N
N

N

HAL

open science

A note on scheduling to meet two min-sum objectives
Eric Angel, Evripidis Bampis, Aleksei V. Fishkin

» To cite this version:

Eric Angel, Evripidis Bampis, Aleksei V. Fishkin. A note on scheduling to meet two min-sum objec-
tives. Operations Research Letters, 2007, 35 (1), pp.69-73. hal-00341342

HAL Id: hal-00341342
https://hal.science/hal-00341342
Submitted on 19 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00341342
https://hal.archives-ouvertes.fr

A Note on Scheduling to Meet Two Min-Sum Objectives

Eric Angel Evripidis Bampis Aleksei V. Fishkirf

1. LaMl, CNRS UMR 8042, UniversiteEiry, France
{angel, bampis@Iami.univ-evry.fr
2. University of Kiel, Olshausenstr. 40, 24118 Keil, Gersnan
avf@informatik.uni-kiel.de

Abstract

We consider the problem of scheduling a set of independéstga a single machine where a solution is eval-
uated with respect to two min-sum objective functions: th@ ®f completion times and the sum of weighted
completion times. In particular, we are interestedanf)-approximate schedules, i.e., schedules which are
simultaneously at most times from the optimum for the first objective, afdimes from the optimum for
the second objective. We propose a simple polynomial (iJHe%, 1+y)-approximation algorithm which for
anyy > 0 always output$l+ %, 1+ y)-approximate schedules. In addition, we show thatyforl, it is not

y—1

possible to get afX, y)-approximation algorithm with & x < 1+ \—1/ and 1<y< 1+ pan

1 Introduction

In recent years, a lot of attention has been devoted to splwinlti-objective optimization problems, i.e.,
problems where the solutions are evaluated with respecote than one objectives [2]. In particular, several
results have been obtained for bi-objective schedulinglpras which involve one min-max and one min-sum
objective functions. Stein and Wein [5] considered two @& thost popular oneghe makespaandthe sum

of weighted completion timed hey proved that there exist schedules which are simubtasig at most two
times from the optimum makespan and at most two times fronogitanum sum of weighted completion
times. The idea of their proof applies to a large class of datieg problems, including scheduling of jobs on
parallel and unrelated machines, preemptive schedulaigduling in the presence of precedence constraints,
etc. Following this result, Aslam et al. [1] improved the bbdg, and Rasala et al. [3] generalized it for all pairs
of objectives in which the first one is amongaximum flow timemakespanor maximum latenessand the
second one is amorayerage flow timesum of completion timesr number of on-time jobs

In this paper we consider the bi-objective problem of scliagua set of independent jobs on a single
machine to meet two min-sum objectives: them of completion timesnd thesum of weighted completion
times More formally, we are given a set of independent jdbs {1,2,...,n}. Each jobj (j = 1,...,n) has
a processing tim@; and a weightvj. A schedule is obtained by sequencing the jobs on the maghs@me
order. There are two objectives: the sum of completion tirfie€; and the sum of weighted completion
timesy ; w;Cj, whereC; denotes the completion time of jgbWe are interested in findin@, 3)-approximate
schedules, i.e., schedules which are at mones from the optimum fof ; C; and at mosg times from the
optimum fory ; w;C;.

There are two well-known classical results in schedulireptly concerning our framework. The first one
states that the optimum for the problem of minimizing the safrmompletion times is obtained by sequencing
the jobs in the shortest processing time (SPT) order, irenadn-decreasing order gfj. The second one
states that the optimum for the problem of minimizing the safrwveighted completion times is obtained by
sequencing the jobs in Smith’s order, i.e., in non-incregsirder ofw; /p; [4]. Indeed, an optimal schedule
for each of the two objectives can be found in polynomial tinmegeneral, we cannot expect a schedule to be
simultaneously optimal for both objectives. Hence, we aterested in constructing dn, 3)-approximation
algorithm, i.e., an algorithm that always producesf3)-approximate solutions in polynomial time.

Here we present a simple approximation algorithm, calledytAlgorithm, which for anyy > 0 outputs
1+ \—l/, 1+ vy)-approximate schedules in polynomial time. In addition gie an example which demonstrates

*Supported by EU-project CRESCCO I1ST-2001-33135.

that for anyy > 1 there is an instance such that fQy)-schedule withx < 1+ 2 andy < 1+ % exists.
Interestingly, if we consider the case when- «, the bounds tend to different values. Indeed, the example
gives (1,2) and they-Algorithm gives(1,). We conjecture that there exists no cons@nt 1 such that
(1+ 1 B)-approximate schedules can be found in polynomial time figrgiveny > 0.

The rest of the paper is organized as follows. In the nexi@eate introduce some notations and we
point out some preliminary results. In Section 3, we infoltsnsketch our approach, we give an outline of the
y-Algorithm and we analyze its performance. In Section 4 we gome non-existence bounds and in the last
section we give some concluding remarks.

2 Preliminaries

Notations. To simplify the presentation, we assume that a schedulénéjabs inJ is given as an arbitrary
permutations = (0(1),0(2),...,a(n)), and uses—* to denote the inverse permutationaf Informally, this
means that in schedule, each jobo(j) (j = 1,...,n) is on thej-th position and each jok (k=1,...,n)
is on thea~*(k)-th position. In addition, we will uséd to denote the identical permutation on seti.e.,
id =(1,2,...,n). Then, it holds that

1 1

0o0 “=id and o "o0 = id.

Following the scheduling problem, we sequence the jokisasf the machine in the order defined oyIn
this case, the completion time of each jpf = 1,...,n) in the schedule is defined as follows

()
Cj(o) = Pot) = Pk- 1)
A kvl(k)zscrl(j)

Then, the sum of job completion times in schedmie equal to
S(o) =) Cj(o))
and the sum of weighted job completion times in schedukequal to
n
W(o) = Y w;Cj(0). 3)
j; i~

Throughout the paper we assume, w.l.0.g., that the joBsaire numbered by.2, 3, ..., n such that

pr < p2 < ps <o < pn (4)
In addition, we defingtto be a permutation on sétsuch that

Wr1) > Wr2) > Wr3) > > M_)
Pr(1) Pr2) Pr(3) Pr(n)

Then, the optimum for the sum of completion times, denotedR$1, can be obtained by sequencing the jobs
in the SPT ordeid: _
n n |
OPTL = § Cj(id) = Pz, (6)
22,2

and the optimum for the weighted sum of completion timesptithasOPT2, can be obtained by sequencing
the jobs following Smith’s ordert

OPT2 = inCj (17). (7
=

Givena, 3 > 0, we look for a schedule such that

S(o) < a-OPT1 andW(o) < B-OPT2. (8)

3 They-Algorithm
Our Approach to Approximation. Given jobs 12,...,n andt, we can findOPT1 andOPT2 schedules,

respectively. Our approach is to merge these two schedule®ne, which is simultaneously neaPT1 and
OPT2. We can informally sketch this as follows.

o s [o] - I
' B K] v
G+ B - T I
CT o]z = - I

Figure 1: An illustration of thg~Algorithm. The processing times of the jobs axe=1, p» = p3 = 1.7 and
ps = ps = 2. In the resulting schedule in d) jobs3are large, jobs .2 are small, and job 3 is medium.

First, we place all jobs on the machine as it is definedtyFor an illustration see Figure 1 a), where
five jobs are placed byt = (4,5,3,1,2). Next, we takey > 0. We multiply all job completion times by a
factor of (1+y) and move all start times to match without changing the jole@ssing times. Then, each jpb
(j =1,...,n) increases its completion time by a factor(@fy), and creates an idle “gap” (on its left) on the
machine of sizg- p;j. Jobj is called theownerof the corresponding created gap on its left. For an illustra
see Figure 1 b), wheng= 1.

Now we use these idle “gaps” to reschedule jobs. We selegbtheith the smallesitd index and try to
place it as early as possible, see job 1 in Figure 1 c¢). If tieeemough idle time in the gap, then we “move”
and “complete” this job. We will call such a “moved” job amall Otherwise, we “shift” the job with the
smallestrtindex to the left side “collecting” its idle time, for inste@ see job 4 in Figure 1 ¢). We will call such
a “shifted” job aslarge. Next, we repeat this procedure among the “remaining” jolfs. always try to place
the job with the smallest index in the front of the job with the smallertindex, see jobs 2 and 5 in Figure 1
c), d). Indeed, it can happen that some jobs should stay iatphsitions: either there is not enough idle time
on the machine or the job has the smallest index in mb#ndTr, see job 3 in Figure 1 c), d). We will call such
a “small-large” job asnedium

From one side, all jobs can only decrease their completinagi This means that the sum of weighted job
completion times of is at most

(1 + y)-OPT2.

From another side, the “delay” of any jghin ¢ is formed by large job$ placed beforg, and these large jobs
cannot create enough time on the machine to “accommoddis™@,...,j— 1, j, i.e.

V'zpz < sz = C;(id).

<

This means that the sum of completion times is at most

(1 + }) -OPTL
Y

Therefore, we obtain 6L+ {1+ y)-schedule.

They-Algorithm. Now we can give an outline of our algorithm:

THE y-ALGORITHM
Input: A parametel > 0, a job set], schedulestandid.
Output: A scheduleo.

Step 1Sequence the jobs dfon the machine followingrtorder.
Step 2Multiply all job completion times by a factor ¢fL +y) and move all jobs to the right to match
their new completion times without changing their procegsimes.
Step 3retch the jobs ind order and place them into the left as much as possible, in@uhy that
no job is delayed and as soon as a gap is declared too smallasisd by shifting the corresponding
owner job to the left.

In that follows we prove the main result:

Theorem 1. For anyy > 0, they-Algorithm is a(1+ \—1/, 1+ y)-approximation algorithm.

Relative Job Positions. By they-Algorithm, jobs preserve their relative positions:
Lemma 1. In schedules, small and medium jobs follow id order whereas large and m@djobs followrt
order.
The Sum of Weighted Job Completion Times. Now we can prove the following result:
Lemma 2. In schedulas, the completion time of any job j & 1,...,n) can be bounded as follows

Ci(o) < (1+y)-Cj(m. 9)
Hence, the sum of the weighted job completion times is

W(o) < (1 4 y)-OPT2. (20)

Proof. For any jobj (j =1,...,n) in g, all jobs placed beforg form two sets:J; of large and medium jobs,
andJ; of small jobs. Then, the completion time of jglin o is defined as follows

Ci(o) = | pi s. 11
i(0) <pj +k;j pk> +S;J{p (11)

Since all medium and large jolsin J; follow 1t order, the completion time of jolp in schedulert can be
bounded as follows

Cij(m > pj + Z Pk (12)
keJ;
Since each small jobin JJf occurs only if there is enough idle time, the “delay” of jpln scheduleo can be
bounded by
> ps <y (pj + Z pk>- (13)
sedj ked;
Combining (11), (12) and (13) we prove (9). Thus, summing vgr all jobs we prove (10). O

The Sum of Job Completion Times. Similarly, we can prove the following result:

Lemma 3. In schedulas, the completion time of any job j & 1,...,n) can be bounded as follows

Ci(o) < <1+$) -Cj(id). (14)
Hence, the sum of job completion times
S(o) < (1 + \—1/> -OPTL. (15)

Proof. Consider an arbitrary jolp € J. Letl; be the set of all jobs which are smaller tha(or have a smaller
index than jobj in case there are several jobs with the same processing fithel, the completion time of job
j in scheduled is defined as follows

Ci(id) = pj + > Pz (16)

Forjob j, all jobs placed beforg¢in schedules form two sets:J; of medium and small jobs, anl# of large
jobs. Then, the completion time of jghin o is defined as follows

Cj(0) = pj + ker P+ > pr an

€le

Clearly,J; C Ij. Thus, the “delay” of joly is formed by large jobg in Jj which are not irlj.

Consider large jobg in JJ‘ \l;. These jobs are larger than jglbut placed before it in schedute Hence,
they cannot create enough idle time on the machine to accaa®aill jobs inl; U {j}. (Otherwise, the
algorithm can place jolp on an earlier position.) Thus,

y- Z Pe < Pj+) Pz (18)
€€Jj\|j

zelj

SinceJ; C I andJ; N J;j = 0, we have that

> e+ Z <D P (19)
keJ; Ledinl; zel]
Thus, combining (16), (17), (18) and (19) we prove (14). Sungp over all jobs we prove (15). O

4 Non-Existence Bounds

a 1 b)

Figure 2: a)J; beforedy; b) J, beforedy

Theorem 2. For anyy > 1, there is an instance such that i y)-schedule withl < x < 1+ \—1/ andl<y<

Y=1 Ayi
1+ 7Ty exists.

Proof Sketch. We consider two jobd; andJ,. Letw > a > 1 be some constant. Then, we define processing
timesp; andp, to be 1 andx, and weightsv; andws to be 1 ando, respectively.
Indeed, there are only two schedules:

a) J; befored,, and
b) J, befored;.
For an illustration see Figure 2. From the first schedule vie ge
OPTl1=1+(14+0a)=2+a andW =1-1+(a+1) w.
From the second schedule we get

S=0a+(1+0)=20+1 andOPT2 = a-w + (a+1)-1.

Lety> 1 be such that
20(+1:1 E:1+}_ (20)
2+a y

S/OPTL =

Then, if we want to find arix,y)-schedule with k x < 1+ \—1/ and 1<y, the first schedule has to be adopted.
However, in this case we get

14+(1 —
W/OPT2 = +(A+0e , _ o-a
l1+a-w+a l+a-w+a
For w — oo, this bound tends to
1+ =
From (20) we can find that
2+y
O =—
y—1
Thus, the value of is at least
142t
a 24y
This completes the proof. O

Conclusions

We presented the first results concerning the simultangou®gimation of two min-sum objectives, namely,
the sum of completion times and the sum of weighted compidiines. Many questions remain open, e.g.
obtaining better lower and upper bounds for the consideredlipm. From another side it seems that similar
algorithms, thought with different bounds, can be obtaif@dhe cases of parallel machines, release dates
and precedence constraints. Finally, a related open guestincerns the simultaneous approximation of two
throughput objectives, e.g., the total number of early jpts and the total weighted number of early jobs
> wijUj, whereU; = 1 if job j completes before its due date, dthd= 0 otherwise.

References

[1] J. Aslam, A. Rasala, C. Stein, and N. Young. Improveditdda existence theorems for scheduling. In
Proceedings 10th Annual ACM-SIAM Symposium on Discreterifigns pages 846-847, 1999.

[2] C.H. Papadimitriou and M. Yannakakis. On the approxiifigtof trade-offs and optimal access of web
sources. IrProceedings 41st Annual Symposium on Foundations of Cempaiencepages 86—92.

[3] A. Rasala, C. Stein, E. Torng, and P. Uthaisombut. Eristetheorems, lower bounds and algorithms
for scheduling to meet two objectives. Rroceedings 13th Annual ACM-SIAM Symposium on Discrete
Algorithms pages 723 — 731, 2002.

[4] W. E. Smith. Various optimizers for single-stage protioi. Naval Research Logistic Quarterl$:59-66,
1956.

[5] C. Stein and J. Wein. On the existence of schedules tleahaar-optimal for both makespan and total
weighted completion timeOperations Research Lette21:115-122, 1997.

