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CONVERGENCE OF MULTIPLE ERGODIC AVERAGES

ALONG CUBES FOR SEVERAL COMMUTING

TRANSFORMATIONS

QING CHU

Abstract. We prove the norm convergence of multiple ergodic
averages along cubes for several commuting transformations, and
derive corresponding combinatorial results. The method we use
relies primarily on the “magic extension” established recently by
B. Host.

1. Introduction

1.1. Results. By a system, we mean a probability space endowed with
a single or several commuting measure preserving transformations. We
prove the following result regarding the convergence of multiple ergodic
averages along cubes for several commuting transformations :

Theorem 1.1. Let d ≥ 1 be an integer and (X,B, µ, T1, · · · , Td) be a
system. Let fǫ, ǫ ∈ {0, 1}d \ {00 · · ·0} be 2d − 1 bounded measurable
functions on X. Then the averages

d∏

i=1

1

Ni − Mi

∑

ni∈[Mi,Ni)
i=1,...,d

∏

ǫ∈{0,1}d

ǫ 6=00···0

T n1ǫ1
1 · · ·T ndǫd

d fǫ(1)

converge in L2(µ) for all sequences of intervals [M1, N1), . . . , [Md, Nd)
whose lengths Ni − Mi (1 ≤ i ≤ d) tend to ∞.

To illustrate, when d = 2, the average (1) is

(2)
1

(N1 − M1) × (N2 − M2)

∑

n1∈[M1,N1)
n2∈[M2,N2)

T n1

1 f10 · T
n2

2 f01 · T
n1

1 T n2

2 f11.
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2 QING CHU

When Theorem 1.1 is restricted to the case that each function fǫ is
the indicator function of a measurable set, we have the following lower
bound for these averages:

Theorem 1.2. Let (X,B, µ, T1, · · · , Td) be a system and let A ∈ B.
Then the limit of the averages

d∏

i=1

1

Ni − Mi

∑

ni∈[Mi,Ni)
i=1,...,d

µ
( ⋂

ǫ∈{0,1}d

T−n1ǫ1
1 · · ·T−ndǫd

d A
)

(3)

exists and is greater than or equal to µ(A)2d

for all sequences of inter-
vals [M1, N1), . . . , [Md, Nd) whose lengths Ni − Mi (1 ≤ i ≤ d) tend to
∞.

Recall that the upper density d∗(A) of a set A ⊂ Z
d is defined to be

d∗(A) = lim sup
Ni→∞
1≤i≤d

d∏

i=1

1

Ni

|A ∩ [1, N1] × · · · × [1, Nd]|.

A subset E of Z
d is said to be syndetic if Z

d can be covered by finitely
many translates of E.

We have the following corresponding combinatorial result:

Theorem 1.3. Let A ⊂ Z
d with d∗(A) > δ > 0. Then the set of

n = (n1, . . . , nd) ∈ Z
d such that

d∗




⋂

ǫ∈{0,1}d

{A + (n1ǫ1, . . . , ndǫd)}



 ≥ δ2d

is syndetic.

1.2. History of the problem. In the case where T1 = T2 = · · · =
Td = T , the average (1) is

(4)
d∏

i=1

1

Ni − Mi

∑

ni∈[Mi,Ni)
i=1,...,d

∏

ǫ∈{0,1}d

ǫ 6=00···0

T n1ǫ1+···+ndǫdfǫ.

The norm convergence of (4) was proved by Bergelson for d = 2
in [4], and more generally, by Host and Kra for d > 2 in [7]. The
related pointwise convergence problem was studied by Assani and he
showed that the averages (4) converge a.e. in [1].

The lower bound for the average (3) was firstly studied by Leibman,
he provided some lower bounds for (3) in [8]. In the same paper,
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he gave an example showing that the average (2) can diverge if the
transformations do not commute.

However, Assani showed in [1] that the averages

1

N2

N∑

n,m=1

f(T n
1 x)g(Tm

2 x)h(T n+m
3 x)

do converge a.e. even if the transformations do not necessarily com-
mute. He extended this result to the case of six functions in [2].

The norm convergence of multiple ergodic averages with several com-
muting transformations of the form

(5)
1

N

N∑

n=1

T n
1 f1 · . . . · T

n
d fd,

was proved by Conze and Lesigne [5] when d = 2. The general case
was originally proved by Tao [6], and subsequent proofs were given by
Austin [3], Host [6] and Towsner [10].

1.3. Methods. The main tools we use in this paper are the seminorms
and the existence of “magic extensions” for commuting transformations
established by Host [6]. The “magic extensions” can be viewed as a
concrete form of the pleasant extensions built by Austin in [3].

Acknowledgement. This paper was written while the author was
visiting the Mathematical Sciences Research Institute and the author
is grateful for their kind hospitality. The author also thanks the referee
of this paper for remarks.

2. Seminorm and upper bound

2.1. Notation and definitions. For an integer d ≥ 1, we write [d] =
{1, 2, . . . , d} and identify {0, 1}d with the family of subsets of [d]. There-
fore, the assertion “i ∈ ǫ” is equivalent to ǫi = 1. In particular, ∅ is
the same as 00 · · ·0 ∈ {0, 1}d. We write |ǫ| =

∑

i ǫi for the number of
elements in ǫ.

Let (X, µ, T1, · · · , Td) be a system. For each n = (n1, . . . , nd), ǫ =
{i1, . . . , ik} ⊂ [d], and for each integer 1 ≤ k ≤ d, we write

T n
ǫ = T

ni1

i1
· · ·T

ni
k

ik
.

For any transformation S of some probability space, we denote by
I(S) the σ-algebra of S-invariant sets.

We define a measure µ1 on X2 by

µ1 = µ ×I(T1) µ1.
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This means that for f0, f1 ∈ L∞(µ), we have
∫

(f0 ⊗ f1)(x0, x1)dµ1(x0, x1) =

∫

E(f0|I(T1)) · E(f1|I(T1))dµ.

For 2 ≤ k ≤ d, we define a measure µk (see [6]) on X2k

by

µk = µk−1 ×I(T△

k
) µk−1,

where T
△
k := Tk × · · · × Tk

︸ ︷︷ ︸

2k−1

.

We write X∗ = X2d

, and points of X∗ are written as x = (xǫ : ǫ ⊂
[d]). We write µ∗ := µd.

For f ∈ L∞(µ), define

|||f |||T1,...,Td
:=





∫
∏

ǫ∈{0,1}d

f(xǫ)dµ∗(x)





1/2d

.

It was shown in Proposition 2 in [6] that ||| · |||T1,...,Td
is a seminorm

on L∞(µ). We call this the box seminorm associated to T1, . . . , Td.

For ǫ ⊂ [d], ǫ 6= ∅, we write ||| · |||ǫ for the seminorm on L∞(µ)
associated to the transformations Ti, i ∈ ǫ. For example, ||| · |||110···00
is the seminorm associated to T1, T2 because ǫ = 110 · · ·0 ∈ {0, 1}d is
identified with {1, 2} ⊂ [d].

By Proposition 3 in [6], if we rearrange the order of the digits in ǫ,
the seminorm ||| · |||ǫ remains unchanged.

2.2. Upper bound. In the following, we assume that all functions fǫ,
ǫ ⊂ [d], are real valued and satisfy |fǫ| ≤ 1.

Proposition 2.1. Maintaining the above notation and hypotheses,

lim sup
Ni−Mi→∞

i=1,...,d

∥
∥
∥

d∏

i=1

1

Ni − Mi

∑

n∈[M1,N1)×···×[Md,Nd)

∏

ǫ⊂[d]
ǫ 6=∅

T n
ǫ fǫ

∥
∥
∥

L2(µ)
≤ min

ǫ⊂[d]
ǫ 6=∅

|||fǫ|||T1...Td
.

(6)

Proof. We proceed by induction on d. For d = 1, we have
∥
∥
∥

1

N1 − M1

∑

n1∈[M1,N1)

T n1

1 f1

∥
∥
∥

2

L2(µ)
→

∫

E(f1|I(T1))
2dµ = |||f1|||

2
T1

.

Let d ≥ 2 and assume that (6) is established for d−1 transformations.
We show that for every α ⊂ [d], α 6= ∅, the limsup of the the left

hand side of (6) is bounded by |||fα|||T1,...,Td
. By a permutation of digits
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if needed, we can assume that α 6= 0 . . . 0
︸ ︷︷ ︸

d−1

1. The square of the norm in

the left hand side of (6) is equal to

∥
∥
∥

1

Nd − Md

∑

nd∈[Md,Nd)

T nd

d f0...01 ·
d−1∏

i=1

1

Ni − Mi

∑

m∈[M1,N1)×···×[Md−1,Nd−1)

∏

η⊂[d−1]
η 6=∅

Tm
η (fη0 · T

nd

d fη1)
∥
∥
∥

2

L2(µ)
.

By the Cauchy-Schwartz Inequality, this is less than or equal to

1

Nd − Md

∑

nd∈[Md,Nd)

∥
∥
∥

d−1∏

i=1

1

Ni − Mi

∑

m∈[M1,N1)×···×[Md−1,Nd−1)

∏

η⊂[d−1]
η 6=∅

Tm
η (fη0 · T

nd

d fη1)
∥
∥
∥

2

L2(µ)
.

(7)

By the induction hypothesis, when Ni − Mi → ∞, i = 1, . . . , d − 1,
the limsup of the square of the norm in (7) is less than or equal to

min
η⊂[d−1]

η 6=∅

‖fη0 · T
nd

d fη1‖
2
T1,...,Td−1

,

where ‖ · ‖T1,...,Td−1
is the seminorm associated to the d− 1 transforma-

tions T1, . . . , Td−1.
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Note that α is equal to η0 or η1 for some η ⊂ [d − 1], and by the
Cauchy-Schwartz Inequality, we have

lim
Nd−Md→∞

1

Nd − Md

∑

nd∈[Md,Nd)

‖fη0 · T
nd

d fη1‖
2d−1

T1,...,Td−1

= lim
Nd−Md→∞

1

Nd − Md

∑

nd∈[Md,Nd)

∫
⊗

η⊂[d−1]

(fη0 · T
nd

d fη1)dµd−1

=

∫

E(
⊗

η⊂[d−1]

fη0|I(T△
d ) · E(

⊗

η⊂[d−1]

fη1|I(T△
d )dµd−1

≤





∫

|E(
⊗

α⊂[d]

fα|I(T△
d ))|2dµd−1





1/2

=





∫
⊗

α⊂[d]

fαdµ∗





1/2

= |||fα|||
2d−1

T1,...,Td
.

This completes the proof. �

The following proposition is a generalization of Proposition 2.1, al-
though its proof depends upon Proposition 2.1.

Proposition 2.2. Let r be an integer with 1 ≤ r ≤ d. Then
(8)

lim sup
Ni−Mi→∞

i=1,...,d

∥
∥
∥

d∏

i=1

1

Ni − Mi

∑

n∈[M1,N1)×···×[Md,Nd)

∏

ǫ⊂[d]
0<|ǫ|≤r

T n
ǫ fǫ

∥
∥
∥

L2(µ)
≤ min

ǫ⊂[d]
|ǫ|=r

|||fǫ|||ǫ

Proof. We show that for every α ⊂ [d] with |α| = r, the lim sup in (8)
is bounded by |||fα|||α .

By a permutation of digits we can restrict to the case that

α = 11 . . . 1
︸ ︷︷ ︸

r

00 . . . 0 .

We show that

(9)

lim sup
Ni−Mi→∞

i=1,...,d

∥
∥
∥
∥
∥
∥
∥
∥

d∏

i=1

1

Ni − Mi

∑

n∈[M1,N1)×···×[Md,Nd)

∏

ǫ⊂[d]
0<|ǫ|≤r

T n
ǫ fǫ

∥
∥
∥
∥
∥
∥
∥
∥

L2(µ)

≤ |||fα|||α.

The norm in (9) is equal to
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∥
∥

d∏

i=r+1

1

Ni − Mi

∑

m∈[Mr+1,Nr+1)×···×[Md,Nd)

∏

ǫ⊂{r+1,...,d}
ǫ 6=∅

Tm
ǫ fǫ ·

r∏

j=1

1

Nj − Mj

∑

n∈[M1,N1)×···×[Mr,Nr)

( ∏

η⊂[r]
η 6=∅

T n
η

∏

θ⊂[d−r]
|ηθ|≤r

T n
r+θfηθ

)
· (T n1

1 · · ·T nr

r fα)
∥
∥

L2(µ)
.

(10)

where r + θ = {r + k : k ∈ θ}.
Let

gη =







∏

θ⊂[d−r]
|ηθ|≤r

T n
r+θfηθ 0 < |η| < r ;

fα |η| = r .

Then (10) is equal to

∥
∥
∥

d∏

i=r+1

1

Ni − Mi

·
∑

m∈[Mr+1,Nr+1)×···×[Md,Nd)

( ∏

ǫ⊂{r+1,...,d}
ǫ 6=∅

Tm
ǫ fǫ

)

·
r∏

j=1

1

Nj − Mj

·
∑

n∈[M1,N1)×···×[Mr,Nr)

( ∏

η⊂[r]
η 6=∅

T n
η gη

)∥
∥
∥

L2(µ)
.

(11)

By the Cauchy-Schwartz Inequality, the square of (11) is less than
or equal to

d∏

i=r+1

1

Ni − Mi

∑

m∈[Mr+1,Nr+1)×···×[Md,Nd)

∥
∥
∥

r∏

j=1

1

Nj − Mj

∑

n∈[M1,N1)×···×[Mr,Nr)

∏

η⊂[r]
η 6=∅

T n
η gη

∥
∥
∥

2

L2(µ)
.

(12)

By Proposition 2.1, the limsup of (12) as Ni −Mi → ∞, i = 1, . . . , r
is bounded by

d∏

i=r+1

1

Ni − Mi

∑

ni∈[Mi,Ni)
i=r+1,...,d

‖fα‖
2
T1,...,Tr

= ‖fα‖
2
T1,...,Tr

.

This completes the proof. �
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3. The case of the magic extension

We recall the definition of a “magic” system.

Definition 3.1 (Host, [6]). A system (X, µ, T1, . . . , Td) is called a

“magic” system if f ∈ L∞(µ) is such that E(f |
∨d

i=1 I(Ti)) = 0, then
|||f |||T1,...,Td

= 0.

Given a system (X, µ, T1, . . . , Td), let X∗ and µ∗ be defined as in
Section 2.1. We denote by T ∗

i the side transformations of X∗, given by

for every ǫ ∈ {0, 1}d, (T ∗
i x)ǫ =

{

Tixǫ if ǫi = 0 ;

xǫ if ǫi = 1 .

By Theorem 2 in [6], (X∗, µ∗, T ∗
1 , . . . , T ∗

d ) is a “magic” system, and
admits (X, µ, T1, . . . , Td) as a factor.

For ǫ ⊂ [d], ǫ 6= ∅, we write ||| · |||∗ǫ for the seminorm on L∞(µ∗)
associated to the transformations T ∗

i , i ∈ ǫ. Moreover, we define the
σ-algebra

Z∗
ǫ :=

∨

i∈ǫ

I(T ∗
i )

of (X∗, µ∗). For example, Z∗
{1,2,d} = I(T ∗

1 ) ∨ I(T ∗
2 ) ∨ I(T ∗

d ).

We prove Theorem 1.1 for the magic system (X∗, µ∗, T ∗
1 , . . . , T ∗

d ).

Theorem 3.2. Let fǫ, ǫ ⊂ [d], be functions on X∗ with ‖fǫ‖L∞(µ∗) ≤ 1
for every ǫ. Then the averages

(13)
d∏

i=1

1

Ni − Mi

∑

n∈[M1,N1)×···×[Md,Nd)

∏

ǫ⊂[d]
ǫ 6=∅

T ∗n
ǫ fǫ

converge in L2(µ∗) for all sequences of intervals [M1, N1), . . . , [Md, Nd)
whose lengths Ni − Mi (1 ≤ i ≤ d) tend to ∞.

Since the system (X∗, µ∗, T ∗
1 , . . . , T ∗

d ) admits (X, µ, T1, . . . , Td) as a
factor, Theorem 3.2 implies our main result Theorem 1.1.

Theorem 3.3. For every ǫ ⊂ [d], ǫ 6= ∅, and every function f ∈
L∞(µ∗), we have:

(14) If Eµ∗(f | Z∗
ǫ ) = 0, then |||f |||∗ǫ = 0.

Proof. Assume |ǫ| = r > 0. By a permutation of digits we can assume
that

ǫ = {d − r + 1, d − r + 2, . . . , d}.
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We define a new system (Y, ν, S1, . . . , Sr), where Y = X2d−r

, ν =
µd−r, the d − r step measure associated to T ∗

1 , . . . , T ∗
d−r. Define

Si = Td−r+i × · · · × Td−r+i
︸ ︷︷ ︸

2d−r

on Y for i = 1, . . . , r.
Note that by definition, Y ∗ = X2d

= X∗, and

S∗
i = T ∗

d−r+i, S
△
i = T

△
d−r+i

for i = 1, . . . , r. Moreover,

ν1 = ν ×I(S1) ν = µd−r ×I(T△

d−r+1
) µd−r = µd−r+1.

By induction,

νi+1 = νi ×I(S△

i+1
) νi = µd−r+i ×I(T△

d−r+i+1
) µd−r+i = µd−r+i+1,

for i = 1, . . . , r − 1.
Therefore (X∗, µ∗, T ∗

d−r+1, . . . , T
∗
d ) is just the magic extension (Y ∗, ν∗, S∗

1 , . . . , S
∗
r )

of (Y, ν, S1, . . . , Sr). So

Z∗
ǫ =

∨

i∈ǫ

I(T ∗
i ) =

r∨

i=1

I(S∗
i ) := W∗

Y .

If f ∈ L∞(µ∗) with Eµ∗(f | Z∗
ǫ ) = 0, this is equivalent to Eµ∗(f |

W∗
Y ) = 0, and by Theorem 2 in [6], we have |||f |||∗S∗

1
,...,S∗

r
= 0. Thus

|||f |||∗ǫ = |||f |||∗S∗
1
,...,S∗

r
= 0 �

Proposition 3.4. Let fǫ, ǫ ⊂ [d], be functions on X∗ with ‖fǫ‖L∞(µ∗) ≤
1 for every ǫ. Let r be an integer with 1 ≤ r ≤ d. Then the averages

(15)
d∏

i=1

1

Ni − Mi

∑

n∈[M1,N1)×···×[Md,Nd)

∏

ǫ⊂[d]
0<|ǫ|≤r

T ∗n
ǫ fǫ

converge in L2(µ∗) for all sequences of intervals [M1, N1), . . . , [Md, Nd)
whose lengths Ni − Mi (1 ≤ i ≤ d) tend to ∞.

We remark that Theorem 3.2 follows immediately from this propo-
sition when r = d.

Proof. We proceed by induction on r. When r = 1, the average (15) is

(16)

d∏

i=1

1

Ni − Mi

∑

ni∈[Mi,Ni)
i=1,...,d

T ∗n1

1 f10...0 · · ·T
∗nd

d f0...01.

By the Ergodic Theorem, this converges to E(f10...0|I(T ∗
1 )) · · ·E(f0···01|I(T ∗

d )).
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Assume r > 1, and that the proposition is true for r− 1 transforma-
tions.

For α ⊂ [d], |α| = r, if Eµ∗(fα | Z∗
α) = 0, then by Theorem 3.3, we

have |||fα|||
∗
α = 0. By Proposition 2.1, the average (15) converges to 0.

Otherwise, by a density argument, we can assume that

fα =
∏

i∈α

fα,i

where fα,i is T ∗
i -invariant. Then

T ∗n
α fα =

∏

i∈α

T ∗n
α\{i}fα,i .

Thus
∏

ǫ⊂[d]
0<|ǫ|≤r

T ∗n
ǫ fǫ =

∏

η⊂[d]
0<|η|≤r−1

T ∗n
η gη ,

where

gη =







fη |η| < r − 1 ;

fη

∏

i/∈η

fη∪i,i |η| = r − 1 .

Therefore (15) converges by the induction hypothesis. �

4. combinatorial interpretation

Proof of Theorem 1.2. Apply Theorem 1.1 to the indicator function
1A, we know that the limit of the averages

(17)
d∏

i=1

1

Ni − Mi

∑

ni∈[Mi,Ni)
i=1,...,d

∫
∏

ǫ∈{0,1}d

T n1ǫ1
1 · · ·T ndǫd

d 1Adµ

exist. By Lemma 1 in [6], if we take the limit as N1 − M1 → ∞,
then as N2 − M2 → ∞, ... and then as Nd − Md → ∞, the average
(17) converges to |||1A|||

2d

T1,...,Td
. Thus the limit of the average (17) is

|||1A|||
2d

T1,...,Td
. Since

|||f |||2
d

T1,...,Td
= ‖E(

⊗

ǫ⊂[d−1]

f |I(T△
d ))‖2

L2(µd−1) ≥ (

∫
⊗

ǫ⊂[d−1]

fdµd−1)
2 = |||f |||2

d

T1,...,Td−1
,

we have |||1A|||T1,...,Td
≥ |||1A|||T1

≥
∫

1Adµ = µ(A), and the result follows.
�

Theorem 1.2 has the following corollary:
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Corollary 4.1. Let (X,B, µ, T1, . . . , Td) be a system, where T1, . . . , Td

are commuting measure preserving transformations, and let A ∈ B.
Then for any c >0, the set of n ∈ Z

k such that

µ
( ⋂

ǫ∈{0,1}d

T−n1ǫ1
1 · · ·T−ndǫd

d A
)
≥ µ(A)2d

− c

is syndetic.

The proof is exactly the same as Corollary 13.8 in [7].
Theorem 1.3 follows by combining Furstenberg’s correspondence prin-

ciple and Corollary 4.1.
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