent jobs on a single machine where a solution is eval-
uated with respect to two min-sum objective functions: the sum of completion times and the sum of weighted
completion times. In particular, we are interested in(α,β)-approximate schedules, i.e., schedules which are
simultaneously at mostα times from the optimum for the first objective, andβ times from the optimum for
the second objective. We propose a simple polynomial time(1+ 1

γ ,1+γ)-approximation algorithm which for

anyγ > 0 always outputs(1+ 1
γ ,1+ γ)-approximate schedules. In addition, we show that forγ > 1, it is not

possible to get an(x,y)-approximation algorithm with 1< x < 1+ 1
γ and 1< y < 1+ γ−1

2+γ .

1 Introduction

In recent years, a lot of attention has been devoted to solving multi-objective optimization problems, i.e.,
problems where the solutions are evaluated with respect to more than one objectives [2]. In particular, several
results have been obtained for bi-objective scheduling problems which involve one min-max and one min-sum
objective functions. Stein and Wein [5] considered two of the most popular ones:the makespanandthe sum
of weighted completion times. They proved that there exist schedules which are simultaneously at most two
times from the optimum makespan and at most two times from theoptimum sum of weighted completion
times. The idea of their proof applies to a large class of scheduling problems, including scheduling of jobs on
parallel and unrelated machines, preemptive scheduling, scheduling in the presence of precedence constraints,
etc. Following this result, Aslam et al. [1] improved the bounds, and Rasala et al. [3] generalized it for all pairs
of objectives in which the first one is amongmaximum flow time, makespan, or maximum lateness, and the
second one is amongaverage flow time, sum of completion times, or number of on-time jobs.

In this paper we consider the bi-objective problem of scheduling a set of independent jobs on a single
machine to meet two min-sum objectives: thesum of completion timesand thesum of weighted completion
times. More formally, we are given a set of independent jobsJ = {1,2, . . . ,n}. Each job j (j = 1, . . . ,n) has
a processing timep j and a weightwj . A schedule is obtained by sequencing the jobs on the machinein some
order. There are two objectives: the sum of completion times∑ j Cj and the sum of weighted completion
times∑ j wjCj , whereCj denotes the completion time of jobj. We are interested in finding(α,β)-approximate
schedules, i.e., schedules which are at mostα times from the optimum for∑ j Cj and at mostβ times from the
optimum for∑ j wjCj .

There are two well-known classical results in scheduling theory concerning our framework. The first one
states that the optimum for the problem of minimizing the sumof completion times is obtained by sequencing
the jobs in the shortest processing time (SPT) order, i.e., in non-decreasing order ofp j . The second one
states that the optimum for the problem of minimizing the sumof weighted completion times is obtained by
sequencing the jobs in Smith’s order, i.e., in non-increasing order ofwj/p j [4]. Indeed, an optimal schedule
for each of the two objectives can be found in polynomial time. In general, we cannot expect a schedule to be
simultaneously optimal for both objectives. Hence, we are interested in constructing an(α,β)-approximation
algorithm, i.e., an algorithm that always produces(α,β)-approximate solutions in polynomial time.

Here we present a simple approximation algorithm, called the γ-Algorithm, which for anyγ > 0 outputs
(1+ 1

γ ,1+ γ)-approximate schedules in polynomial time. In addition, wegive an example which demonstrates

∗Supported by EU-project CRESCCO IST-2001-33135.

1

that for anyγ > 1 there is an instance such that no(x,y)-schedule withx < 1+ 1
γ and y < 1+ γ−1

2+γ exists.
Interestingly, if we consider the case whenγ → ∞, the bounds tend to different values. Indeed, the example
gives (1,2) and theγ-Algorithm gives(1,∞). We conjecture that there exists no constantβ > 1 such that
(1+ 1

γ ,β)-approximate schedules can be found in polynomial time for any givenγ > 0.
The rest of the paper is organized as follows. In the next section we introduce some notations and we

point out some preliminary results. In Section 3, we informally sketch our approach, we give an outline of the
γ-Algorithm and we analyze its performance. In Section 4 we give some non-existence bounds and in the last
section we give some concluding remarks.

2 Preliminaries

Notations. To simplify the presentation, we assume that a schedule for the jobs inJ is given as an arbitrary
permutationσ = (σ(1),σ(2), . . . ,σ(n)), and useσ−1 to denote the inverse permutation ofσ. Informally, this
means that in scheduleσ, each jobσ(j) (j = 1, . . . ,n) is on the j-th position and each jobk (k = 1, . . . ,n)
is on theσ−1(k)-th position. In addition, we will useid to denote the identical permutation on setJ, i.e.,
id = (1,2, . . . ,n). Then, it holds that

σ◦σ−1 = id and σ−1◦σ = id.

Following the scheduling problem, we sequence the jobs ofJ on the machine in the order defined byσ. In
this case, the completion time of each jobj (j = 1, . . . ,n) in the schedule is defined as follows

Cj(σ) =
σ−1(j)

∑
t=1

pσ(t) = ∑
k:σ−1(k)≤σ−1(j)

pk. (1)

Then, the sum of job completion times in scheduleσ is equal to

S(σ) =
n

∑
j=1

Cj (σ) (2)

and the sum of weighted job completion times in scheduleσ is equal to

W(σ) =
n

∑
j=1

wjCj(σ). (3)

Throughout the paper we assume, w.l.o.g., that the jobs inJ are numbered by 1,2,3, . . . ,n such that

p1 ≤ p2 ≤ p3 ≤ ·· · ≤ pn. (4)

In addition, we defineπ to be a permutation on setJ such that

wπ(1)

pπ(1)
≥

wπ(2)

pπ(2)
≥

wπ(3)

pπ(3)
≥ . . . ≥

wπ(n)

pπ(n)
. (5)

Then, the optimum for the sum of completion times, denoted asOPT1, can be obtained by sequencing the jobs
in the SPT orderid:

OPT1 =
n

∑
j=1

Cj(id) =
n

∑
j=1

j

∑
z=1

pz, (6)

and the optimum for the weighted sum of completion times, denoted asOPT2, can be obtained by sequencing
the jobs following Smith’s orderπ:

OPT2 =
n

∑
j=1

wjCj(π). (7)

Givenα,β > 0, we look for a scheduleσ such that

S(σ) ≤ α ·OPT1 and W(σ) ≤ β ·OPT2. (8)

2

3 The γ-Algorithm

Our Approach to Approximation. Given jobs 1,2, . . . ,n andπ, we can findOPT1 andOPT2 schedules,
respectively. Our approach is to merge these two schedules into one, which is simultaneously nearOPT1 and
OPT2. We can informally sketch this as follows.

a)

1.71.01.72.02.0

4 5 3 1 2

b)4 5 3 1 2

c)1 5 3

d)1 5 3

4 2

24

Figure 1: An illustration of theγ-Algorithm. The processing times of the jobs arep1 = 1, p2 = p3 = 1.7 and
p4 = p5 = 2. In the resulting schedule in d) jobs 4,5 are large, jobs 1,2 are small, and job 3 is medium.

First, we place all jobs on the machine as it is defined byπ. For an illustration see Figure 1 a), where
five jobs are placed byπ = (4,5,3,1,2). Next, we takeγ > 0. We multiply all job completion times by a
factor of(1+ γ) and move all start times to match without changing the job processing times. Then, each jobj
(j = 1, . . . ,n) increases its completion time by a factor of(1+ γ), and creates an idle “gap” (on its left) on the
machine of sizeγ · p j . Job j is called theownerof the corresponding created gap on its left. For an illustration
see Figure 1 b), whereγ = 1.

Now we use these idle “gaps” to reschedule jobs. We select thejob with the smallestid index and try to
place it as early as possible, see job 1 in Figure 1 c). If thereis enough idle time in the gap, then we “move”
and “complete” this job. We will call such a “moved” job assmall. Otherwise, we “shift” the job with the
smallestπ index to the left side “collecting” its idle time, for instance see job 4 in Figure 1 c). We will call such
a “shifted” job aslarge. Next, we repeat this procedure among the “remaining” jobs.We always try to place
the job with the smallestid index in the front of the job with the smallestπ index, see jobs 2 and 5 in Figure 1
c), d). Indeed, it can happen that some jobs should stay at their positions: either there is not enough idle time
on the machine or the job has the smallest index in bothid andπ, see job 3 in Figure 1 c), d). We will call such
a “small-large” job asmedium.

From one side, all jobs can only decrease their completion times. This means that the sum of weighted job
completion times of is at most

(1 + γ) ·OPT2.

From another side, the “delay” of any jobj in σ is formed by large jobsℓ placed beforej, and these large jobs
cannot create enough time on the machine to “accommodate” jobs 1,2, . . . , j −1, j, i.e.

γ ·∑ pℓ ≤ ∑
z≤ j

pz = Cj(id).

This means that the sum of completion times is at most
(

1 +
1
γ

)

·OPT1.

Therefore, we obtain a(1+ 1
γ ,1+ γ)-schedule.

The γ-Algorithm. Now we can give an outline of our algorithm:

3

THE γ-ALGORITHM

Input: A parameterγ > 0, a job setJ, schedulesπ andid.
Output: A scheduleσ.

Step 1Sequence the jobs ofJ on the machine followingπ order.
Step 2Multiply all job completion times by a factor of(1+γ) and move all jobs to the right to match
their new completion times without changing their processing times.
Step 3Fetch the jobs inid order and place them into the left as much as possible, in sucha way that
no job is delayed and as soon as a gap is declared too small it isclosed by shifting the corresponding
owner job to the left.

In that follows we prove the main result:

Theorem 1. For anyγ > 0, theγ-Algorithm is a(1+ 1
γ ,1+ γ)-approximation algorithm.

Relative Job Positions. By theγ-Algorithm, jobs preserve their relative positions:

Lemma 1. In scheduleσ, small and medium jobs follow id order whereas large and medium jobs followπ
order.

The Sum of Weighted Job Completion Times. Now we can prove the following result:

Lemma 2. In scheduleσ, the completion time of any job j (j= 1, . . . ,n) can be bounded as follows

Cj(σ) ≤ (1+ γ) ·Cj(π). (9)

Hence, the sum of the weighted job completion times is

W(σ) ≤ (1 + γ) ·OPT2. (10)

Proof. For any job j (j = 1, . . . ,n) in σ, all jobs placed beforej form two sets:Jj of large and medium jobs,
andJ′j of small jobs. Then, the completion time of jobj in σ is defined as follows

Cj(σ) =

(

p j + ∑
k∈Jj

pk

)

+ ∑
s∈J′j

ps. (11)

Since all medium and large jobsk in Jj follow π order, the completion time of jobj in scheduleπ can be
bounded as follows

Cj(π) ≥ p j + ∑
k∈Jj

pk. (12)

Since each small jobs in J′j occurs only if there is enough idle time, the “delay” of jobj in scheduleσ can be
bounded by

∑
s∈J′j

ps ≤ γ ·

(

p j + ∑
k∈Jj

pk

)

. (13)

Combining (11), (12) and (13) we prove (9). Thus, summing up over all jobs we prove (10).

The Sum of Job Completion Times. Similarly, we can prove the following result:

Lemma 3. In scheduleσ, the completion time of any job j (j= 1, . . . ,n) can be bounded as follows

Cj(σ) ≤

(

1+
1
γ

)

·Cj(id). (14)

Hence, the sum of job completion times

S(σ) ≤

(

1 +
1
γ

)

·OPT1. (15)

4

Proof. Consider an arbitrary jobj ∈ J. Let I j be the set of all jobs which are smaller thanj (or have a smaller
index than jobj in case there are several jobs with the same processing time). Then, the completion time of job
j in scheduleid is defined as follows

Cj (id) = p j + ∑
z∈I j

pz. (16)

For job j, all jobs placed beforej in scheduleσ form two sets:Jj of medium and small jobs, andJ′j of large
jobs. Then, the completion time of jobj in σ is defined as follows

Cj(σ) = p j + ∑
k∈Jj

pk + ∑
ℓ∈J′j

pℓ. (17)

Clearly,Jj ⊆ I j . Thus, the “delay” of jobj is formed by large jobsℓ in J′j which are not inI j .
Consider large jobsℓ in J′j \ I j . These jobs are larger than jobj but placed before it in scheduleσ. Hence,

they cannot create enough idle time on the machine to accommodate all jobs inI j ∪ { j}. (Otherwise, the
algorithm can place jobj on an earlier position.) Thus,

γ · ∑
ℓ∈J′j\I j

pℓ < p j + ∑
z∈I j

pz. (18)

SinceJj ⊆ I j andJj ∩J′j = /0, we have that

∑
k∈Jj

pk + ∑
ℓ∈J′j∩I j

pℓ ≤ ∑
z∈I j

pz. (19)

Thus, combining (16), (17), (18) and (19) we prove (14). Summing up over all jobs we prove (15).

4 Non-Existence Bounds

a)

b)

1

α 1

α

Figure 2: a)J1 beforeJ2; b) J2 beforeJ1

Theorem 2. For anyγ > 1, there is an instance such that no(x,y)-schedule with1 < x < 1+ 1
γ and1 < y <

1+ γ−1
2+γ exists.

Proof Sketch. We consider two jobsJ1 andJ2. Let ω > α > 1 be some constant. Then, we define processing
timesp1 andp2 to be 1 andα, and weightsw1 andw2 to be 1 andω, respectively.

Indeed, there are only two schedules:

a) J1 beforeJ2, and

b) J2 beforeJ1.

For an illustration see Figure 2. From the first schedule we get

OPT1 = 1 + (1 + α) = 2 + α and W = 1 ·1+(α+1) ·ω.

From the second schedule we get

S = α+(1+ α) = 2α+1 and OPT2 = α ·ω + (α+1) ·1.

5

Let γ > 1 be such that

S/OPT1 =
2α+1
2+ α

= 1 +
α−1
2+ α

= 1 +
1
γ
. (20)

Then, if we want to find an(x,y)-schedule with 1< x < 1+ 1
γ and 1< y, the first schedule has to be adopted.

However, in this case we get

W/OPT2 =
1+(1+ α)ω
1+ α ·ω+ α

= 1 +
ω−α

1+ α ·ω+ α
.

For ω → ∞, this bound tends to

1 +
1
α

.

From (20) we can find that

α =
2+ γ
γ−1

.

Thus, the value ofy is at least

1 +
1
α

= 1+
γ−1
2+ γ

.

This completes the proof.

Conclusions

We presented the first results concerning the simultaneous approximation of two min-sum objectives, namely,
the sum of completion times and the sum of weighted completion times. Many questions remain open, e.g.
obtaining better lower and upper bounds for the considered problem. From another side it seems that similar
algorithms, thought with different bounds, can be obtainedfor the cases of parallel machines, release dates
and precedence constraints. Finally, a related open question concerns the simultaneous approximation of two
throughput objectives, e.g., the total number of early jobs∑Ū j and the total weighted number of early jobs
∑wjŪ j , whereŪ j = 1 if job j completes before its due date, andŪ j = 0 otherwise.

References

[1] J. Aslam, A. Rasala, C. Stein, and N. Young. Improved bicriteria existence theorems for scheduling. In
Proceedings 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 846–847, 1999.

[2] C.H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal access of web
sources. InProceedings 41st Annual Symposium on Foundations of Computer Science, pages 86–92.

[3] A. Rasala, C. Stein, E. Torng, and P. Uthaisombut. Existence theorems, lower bounds and algorithms
for scheduling to meet two objectives. InProceedings 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 723 – 731, 2002.

[4] W. E. Smith. Various optimizers for single-stage production. Naval Research Logistic Quarterly, 3:59–66,
1956.

[5] C. Stein and J. Wein. On the existence of schedules that are near-optimal for both makespan and total
weighted completion time.Operations Research Letters, 21:115–122, 1997.

6

