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We prove the norm convergence of multiple ergodic averages along cubes for several commuting transformations, and derive corresponding combinatorial results. The method we use relies primarily on the "magic extension" established recently by B. Host.

1. Introduction 1.1. Results. By a system, we mean a probability space endowed with a single or several commuting measure preserving transformations. We prove the following result regarding the convergence of multiple ergodic averages along cubes for several commuting transformations : Theorem 1.1. Let d ≥ 1 be an integer and (X, B, µ, T 1 , • • • , T d ) be a system. Let f ǫ , ǫ ∈ {0, 1} d \ {00 • • • 0} be 2 d -1 bounded measurable functions on X. Then the averages

d i=1 1 N i -M i n i ∈[M i ,N i ) i=1,...,d ǫ∈{0,1} d ǫ =00•••0 T n 1 ǫ 1 1 • • • T n d ǫ d d f ǫ (1) converge in L 2 (µ) for all sequences of intervals [M 1 , N 1 ), . . . , [M d , N d ) whose lengths N i -M i (1 ≤ i ≤ d) tend to ∞.
To illustrate, when d = 2, the average (1) is

(2) 1 (N 1 -M 1 ) × (N 2 -M 2 ) n 1 ∈[M 1 ,N 1 ) n 2 ∈[M 2 ,N 2 ) T n 1 1 f 10 • T n 2 2 f 01 • T n 1 1 T n 2 2 f 11 .
When Theorem 1.1 is restricted to the case that each function f ǫ is the indicator function of a measurable set, we have the following lower bound for these averages: Theorem 1.2. Let (X, B, µ, T 1 , • • • , T d ) be a system and let A ∈ B. Then the limit of the averages

d i=1 1 N i -M i n i ∈[M i ,N i ) i=1,...,d µ ǫ∈{0,1} d T -n 1 ǫ 1 1 • • • T -n d ǫ d d A (3)
exists and is greater than or equal to µ(A)

2 d for all sequences of inter- vals [M 1 , N 1 ), . . . , [M d , N d ) whose lengths N i -M i (1 ≤ i ≤ d) tend to ∞.

Recall that the upper density d

* (A) of a set A ⊂ Z d is defined to be d * (A) = lim sup N i →∞ 1≤i≤d d i=1 1 N i |A ∩ [1, N 1 ] × • • • × [1, N d ]|.
A subset E of Z d is said to be syndetic if Z d can be covered by finitely many translates of E.

We have the following corresponding combinatorial result:

Theorem 1.3. Let A ⊂ Z d with d * (A) > δ > 0. Then the set of n = (n 1 , . . . , n d ) ∈ Z d such that d *   ǫ∈{0,1} d {A + (n 1 ǫ 1 , . . . , n d ǫ d )}   ≥ δ 2 d is syndetic. 1.2.
History of the problem. In the case where

T 1 = T 2 = • • • = T d = T , the average (1) is (4) d i=1 1 N i -M i n i ∈[M i ,N i ) i=1,...,d ǫ∈{0,1} d ǫ =00•••0 T n 1 ǫ 1 +•••+n d ǫ d f ǫ .
The norm convergence of (4) was proved by Bergelson for d = 2 in [START_REF] Bergelson | The multifarious Poincaré recurrence theorem. Descriptive set theory and dynamical systems (Marseille-Luminy[END_REF], and more generally, by Host and Kra for d > 2 in [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF]. The related pointwise convergence problem was studied by Assani and he showed that the averages (4) converge a.e. in [START_REF] Assani | Pointwise convergence of ergodic averages along cubes[END_REF].

The lower bound for the average (3) was firstly studied by Leibman, he provided some lower bounds for (3) in [START_REF] Leibman | Lower bounds for ergodic averages[END_REF]. In the same paper, he gave an example showing that the average (2) can diverge if the transformations do not commute.

However, Assani showed in [START_REF] Assani | Pointwise convergence of ergodic averages along cubes[END_REF] that the averages

1 N 2 N n,m=1 f (T n 1 x)g(T m 2 x)h(T n+m 3 
x) do converge a.e. even if the transformations do not necessarily commute. He extended this result to the case of six functions in [START_REF] Assani | Averages along cubes for not necessarily commuting measure preserving transformations[END_REF].

The norm convergence of multiple ergodic averages with several commuting transformations of the form [START_REF] Conze | Théorèmes ergodiques pour des mesures diagonales[END_REF] 1

N N n=1 T n 1 f 1 • . . . • T n d f d ,
was proved by Conze and Lesigne [START_REF] Conze | Théorèmes ergodiques pour des mesures diagonales[END_REF] when d = 2. The general case was originally proved by Tao [START_REF] Host | Ergodic seminorms for commuting transformations and applications[END_REF], and subsequent proofs were given by Austin [START_REF] Austin | On the norm convergence of nonconventional ergodic averages[END_REF], Host [START_REF] Host | Ergodic seminorms for commuting transformations and applications[END_REF] and Towsner [START_REF] Towsner | Convergence of diagonal ergodic averages[END_REF].

1.3. Methods. The main tools we use in this paper are the seminorms and the existence of "magic extensions" for commuting transformations established by Host [START_REF] Host | Ergodic seminorms for commuting transformations and applications[END_REF]. The "magic extensions" can be viewed as a concrete form of the pleasant extensions built by Austin in [START_REF] Austin | On the norm convergence of nonconventional ergodic averages[END_REF].
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Seminorm and upper bound

• • • 0 ∈ {0, 1} d . We write |ǫ| = i ǫ i for the number of elements in ǫ. Let (X, µ, T 1 , • • • , T d ) be a system. For each n = (n 1 , . . . , n d ), ǫ = {i 1 , . . . , i k } ⊂ [d],
and for each integer 1 ≤ k ≤ d, we write

T n ǫ = T n i 1 i 1 • • • T n i k i k .
For any transformation S of some probability space, we denote by I(S) the σ-algebra of S-invariant sets.

We define a measure µ 1 on X 2 by

µ 1 = µ × I(T 1 ) µ 1 .
This means that for f 0 , f 1 ∈ L ∞ (µ), we have

(f 0 ⊗ f 1 )(x 0 , x 1 )dµ 1 (x 0 , x 1 ) = E(f 0 |I(T 1 )) • E(f 1 |I(T 1 ))dµ.
For 2 ≤ k ≤ d, we define a measure µ k (see [START_REF] Host | Ergodic seminorms for commuting transformations and applications[END_REF]) on X 2 k by

µ k = µ k-1 × I(T △ k ) µ k-1 , where T △ k := T k × • • • × T k 2 k-1
.

We write X * = X 2 d , and points of X * are written as

x = (x ǫ : ǫ ⊂ [d]). We write µ * := µ d . For f ∈ L ∞ (µ), define |||f ||| T 1 ,...,T d :=   ǫ∈{0,1} d f (x ǫ )dµ * (x)   1/2 d . It was shown in Proposition 2 in [6] that ||| • ||| T 1 ,...,T d is a seminorm on L ∞ (µ). We call this the box seminorm associated to T 1 , . . . , T d . For ǫ ⊂ [d], ǫ = ∅, we write ||| • ||| ǫ for the seminorm on L ∞ (µ) associated to the transformations T i , i ∈ ǫ. For example, ||| • ||| 110•••00 is the seminorm associated to T 1 , T 2 because ǫ = 110 • • • 0 ∈ {0, 1} d is identified with {1, 2} ⊂ [d].
By Proposition 3 in [START_REF] Host | Ergodic seminorms for commuting transformations and applications[END_REF], if we rearrange the order of the digits in ǫ, the seminorm ||| • ||| ǫ remains unchanged. 

N i -M i →∞ i=1,...,d d i=1 1 N i -M i n∈[M 1 ,N 1 )ו••×[M d ,N d ) ǫ⊂[d] ǫ =∅ T n ǫ f ǫ L 2 (µ) ≤ min ǫ⊂[d] ǫ =∅ |||f ǫ ||| T 1 ...T d . (6) 
Proof. We proceed by induction on d.

For d = 1, we have 1 N 1 -M 1 n 1 ∈[M 1 ,N 1 ) T n 1 1 f 1 2 L 2 (µ) → E(f 1 |I(T 1 )) 2 dµ = |||f 1 ||| 2 T 1 .
Let d ≥ 2 and assume that ( 6) is established for d-1 transformations. We show that for every α ⊂ [d], α = ∅, the limsup of the the left hand side of ( 6) is bounded by |||f α ||| T 1 ,...,T d . By a permutation of digits if needed, we can assume that α = 0 . . . 0 d-1

1. The square of the norm in the left hand side of ( 6) is equal to

1 N d -M d n d ∈[M d ,N d ) T n d d f 0...01 • d-1 i=1 1 N i -M i m∈[M 1 ,N 1 )ו••×[M d-1 ,N d-1 ) η⊂[d-1] η =∅ T m η (f η0 • T n d d f η1 ) 2 L 2 (µ)
.

By the Cauchy-Schwartz Inequality, this is less than or equal to

1 N d -M d n d ∈[M d ,N d ) d-1 i=1 1 N i -M i m∈[M 1 ,N 1 )ו••×[M d-1 ,N d-1 ) η⊂[d-1] η =∅ T m η (f η0 • T n d d f η1 ) 2 L 2 (µ) . (7) 
By the induction hypothesis, when N i -M i → ∞, i = 1, . . . , d -1, the limsup of the square of the norm in [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF] is less than or equal to min

η⊂[d-1] η =∅ f η0 • T n d d f η1 2 T 1 ,...,T d-1 , where • T 1 ,...,T d-1 is the seminorm associated to the d -1 transforma- tions T 1 , . . . , T d-1 .
Note that α is equal to η0 or η1 for some η ⊂ [d -1], and by the Cauchy-Schwartz Inequality, we have lim

N d -M d →∞ 1 N d -M d n d ∈[M d ,N d ) f η0 • T n d d f η1 2 d-1 T 1 ,...,T d-1 = lim N d -M d →∞ 1 N d -M d n d ∈[M d ,N d ) η⊂[d-1] (f η0 • T n d d f η1 )dµ d-1 = E( η⊂[d-1] f η0 |I(T △ d ) • E( η⊂[d-1] f η1 |I(T △ d )dµ d-1 ≤   |E( α⊂[d] f α |I(T △ d ))| 2 dµ d-1   1/2 =   α⊂[d] f α dµ *   1/2 = |||f α ||| 2 d-1 T 1 ,...,T d .
This completes the proof.

The following proposition is a generalization of Proposition 2.1, although its proof depends upon Proposition 2.1. Proposition 2.2. Let r be an integer with 1 ≤ r ≤ d. Then [START_REF] Leibman | Lower bounds for ergodic averages[END_REF] lim sup

N i -M i →∞ i=1,...,d d i=1 1 N i -M i n∈[M 1 ,N 1 )ו••×[M d ,N d ) ǫ⊂[d] 0<|ǫ|≤r T n ǫ f ǫ L 2 (µ) ≤ min ǫ⊂[d] |ǫ|=r |||f ǫ ||| ǫ
Proof. We show that for every α ⊂ [d] with |α| = r, the lim sup in ( 8) is bounded by |||f α ||| α . By a permutation of digits we can restrict to the case that α = 11 . . . 1 r 00 . . . 0 .

We show that [START_REF] Tao | Norm convergence of multiple ergodic averages for commuting transformations[END_REF] lim sup

N i -M i →∞ i=1,...,d d i=1 1 N i -M i n∈[M 1 ,N 1 )ו••×[M d ,N d ) ǫ⊂[d] 0<|ǫ|≤r T n ǫ f ǫ L 2 (µ) ≤ |||f α ||| α .
The norm in ( 9) is equal to

d i=r+1 1 N i -M i m∈[M r+1 ,N r+1 )ו••×[M d ,N d ) ǫ⊂{r+1,...,d} ǫ =∅ T m ǫ f ǫ • r j=1 1 N j -M j n∈[M 1 ,N 1 )ו••×[Mr,Nr) η⊂[r] η =∅ T n η θ⊂[d-r] |ηθ|≤r T n r+θ f ηθ • (T n 1 1 • • • T nr r f α ) L 2 (µ) . (10) 
where r + θ = {r + k : k ∈ θ}. Let

g η =        θ⊂[d-r] |ηθ|≤r T n r+θ f ηθ 0 < |η| < r ; f α |η| = r .
Then ( 10) is equal to

d i=r+1 1 N i -M i • m∈[M r+1 ,N r+1 )ו••×[M d ,N d ) ǫ⊂{r+1,...,d} ǫ =∅ T m ǫ f ǫ • r j=1 1 N j -M j • n∈[M 1 ,N 1 )ו••×[Mr,Nr) η⊂[r] η =∅ T n η g η L 2 (µ) . (11) 
By the Cauchy-Schwartz Inequality, the square of ( 11) is less than or equal to

d i=r+1 1 N i -M i m∈[M r+1 ,N r+1 )ו••×[M d ,N d ) r j=1 1 N j -M j n∈[M 1 ,N 1 )ו••×[Mr,Nr) η⊂[r] η =∅ T n η g η 2 L 2 (µ) . (12) 
By Proposition 2.1, the limsup of (12) as

N i -M i → ∞, i = 1, . . . , r is bounded by d i=r+1 1 N i -M i n i ∈[M i ,N i ) i=r+1,...,d f α 2 T 1 ,...,Tr = f α 2 T 1 ,...,Tr .
This completes the proof.

The case of the magic extension

We recall the definition of a "magic" system.

Definition 3.1 (Host, [6]). A system (X, µ, T 1 , . . . , T d ) is called a "magic" system if f ∈ L ∞ (µ) is such that E(f | d i=1 I(T i )) = 0, then |||f ||| T 1 ,...,T d = 0.
Given a system (X, µ, T 1 , . . . , T d ), let X * and µ * be defined as in Section 2.1. We denote by T * i the side transformations of X * , given by

for every ǫ ∈ {0, 1} d , (T * i x) ǫ = T i x ǫ if ǫ i = 0 ; x ǫ if ǫ i = 1 .
By Theorem 2 in [START_REF] Host | Ergodic seminorms for commuting transformations and applications[END_REF], (X * , µ * , T * 1 , . . . , T * d ) is a "magic" system, and admits (X, µ, T 1 , . . . , T d ) as a factor.

For ǫ ⊂ [d], ǫ = ∅, we write ||| • ||| * ǫ for the seminorm on L ∞ (µ * ) associated to the transformations T * i , i ∈ ǫ. Moreover, we define the σ-algebra

Z * ǫ := i∈ǫ I(T * i ) of (X * , µ * ). For example, Z * {1,2,d} = I(T * 1 ) ∨ I(T * 2 ) ∨ I(T * d ). We prove Theorem 1.1 for the magic system (X * , µ * , T * 1 , . . . , T * d ). Theorem 3.2. Let f ǫ , ǫ ⊂ [d],
be functions on X * with f ǫ L ∞ (µ * ) ≤ 1 for every ǫ. Then the averages

(13) d i=1 1 N i -M i n∈[M 1 ,N 1 )ו••×[M d ,N d ) ǫ⊂[d] ǫ =∅ T * n ǫ f ǫ converge in L 2 (µ * ) for all sequences of intervals [M 1 , N 1 ), . . . , [M d , N d ) whose lengths N i -M i (1 ≤ i ≤ d) tend to ∞.
Since the system (X * , µ * , T * 1 , . . . , T * d ) admits (X, µ, T 1 , . . . , T d ) as a factor, Theorem 3.2 implies our main result Theorem 1.1. We define a new system (Y, ν, S 1 , . . . , S r ), where Y = X 2 d-r , ν = µ d-r , the dr step measure associated to T * 1 , . . . , T * d-r . Define

S i = T d-r+i × • • • × T d-r+i 2 d-r
on Y for i = 1, . . . , r.

Note that by definition, Y * = X 2 d = X * , and

S * i = T * d-r+i , S △ i = T △ d-r+i
for i = 1, . . . , r. Moreover,

ν 1 = ν × I(S 1 ) ν = µ d-r × I(T △ d-r+1 ) µ d-r = µ d-r+1 . By induction, ν i+1 = ν i × I(S △ i+1 ) ν i = µ d-r+i × I(T △ d-r+i+1 ) µ d-r+i = µ d-r+i+1 , for i = 1, . . . , r -1.
Therefore (X * , µ * , T * d-r+1 , . . . , T * d ) is just the magic extension (Y * , ν * , S * 1 , . . . , S * r ) of (Y, ν, S 1 , . . . , S r ). So 

Z * ǫ = i∈ǫ I(T * i ) = r i=1 I(S * i ) := W * Y . If f ∈ L ∞ (µ * ) with E µ * (f | Z * ǫ ) = 0, this is equivalent to E µ * (f | W * Y ) = 0,
N i -M i n∈[M 1 ,N 1 )ו••×[M d ,N d ) ǫ⊂[d] 0<|ǫ|≤r T * n ǫ f ǫ converge in L 2 (µ * ) for all sequences of intervals [M 1 , N 1 ), . . . , [M d , N d ) whose lengths N i -M i (1 ≤ i ≤ d) tend to ∞.
We remark that Theorem 3.2 follows immediately from this proposition when r = d.

Proof. We proceed by induction on r. When r = 1, the average (15) is (16

) d i=1 1 N i -M i n i ∈[M i ,N i ) i=1,...,d T * n 1 1 f 10...0 • • • T * n d d f 0...01 .
By the Ergodic Theorem, this converges to E(f 10...0 |I(T *

)) • • • E(f 0•••01 |I(T * d )). 1 
Assume r > 1, and that the proposition is true for r -1 transformations.

For 

α ⊂ [d], |α| = r, if E µ * (f α | Z * α ) = 0,
f η i / ∈η f η∪i,i |η| = r -1 .
Therefore (15) converges by the induction hypothesis.

combinatorial interpretation

Proof of Theorem 1.2. Apply Theorem 1.1 to the indicator function 1 A , we know that the limit of the averages (17) 

d i=1 1 N i -M i n i ∈[M i ,N i )

2. 1 .

 1 Notation and definitions. For an integer d ≥ 1, we write [d] = {1, 2, . . . , d} and identify {0, 1} d with the family of subsets of [d].

2. 2 .

 2 Upper bound. In the following, we assume that all functions f ǫ , ǫ ⊂ [d], are real valued and satisfy |f ǫ | ≤ 1. Proposition 2.1. Maintaining the above notation and hypotheses, lim sup

Theorem 3 . 3 .

 33 For every ǫ ⊂ [d], ǫ = ∅, and every function f ∈ L ∞ (µ * ), we have:(14) If E µ * (f | Z * ǫ ) = 0, then |||f ||| * ǫ = 0. Proof. Assume |ǫ| = r > 0.By a permutation of digits we can assume that ǫ = {dr + 1, dr + 2, . . . , d}.

  and by Theorem 2 in [6], we have |||f ||| * S * 1 ,...,S * r = 0. Thus |||f ||| * ǫ = |||f ||| * S * 1 ,...,S * r = 0 Proposition 3.4. Let f ǫ , ǫ ⊂ [d], be functions on X * with f ǫ L ∞ (µ * ) ≤ 1 for every ǫ. Let r be an integer with 1 ≤ r ≤ d. Then the averages (15) d i=1 1

  then by Theorem 3.3, we have |||f α ||| * α = 0. By Proposition 2.1, the average (15) converges to 0. Otherwise, by a density argument, we can assume thatf α = i∈α f α,i where f α,i is T * i -invariant. Then T * n α f α = i∈α T * n α\{i} f α,i . Thus ǫ⊂[d] 0<|ǫ|≤r T * n ǫ f ǫ = η⊂[d]

T n 1 ǫ 1 1 •

 1 • • T n d ǫ d d 1 A dµ exist. By Lemma 1 in [6], if we take the limit as N 1 -M 1 → ∞, then as N 2 -M 2 → ∞, ... and then as N d -M d → ∞, the average (17) converges to |||1 A ||| 2 dT 1 ,...,T d . Thus the limit of the average (17) is|||1 A ||| 2 d T 1 ,...,T d . Since |||f ||| 2 d T 1 ,...,T d = E( ǫ⊂[d-1] f |I(T △ d )) 2 L 2 (µ d-1 ) ≥ ( ǫ⊂[d-1] f dµ d-1 ) 2 = |||f ||| 2 d T 1 ,...,T d-1 , we have |||1 A ||| T 1 ,...,T d ≥ |||1 A ||| T 1 ≥ 1 A dµ = µ(A), and the result follows.Theorem 1.2 has the following corollary:

Corollary 4.1. Let (X, B, µ, T 1 , . . . , T d ) be a system, where T 1 , . . . , T d are commuting measure preserving transformations, and let A ∈ B. Then for any c >0, the set of n ∈ Z k such that

The proof is exactly the same as Corollary 13.8 in [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF]. Theorem 1.3 follows by combining Furstenberg's correspondence principle and Corollary 4.1.