
HAL Id: hal-00341340
https://hal.science/hal-00341340

Submitted on 19 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multi-start Dynasearch algorithm for the time
dependent single-machine total weighted tardiness

scheduling problem
Eric Angel, Evripidis Bampis

To cite this version:
Eric Angel, Evripidis Bampis. A multi-start Dynasearch algorithm for the time dependent single-
machine total weighted tardiness scheduling problem. European Journal of Operations Research,
2005, 162 (1), pp.281–289. �hal-00341340�

https://hal.science/hal-00341340
https://hal.archives-ouvertes.fr


A multi-start Dynasear
h algorithm for the time dependentsingle-ma
hine total weighted tardiness s
heduling problemE. Angel, E. BampisUniversit�e d'�Evry Val-d'EssonneLaMI91025 Evry, Fran
eemail: fangel, bampisg�lami.univ-evry.frJune 11, 2001Abstra
tWe extend the dynasear
h te
hnique, re
ently proposed by Congram et al, in the 
ontextof time-dependent 
ombinatorial optimization problems. As an appli
ation we 
onsider ageneral time-dependent (idleness) version of the well known single-ma
hine total weightedtardiness s
heduling problem, in whi
h the pro
essing time of a job depends on its startingtime of exe
ution. We develop a multi-start lo
al sear
h algorithm and present experimentalresults on several types of instan
es showing the superiority of the dynasear
h neighborhoodover the traditional one.1 Introdu
tionIn this paper we evaluate the performan
e of dynasear
h in the 
ontext of time-dependents
heduling. Dynasear
h is a re
ently proposed neighborhood sear
h te
hnique [5℄ that allowsa series of moves to be performed at ea
h iteration of a lo
al sear
h algorithm, generatingin that way an exponential size neighborhood. In order to eÆ
iently explore su
h a neigh-borhood, dynasear
h uses dynami
 programming. Congram et al. applied dynasear
h to the
lassi
al single ma
hine total weighted tardiness problem (1jjPwjTj) [5℄ and 
ompared thequality of the obtained solutions with traditional multi-start and iterated des
ent algorithms.The obtained 
omputational results were very en
ouraging in the 
ase where dynasear
h wasapplied inside an iterated lo
al sear
h algorithm when 
ompared to 
lassi
al iterated des
entalgorithms. However, the appli
ation of dynasear
h in the 
ase of a multi-start algorithmgave marginally better results than the 
lassi
al multi-start methods. It is then naturalto ask if dynasear
h is not so appropriate for multi-start lo
al sear
h algorithms. In thiswork, we show that this is not true. More pre
isely, we study the time dependent versionof the single ma
hine total weighted tardiness problem, and we present 
omputation resultsshowing that multi-start dynasear
h 
learly dominates the 
lassi
al multi-start lo
al sear
halgorithms.In s
heduling theory there have been an in
reasing interest, in the last few years, fors
heduling problems with time-dependent pro
essing times [1℄. In this paper we 
onsider ageneral time-dependent version of the well known single-ma
hine total weighted tardinesss
heduling problem. The problem 
an be stated as follows. We are given a set of n jobs,ea
h job j has a due date dj and a positive weight wj. The pro
essing time fj(t) of ea
h jobj depends on its starting time of exe
ution t and is given by a fun
tion fj . We shall noteptj for fj(t). So if a job j immediately starts after a job i, its duration is pCij with Ci the1




ompletion time of job i. We shall 
onsider only the idleness version, and 
onsider that allvalues are integer ones.Sin
e we make no assumptions on the fun
tions fj , this model 
aptures a wide rangeof pra
ti
al appli
ations. A �rst example is when the availability of the resour
es (e.g.pro
essing power) vary (e.g. in a monotone or 
y
li
 way) over time; think for example atthe load of a 
omputer network. A se
ond example is when any delay in the exe
ution ofa job may leads to an in
rease (resp. de
rease) of the diÆ
ulty of the job and therefore toa modi�ed duration; think for example to �re �ghting (resp. destroying a target whi
h isgetting 
loser).We denote by Cj the 
ompletion time and by Tj = maxfCj�dj; 0g the tardiness of job j.The obje
tive is to �nd a s
hedule whi
h minimizes the total weighted tardinessPnj=1 wjTj .Adopting the three-�eld standard notation of Graham et al. [7℄ we will denote this problemby 1 j ptj; idleness j Pj wjTj.This problem is strongly NP-hard sin
e it is a generalization of the single-ma
hine totalweighted tardiness problem 1 jjPj wjTj [11℄. Indeed, there exists a dynami
 programmingalgorithm with a running time O(n3Pnj=1 pj) for the problem 1 jjPj wjTj, but only whenweights are agreeable, that is pj � pk ) wj � wk for all jobs j and k [11℄. There exists abran
h and bound algorithm for the 1 jjPj wjTj problem [14℄, but as it is reported in [5℄it 
annot be used in pra
ti
e on instan
es with more than 50 jobs. Moreover the design ofapproximation algorithms seems very hard, sin
e the only known results 
on
ern only thefar less general 1jjPj Tj problem with a FPTAS due to Lawler [12℄ in O(n7=�) time, andslightly improved by Kovalyov [10℄ in O(n6 logn+n6=�) time. Sin
e the problem we 
onsideris a broad generalization of the 1 jjPj wjTj problem, these results stress the importan
e ofthe metaheuristi
 approa
h if one wants to pra
ti
ally deal with instan
es of this problem.2 Dynasear
h neighborhoodLo
al sear
h algorithms, and their generalizations su
h as simulated annealing and tabusear
h (also 
alled metaheuristi
s), are often used to obtain near optimal solutions for awide range of NP-hard 
ombinatorial optimization problems [15, 3, 4℄. In these methods aneighborhood is de�ned, usually by giving a set of transformations that 
an be applied onthe 
urrent solution. In the simplest lo
al sear
h method, at ea
h iteration the algorithmsear
hes the neighborhood of the 
urrent solution for a better one. If su
h a solution existsit be
omes the new 
urrent solution and the pro
ess goes on, otherwise the algorithm hasfound a lo
al optimal solution and stops.In general, the more large is the neighborhood, the less there are lo
al optima and thebetter in quality they are. Re
ently exponential size neighborhoods, whi
h 
an be neverthe-less sear
hed in polynomial time, have been proposed for the traveling salesman problem [8℄(see also the pioneer works [16℄ and [17℄), the one ma
hine bat
hing problem [9℄, and thesingle ma
hine total weighted tardiness s
heduling problem [5℄.The dynasear
h neighborhood we use is based on the swap neighborhood whi
h gives thebest results 
ompared to other ones for the 1 jjPj wjTj problem [6℄ [2℄, and probably forthe generalized problem that we 
onsider.We shall represent a solution by a permutation � = (�(1); : : : ; �(n)) of the set f1; 2; : : : ; ng,meaning that job �(j) is the j-th job to be s
heduled.Given a permutation � = (�(1); : : : ; �(i); : : : ; �(j) : : : �(n)) the swap neighborhood 
on-sists of all n(n�1)=2 permutations �0 = (�(1); : : : ; �(j); : : : ; �(i) : : : �(n)), with 1 � i < j �n, that 
an be obtained from � by swapping two jobs. A move that swaps job �(i) with �(j),and a move that swaps job �(k) with �(l) are said to be independent if maxfi; jg < minfk; lgor maxfk; lg < minfi; jg.The dynasear
h swap neighborhood, introdu
ed in [5℄, 
onsists of all solutions that 
an beobtained by a series of pairwise independent swap moves. For example, given the permutation� = (1 3 4 6 2 5 8 10 9 7 12 14 13 11), we 
an apply the 3 independent swap moves �guredto obtain the neighboring permutation �0 = (1 6 4 3 2 5 7 10 9 8 12 14 11 13). It is not2



diÆ
ult to see that this neighborhood has size 2n�1 � 1.To sear
h this exponential neighborhood in an eÆ
ient way, i.e. to �nd the best neigh-boring permutation among the 2n�1�1 
andidate permutations (i.e. we use steepest des
entlo
al sear
h), a dynami
 programming algorithm is used. We use a ba
kward enumerations
heme in whi
h jobs are appended to the beginning of the 
urrent partial sequen
e and arepossibly swapped with jobs already s
heduled in the partial sequen
e.We note (x)+ = maxfx; 0g for any integer x. Let � = (�(1); : : : ; �(i); : : : ; �(j) : : : �(n)),be a permutation. We note (�i; t) the best possible way to s
hedule jobs �(i); �(i+1); : : : ; �(n)by applying a series of independent swaps on the sub-permutation (�(i); �(i+ 1); : : : ; �(n)),assuming that the �rst job s
heduled in that sub-permutation is s
heduled at time t. Wetake only into a

ount the total weighted tardiness of jobs �(i), �(i+1), : : : ,�(n) and forgetjobs �(1); �(2); : : : ; �(i � 1) when dealing with (�i; t). We note F (�i; t) the 
orrespondingtotal weighted tardiness of jobs �(i), �(i + 1), : : : ,�(n) in the state (�i; t). We shall put(�n+1; t) = ; and F (�n+1; t) = 0 for any time t to simplify the des
ription of the algorithmbelow.Now the state (�i; t) must be obtained either by appending the job �(i) in front of thestate (�i+1; t+pt�(i)) or by appending the sequen
e (�(j); �(i+1); : : : ; �(j�1); �(i)), obtainedby swapping jobs �(i) and �(j), in front of the state (�j+1; t0) for some job i + 1 < j � nand time t0 (to be determined later).We have for the �rst 
ase F (�i; t) = w�(i)(t+ pt�(i) � d�(i))+ +F (�i+1; t+ pt�(i)): For these
ond 
ase, let tk be the starting time of the k-th s
heduled job for i � k � j after havingswapped �(i) and �(j). By de�nition of F (�i; t), ti = t. Then sin
e jobs �(i) and �(j) havebeen swapped, ti+1 = ti+pti�(j). Finally, tk = tk�1+ptk�1�(k�1) for i+1 < k � j. Thus we haveF (�i; t) =w�(j)(ti + pti�(j) � d�(j))+ + Xi<k<jw�(k)(tk + ptk�(k) � d�(k))+ +w�(i)(tj + ptj�(i) � d�(i))+ + F (�j+1; tj + ptj�(i)):If j = i+ 1, the sumPi<k<j is empty.Finally the dynami
 programming algorithm 
an be stated as:F (�n; t) = w�(n)(t+ pt�(n) � d�(n))+andF (�i; t) = minfw�(i)(ti + pti�(i) � d�(i))+ + F (�i+1; ti + pti�(i));minj;i<j�nw�(j)(ti + pti�(j) � d�(j))+ + Xi<k<jw�(k)(tk + ptk�(k) � d�(k))+ +w�(i)(tj + ptj�(i) � d�(i))+ + F (�j+1; tj + ptj�(i))g; for 1 � i < nWe want to 
al
ulate F (�1; 0). To implement the dynami
 programming algorithm wehave used a basi
 memoize te
hnique: an array stores the values of F already 
omputed inorder to redu
e the number of re
ursive 
alls. The optimal set of independent swaps 
an beretrieved by examining an array whi
h stores, for ea
h job j and ea
h time t for whi
h avalue F (�j; t) was 
omputed, the position of �(j) in the state (�j ; t).We shall assume that the pro
essing times are bounded up by a 
onstant pmax, i.e.0 � pt�(j) � pmax, 8j; t. Under this assumption, the time t at whi
h the last job 
an start isbounded up by (n�1)pmax. There are n(n�1)pmax states (�i; t), ea
h one 
an be 
omputedin O(n2) time (assuming that the previous required states have been already 
omputed),leading to a total O(n4pmax) time 
omplexity. The spa
e 
omplexity is O(n2pmax).3 Experimental resultsThere is 
ertainly a tradeo� between the bene�
e of using a large neighborhood in terms ofthe quality of lo
al optima and the indu
ed time in
rease, relative to a small neighborhood,3



in order to sear
h it. Our experiments were designed in order to determine if it was worthto spend more time exploring a larger neighborhood. To 
ompare the performan
e of thestandard and the dynasear
h swap neighborhoods we have used multi-start lo
al sear
h(MLS).In MLS with the dynasear
h swap neighborhood, a �xed number of lo
al sear
h areperformed, 10 in our 
ase, and we retain the best lo
al optima found out of these 10 lo
alsear
h. In MLS with the standard swap neighborhood, the number k of lo
al sear
h is notknown a priori and it is a fun
tion of the time spent, say T , by the MLS with the dynasear
hswap neighborhood, namely we perform lo
al sear
h until the total time spent is greater orequal to T . In this way we 
an fairly 
ompare the two algorithms. In the sequel, MLSmeans multi-start lo
al sear
h with the swap neighborhood, and MDS means multi-startdynasear
h, that is multi-start lo
al sear
h with the dynasear
h swap neighborhood.To speed-up the lo
al sear
h algorithm with the standard swap neighborhood, when aswap involving jobs �(i) and �(j), with j > i, is evaluated, only the portion in the right ofthe job �(j) is taken into a

ount to 
al
ulate the 
ost of the new solution (we use additionalarrays to re
ord for ea
h job its starting time, and for ea
h position the partial 
ost indu
edby the 
urrent solution up to this position).An instan
e of the problem 1 j ptj; idleness j Pj wjTj with n jobs is 
ompletely des
ribedby giving the (1+(n�1)pmax)n pro
essing times ptj with 1 � j � n and 0 � t � (n�1)pmax,with the n weights and the n due dates for ea
h job. We have 
hosen pmax = 20.We have generated random instan
es of various types with sizes 30 and 40. For ea
hjob j an integer weight wj is randomly uniformly generated in [1; 10℄, whatever the type ofthe instan
e. In the �rst type of instan
es, ea
h pro
essing time ptj is independent of theothers, and is 
hosen randomly in [1; pmax℄. This method 
ertainly leads to the most diÆ
ultinstan
es, but from a pra
ti
al point of view they are not realisti
. In the se
ond type ofinstan
es, ea
h job j has an ideal starting time bj and is penalized if its starts either tooearly or too late. Its pro
essing time is given by ptj = 1 + minfpmax � 1; b2�jt�bjjn�1 
g. In thethird (resp. fourth) type of instan
es, the pro
essing times are de
reasing (resp. in
reasing)with the time, i.e. the latter a job starts, the shorter (resp. longer) its duration. Morepre
isely, the pro
essing time of a job j given that it starts at time t is maxf1; bpmax � rj �t � pmax�1(n�1)pmax 
g for the third type of instan
e, with rj a real random number in [0,1[, t inf0; 1; : : : ; (n�1)pmaxg, and minfpmax; b1+rj �t� pmax�1(n�1)pmax 
g for the fourth type of instan
e.The integer due dates were generated in a similar way than what it is usually donefor the 
lassi
al 1jjPj wjTj problem: For ea
h job j, an integer due date dj is randomlygenerated in the interval [P (1 � TF � RDD=2); P (1 � TF + RDD=2)℄ using a uniformdistribution, with P = Pnj=1 pj, RDD 2 f0:2; 0:4; 0:6;0:8; 1:0g the relative range of duedates, and TF 2 f0:2; 0:4; 0:6;0:8; 1:0g the tardiness fa
tor. When the tardiness fa
tor is
lose to 1 it means that the majority of jobs will be 
ompleted after their due dates andthe problem is very 
onstrained. The relative range of due dates indi
ates the variabilityof the due dates around their mean value. We adopted the same pro
edure, with P =Pnj=1P(n�1)pmaxt=0 ptj=((n � 1)pmax + 1) to take into a

ount the time dependent pro
essingtimes.We have generated �ve instan
es for ea
h of the 25 pairs of values of RDD and TF, whi
hyields a total of 125 instan
es for ea
h size and ea
h type of instan
e. The experiments wereperformed on a Pentium III bipro
essor-500Mhz. Average results (over 10 exe
utions of MLSand MDS) are shown in Tables 1 to 8.In Tables 1 and 2, for ea
h TF and RDD values we have three entries. The �rst entryis the 
ost of the best lo
al optimum found using MLS (or MDS), the se
ond entry is theexe
ution time in se
onds, and the last entry is the number of lo
al sear
h performed forMLS in order to have the same exe
ution time than MDS. Table 3 indi
ates the improvementin per
entage on the 
ost of the solution found by MDS versus MLS.We 
an see than despite a mu
h less number of lo
al sear
h (10 against several hundreds),MDS performs better than MLS. The improvement 
an be very signi�
ant, for example forinstan
es with RDD=0.2 and TF=0.6, we obtain the optimal solution with MDS, whereasMLS gives solutions with a 
ost of 20.1. 4



rddntf 0.2 0.4 0.6 0.8 1.00.2 0.0; 2.3; 366 0.0; 2.4; 122 20.1; 8.7; 217 1966.1; 23.2; 422 12939.8; 24.4; 3900.4 0.0; 2.3; 271 0.0; 3.1; 130 2.3; 10.8; 231 2237.4; 23.9; 405 14287.1; 24.9; 3970.6 0.0; 2.4; 231 0.0; 4.9; 187 0.9; 13.5; 265 3297.3; 24.6; 404 11723.3; 25.4; 3990.8 0.0; 2.7; 186 0.0; 7.2; 235 65.6; 16.5; 306 4356.7; 23.9; 378 17836.4; 25.4; 3911 0.0; 3.6; 208 0.0; 10.3; 280 1035.2; 20.0; 345 6970.6; 25.0; 380 18160.4; 26.6; 398Table 1: size: 40, type: 1, multi-start lo
al sear
hrddntf 0.2 0.4 0.6 0.8 1.00.2 0.0; 2.3; 10 0.0; 2.4; 10 0.0; 8.7; 10 880.3; 23.1; 10 11769.6; 24.3; 100.4 0.0; 2.3; 10 0.0; 3.1; 10 0.0; 10.8; 10 1245.7; 23.9; 10 13064.3; 24.9; 100.6 0.0; 2.4; 10 0.0; 4.9; 10 0.5; 13.5; 10 2507.8; 24.6; 10 10820.6; 25.4; 100.8 0.0; 2.7; 10 0.0; 7.2; 10 49.8; 16.5; 10 3895.1; 23.9; 10 17010.8; 25.4; 101 0.0; 3.6; 10 0.0; 10.3; 10 994.0; 19.9; 10 6567.3; 24.9; 10 17361.0; 26.5; 10Table 2: size: 40, type: 1, multi-start dynasear
hrddntf 0.2 0.4 0.6 0.8 1.00.2 0 0 -100.0 -55.2 -9.00.4 0 0 -100.0 -44.3 -8.60.6 0 0 -44.4 -23.9 -7.70.8 0 0 -24.1 -10.6 -4.61 0 0 -4.0 -5.8 -4.4Table 3: size: 40, type: 1Due to spa
e limitation we present only the per
entage of improvement for the othertypes of instan
es with size 30 and 40 in Tables 4 to 8. We 
an see that in the overwhelmingof 
ases, multi-start dynasear
h gives better results. There is an ex
eption however for type4 instan
es. For them we obtain exa
tly the same 
ost with multi-start lo
al sear
h anddynasear
h. This probably indi
ates that these instan
es are solved to optimality.In the paper of Congram et al. [5℄, MDS gave only little improvement over MLS forthe 1jjPwjTj problem. The improvement was however signi�
ant for a more elaboratedmethod 
alled iterated lo
al sear
h (in whi
h a new lo
al sear
h is started from a solution\
lose" to the previously found lo
al optimum, instead of a randomly generated solution as itis the 
ase for MLS and MDS). The explanation we give for the eÆ
ien
y of MDS over MLSfor the time-dependent s
heduling problem we 
onsider is the following one. In our 
ase,starting from a solution �, the swap of two jobs �(i) and �(j) (i < j) 
an lead to a solution�0 in whi
h the swap of two jobs �(k) and �(l) (i < j < k < l or k < l < i < j) leads to asolution �00 with a lower 
ost than solution �, whereas performing �rst the swap of jobs �(k)and �(l) on solution � is not pro�table, i.e. it in
reases the 
ost of the solution obtained.This situation is not en
ountered in the stati
 s
heduling problem 1jjPwjTj . Therefore, wetake the bene�
e of a lookahead 
apability whi
h is absent from the standard lo
al sear
halgorithms whi
h are traditionally myopi
 in nature.4 Con
lusion and extensionsOur work is in the 
ontinuity of Congram et al. [5℄ whi
h have introdu
ed the dynasear
hswap neighborhood for the 1 jjPj wjTj problem. By introdu
ing the time parameter insidethe dynami
 programming algorithm we obtain a pseudopolynomial algorithm in time andspa
e, whereas their algorithm needed O(n3) time and O(n) spa
e, but we enlarge 
onsid-erably the 
lass of problems whi
h 
an now be treated. We need not anymore to 
onsider5



rddntf 0.2 0.4 0.6 0.8 1.00.2 0 -3.2 -0.1 0.1 -0.00.4 0 -17.1 0.3 0.2 -0.10.6 0 9.5 0.4 -0.0 -0.00.8 0 0 0.9 0.0 0.01 0 3.5 0.5 -0.0 -0.0Table 4: size: 40, type: 2 rddntf 0.2 0.4 0.6 0.8 1.00.2 -3.7 -0.4 0.0 0.0 0.00.4 -17.3 -1.4 0.0 0.0 0.00.6 0 -1.4 0.1 0.0 0.00.8 0 -1.5 0.1 -0.0 0.01 0 -2.0 0.0 0.0 -0.0Table 5: size: 40, type: 3
rddntf 0.2 0.4 0.6 0.8 1.00.2 0 0 -100.0 -39.1 -2.50.4 0 0 0 -34.6 -3.80.6 0 0 -97.6 -6.2 -3.30.8 0 0 -15.1 -3.4 -1.31 0 0 3.1 -1.0 -2.6Table 6: size: 30, type: 1 rddntf 0.2 0.4 0.6 0.8 1.00.2 0 -1.3 0.1 0.2 0.00.4 0 -15.4 1.0 -0.0 -0.00.6 0 -0.7 0.2 0.1 0.00.8 0 5.1 0.2 0.1 -0.01 0 1.3 0.3 0.0 -0.0Table 7: size: 30, type: 2

rddntf 0.2 0.4 0.6 0.8 1.00.2 -3.7 -0.0 0.0 0.0 0.00.4 -13.5 -0.6 0.1 0.0 0.00.6 -7.0 -0.5 0.0 0.0 0.00.8 -100.0 -1.1 0.1 0.0 0.01 0 -0.1 0.0 0.0 -0.0Table 8: size: 30, type: 36



problems in whi
h the 
ost 
hange between neighboring solutions depends only on the jobsbetween �(i) and �(j) whi
h are swapped. Namely, in the 1 jjPj wjTj problem when jobs�(i) and �(j) (i < j) are swapped, the jobs in the left of �(j) and in the right of �(i) havethe same starting time than before the swap. For instan
e multipro
essor s
heduling prob-lems, in whi
h a swap may involve jobs exe
uted not only in the same pro
essor, but also indi�erent pro
essors, 
ould be treated in the same way, by introdu
ing one time variable forea
h pro
essor.The experimental results have demonstrated the superiority of the dynasear
h approa
hover the standard swap neighborhood for the 1 j ptj; idleness j Pj wjTj problem. More elab-orate methods su
h as iterated lo
al sear
h [5℄ or metaheuristi
s su
h as simulated annealingand tabu sear
h [15℄ would perhaps give better results, but we think that they should be inagreement with ours, namely it is worth to spend more time exploring the bigger dynasear
hneighborhood. A reason for the strong improvement we have noti
ed for the multi-start lo
alsear
h may be the lookahead 
apability of the dynasear
h neighborhood when it is applied totime-dependent s
heduling problems. Enlarging the neighborhood would in
rease this looka-head 
apability, and therefore it is natural to wonder how big 
an we make the neighborhooduntil the bene�t of having a large neighborhood is neutralized by the long time spent at ea
hiteration to explore it. Insertion moves (
onsisting in taking a job and inserting it betweentwo 
onse
utive jobs) 
ould be added to swap moves, resulting in a bigger neighborhood stillsear
hable in pseudopolynomial time using the same dynasear
h te
hnique.A promising way of improving dynasear
h would be to use some kind of bran
h andbound inside the dynami
 programming algorithm. We need a lower bounding fun
tionL(�i; t) whi
h gives a lower bound on the total weighted tardiness of the best sub-solutioninvolving jobs �(i); �(i + 1); : : : ; �(n) given that the �rst job is s
heduled at time t, andwe need a third parameter 
 in F (�i; t; 
), whi
h indi
ates the total weighted tardiness ofthe partial solution 
onstru
ted so far (this has no in
iden
e on the time 
omplexity). Ifthe lower bound indi
ates that the best solution we 
an obtain by performing independentswaps on jobs �(i); �(i + 1); : : : ; �(n) starting from time t is worst than a solution we havealready obtained, then we need not to 
ompute the state F (�i; t).For the time-dependent problem we have 
onsidered in this paper, a lower bound based onthe relaxation of the 1 jjPj wjTj to a transportation problem (see for example [13℄) wouldhave a time 
omplexity of O(n3), and therefore would perhaps be not 
ompetitive. Weare now exploring this approa
h for other time dependent s
heduling problems whose lowerbounds 
an be obtained in a faster way.Referen
es[1℄ B. Alidaee and N.K. Womer. S
heduling with time dependent pro
essing times: Reviewand extensions. Journal of the Operational Resear
h So
iety, 50(7):711{720, 1999.[2℄ E.J. Anderson, C.A. Glass, and C.N. Potts. Ma
hine s
heduling. In E.H.L. Aarts andJ.K. Lenstra, editors, Lo
al sear
h in 
ombinatorial optimization, pages 361{414. Wiley,1997.[3℄ E. Angel and V. Zissimopoulos. On the quality of lo
al sear
h for the quadrati
 assign-ment problem. Dis
rete Applied Mathemati
s, 82:15{25, 1998.[4℄ E. Angel and V. Zissimopoulos. On the 
lassi�
ation of NP-
omplete problems in termsof their 
orrelation 
oeÆ
ient. Dis
rete Applied Mathemati
s, 99:261{277, 2000.[5℄ R.K. Congram, C.N. Potts, and S.L. van de Velde. An iterated dynasear
h algorithmfor the single-ma
hine total weighted tardiness s
heduling problem. Te
hni
al report,Fa
ulty of Mathemati
al Studies, University of Southampton,U.K., de
ember 1998.[6℄ H.A.J. Crauwels, C.N. Potts, and L.N. Van Wassenhove. Lo
al sear
h heuristi
s forthe single ma
hine total weighted tardiness s
heduling problem. INFORMS Journal onComputing, 10:341{350, 1998. 7



[7℄ R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization andapproximation in deterministi
 sequen
ing and s
heduling: A survey. Annals of Dis
reteMathemati
s, 5:287{326, 1979.[8℄ G. Gutin. Exponential neighbourhood lo
al sear
h for the traveling salesman problem.Computers and Operations Resear
h, 26(4), 1999.[9℄ J. Hurink. EÆ
ient 
al
ulation of a best neighbor for a one ma
hine bat
hing problem.Te
hni
al report, Osnabr�u
ker S
hriften zur Mathematik, Reihe P, No. 180, 1996.[10℄ M.Y. Kovalyov. On one ma
hine s
heduling to minimize the number of late items andthe total tardiness. Te
hni
al report, Institute of Engineering Cyberneti
s, A
ademy ofS
ien
es of Byelorussian SSR, Minsk, Byelorussia, 1991. Preprint N4.[11℄ E.L. Lawler. A \pseudopolynomial" algorithm for sequen
ing jobs to minimize totaltardiness. Annals of Dis
rete Mathemati
s, 1:331{342, 1977.[12℄ E.L. Lawler. A fully polynomial approximation s
heme for the total tardiness problem.Operations Resear
h Letters, 1:207{208, 1982.[13℄ M. Pinedo. S
heduling: Theory, Algorithms and Systems. Prenti
e Hall, 1995.[14℄ C.N. Potts and L.N. Van Wassenhove. A bran
h and bound algorithm for the totalweighted tardiness problem. Operations Resear
h, 33:363{377, 1985.[15℄ C.R. Reeves, editor. Modern heuristi
 te
hniques for 
ombinatorial problems. Bla
kwellS
ienti�
 Publi
ations, 1993.[16℄ N.N. Doroshko V.I. Sarvanov. The approximate solution of the travelling salesmanproblem by a lo
al sear
h algorithm that sear
hes neighborhoods of exponential 
ar-dinality in quadrati
 time (in russian). Software: Algorithms and Programs, 31:8{11,1981. Mathemati
al Institute of the Belorussian A
ademy of S
ien
es, Minsk.[17℄ N.N. Doroshko V.I. Sarvanov. The approximate solution of the travelling salesmanproblem by a lo
al sear
h algorithm with s
anning neighborhoods of fa
torial 
ardi-nality in 
ubi
 time (in russian). Software: Algorithms and Programs, 31:11{13, 1981.Mathemati
al Institute of the Belorussian A
ademy of S
ien
es, Minsk.

8


