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Identification of a Managed River Reach

by a Bayesian Approach
Magalie Thomassin, Thierry Bastogne, and Alain Richard,Member, IEEE

Abstract

This paper considers the problem of identification, and moreparticularly of time-delay estimation, of a river reach

managed to produce hydroelectric power. Difficulties lie inthe obligation to use data collected during a combined

feedback/feedforward control carried out by a human operator. We propose a Bayesian identification method, non-

supervised and simple to implement, estimating jointly thetime-delay and a finite impulse response (FIR). It is

based on the detection of an abrupt change in the FIR at a time equal to the time-delay. Experimental results show

the effectiveness of the proposed method to estimate the river reach time-delay from data collected in imposed

experimental conditions.

Index Terms

Delay estimation, Bayesian identification, degeneracy, impulse response, open-channel system.

I. I NTRODUCTION

The problem addressed in this paper is the identification of amanaged river reach, described in Fig. 1, and

more precisely the estimation of the time-delay between theinflow rate and the downstream water level of the

reach. Several works dealing with modeling and identification of open water channels have been already published

[1]–[8]. In [9]–[11], second and third order plus time-delay non linear models have been developed. However, few

applications concern the time-delay estimation in this type of plant [12], although it directly influences the control

performances and, in particular, the control stabilization [13]. This is particularly true for cascaded systems like

run-of-river hydroelectric plants [14]. In practice, time-delays are either empirically estimated from knowledge of

operators or experimentally determined from the measurement of intumescence propagation time. But in both cases,

the estimates are still characterized by a large uncertainty.

For safety precautions and economic reasons,e.g. flood risks or fall-off in hydroelectric power production, the

implementation of experimental protocols is not possible.In this case, estimation data are collected under normal
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operating conditions,i.e. in a context of water level regulation carried out by a human operator. The purpose

is, on the one hand, to estimate the nominal value of the time-delay and, on the other hand, to determine its

evolution over one year. Indeed, the time-delay is a flow-variant parameter and the mean flow rate of the reach

can be multiplied by ten during a year. The difficulty is twofold: 1) taking into account the actions of the human

operator; and 2) compensating the lack of information in theestimation data sets. Indeed, if the operator actions

are not considered (closed-loop system identification by a direct approach [15]), then most of time-delay estimation

methods, like the exhaustive search based on the minimization of the output error, fail due to correlations between

the input and the output data [16], [17]. Moreover, it is shown in this paper that human operators introduce a

feedforward compensation to anticipate output variations. This feedforward control “hides” the reach time-delay

in the transfer function of the closed-loop system. The firstcoefficients of its impulse response are not equal to

zero. So, classical time-delay estimation methods, like the method using a shift operator model with an expanded

numerator polynomial [18], are inappropriate.

The problem addressed herein is the identification and time-delay estimation of systems equipped with combined

feedback/feedforward control systems (carried out by human operators) subject to large uncertainties (human

operator is changed every 8 hours) and from few informative data sets, collected during regulation. To overcome

these difficulties, a Bayesian method which jointly estimates the time-delay and a finite impulse response (FIR), is

proposed. It is based on the fact that the time-delay introduces a discontinuity in the impulse response. In presence of

few informative data, the FIR identification is an ill-conditioned inverse problem. The Bayesian approach provides

a coherent and complete framework to take into account some prior knowledge. The latter corresponds classically

in the case of a FIR estimation to a temporal smoothness constraint imposed by using a differentiation matrix [19].

In our problem, the FIR is slowly time-variant except at a time equal to the time-delay. The joint estimation of

the FIR and the abrupt change instant are then performed by modifying the differentiation matrix. Unlike some

Fig. 1. River reach managed to produce hydroelectric power.
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classical approaches which first estimate a FIR and then detect a discontinuity, this method requires only one step.

The choice of the FIR model structure allows to limit the problem of model uncertainties introduced by the human

operator.

The paper is organized as follows. In section II, the variation range of the time-delay is evaluated from average

hydraulic characteristics. A simplified modeling of a managed river reach is then presented in section III. The

simplified model points out the main issues of the identification problem of this process. In section IV, a Bayesian

method which jointly estimates the time-delay and the finiteimpulse response is proposed. During the hyperpa-

rameters estimation step, a degeneracy of a probability density function, leading to unreal results, is highlighted in

section V and a solution is developed. In section VI, the identification method is applied to the data sets collected

from a reach of the ‘Basse-Isère’ river, in France, over oneyear and atime-day representationof the estimated

impulse responses is presented. This original descriptionallows to clearly observe the evolution of the impulse

response (and of the time-delay) over the year. Finally, theapplication results are analyzed and compared with

empirical knowledge.

II. A PRIORI VARIATION RANGE OF THE TIME-DELAY FROM HYDRAULIC ANALYSIS

The propagation of shallow water waves in channel with rectangular cross section is controlled by the various

forces included in the equation of motion

1

g

∂v

∂t
+

v

g

∂v

∂x
+

∂z

∂x
+ (Sf − Sb) = 0 (1)

wherev is the velocity averaged in a vertical section,z is the depth of flow,g is the acceleration of gravity,Sf is

the friction slope andSb is the bed slope. Ponce and Simons in [20] give the expressionof the waves celerity

c = (1 + cr)v
∗ (2)

wherev∗ is the mean flow velocity andcr, the relative celerity, verifies

0.5 6 cr 6 1/Fo if Fo < 2 (3)

whereFo is the Froude number

Fo =
v∗√
gz∗

(4)

with z∗ the mean depth. As a consequence, the propagation time of wavesτh, equal toL/c whereL is the reach

length, in a straight channel with rectangular cross section, verifies

L

(1 + 1
Fo

)v∗
6 τh 6

L

(1 + 0.5)v∗
if Fo < 2. (5)

The lower bound corresponds to the propagation time of a gravity wave, whereas the upper bound corresponds to

the one of a kinematic wave.

Let consider now the hydraulic characteristics of the reach. Table I gives its main physical specifications. Other

values are not available. Fig. 2 gives the mean daily discharge over the year (in downstream). It lies from about
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TABLE I

CHARACTERISTIC VALUES OF THE REACH

lengthL 8.2 km

average widthl∗ 81.6 m

average depthz∗ 4.9 m

surface areaA 6.7 × 105 m2

Fig. 2. Mean daily discharge (inm3/s) over the year

100 m3/s to 800 m3/s, but most are lower than 500m3/s. The mean variation (peak-to-peak) over one day is

about 150m3/s. Fig. 3 gives the evolution of the mean daily level (in downstream with reference to NGF-IGN69)

over the year. The down peaks correspond to an increase of thedownstream flow rate (downstream dam release).

Over one day, the mean variation is about 0.2m. Fig. 4 represents the evolution of the mean daily Froude number

Fig. 3. Mean daily level (inm with reference to NGF-IGN69) over the year
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Fig. 4. Mean daily Froude number over the year

Fig. 5. Bounds of the waves propagation time (Ts = 133 s) versus the flow rate (inm3/s)

over the year. The Froude number can be interpreted as the ratio of the inertial to gravity forces in the flow. The

mean daily Froude number is obtained by the relation

F ∗

o =
v∗√
gz∗

=
Q∗

S∗
√

gz∗
=

Q∗

l∗z∗
√

gz∗
(6)

wherev∗ is the mean daily velocity,Q∗ is the mean daily discharge,S∗ = l∗z∗ is the mean daily section area,l∗

is the average width of the reach section andz∗ is the mean daily level. The mean Froude number is lower than 2,

therefore the propagation time verifies (5) . Its bounds are plotted in Fig. 5 versus the mean flow rate in order to

evaluate its variation. It can vary from few sampling periods (with Ts = 133s) for gravity waves to several tens

for kinematic waves. Thus the propagation time of kinematicwaves depends much more on the flow rate than the

one of gravity waves (especially ifFo is weak). Fig. 6 shows the daily lower and upper bounds of the propagation

time evaluated from the daily data sets (or more precisely from mean daily flow rates —Fig. 2— and mean daily

Froude numbers —Fig. 4—). Small variations (betwen 7Ts and about8.5 Ts) of the lower bounds are observed

for gravity waves. However, the upper bounds (for kinematicwaves) range from 20Ts to more 100Ts, which is
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(a) lower bounds

(b) upper bounds

Fig. 6. Bounds of the waves propagation time for each day (Ts = 133 s)

not realistic in this case.

In conclusion, the fastest waves are the gravity waves. Their propagation time fluctuates between 7 and 8Ts.

However, these results are obtained in an ideal case of a straight rectangular channel with average values whereas the

geometry of the studied reach is very space-variant. For information, note that the reference value of the time-delay

usually used by operators for the manual control of the reachis between 5Ts and 11Ts.

III. S IMPLIFIED MODELING OF THE RIVER REACH

In this section, a simplified model of the river reach is developed to explicitly state the time-delay estimation

problem in this practical framework and to explain failuresof usual estimation approaches.

The river reach is described by a continuous-time model in which the input variables are the inflow and outflow

rates, respectively denoted byQi andQo, and the output variable is the downstream water levelhL. The inflow and

outflow rates are not measured, but the control signalsuQi
anduQo

are known. A one-day data set is presented in

Fig. 7 and the main process variables are summarized in tableII.
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Fig. 7. A one-day estimation data set

TABLE II

MAIN PROCESS VARIABLES.

uQ Flow rate control of a dam

Q Real flow rate of a dam

Subscripti Variable of the upstream dam (inflow)

Subscripto Variable of the downstream dam (outflow)

hL Downstream water level

A river reach is anopen-channel flow system. Its behavior can thus be modeled by the Saint-Venant equations

(or shallow water equations) [21], [22]. However, these equations are difficult to apply in the case of a river mainly

because the river geometry is seldom known and is generally space-variant [3] (see [7]–[11] for an application

to an irrigation channel). Consequently, we have to use a simplified model allowing to reproduce the essential

characteristics of the system at a given point of the reach (in our case atx = L, whereL is the reach length).

This problem reduction allows us to transform a partial derivative equation into a differential one. Indeed, in the

absence of tributary inflows, the river reach dynamics around an operating point can be approximately described

by a model structure whose main elements are a time-delay andan integrator term [2]

∆hL(s) =
1

As

(
e−τs∆Qi(s) − ∆Qo(s)

)
+ δhL(s) (7)

with notations given in table III.A is the reach water surface (inm2) andτ denotes the unknown time-delay between

the inflow rate and the downstream water level. The time-delay between the outflow rate and the downstream water

level is fixed to zero because the water level measurement station is close to the downstream dam. This model

describes the essential volume variation of the reach, so itrepresents only the low frequency characteristics of the

reach dynamics. Nevertheless, it is sufficient for the control purposes where the bandwidth is limited. As already

seen in section II, the flow propagation time is a function of the mean level and of the mean flow rate. However,
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TABLE III

MAIN NOTATIONS.

s Laplace transform variable

x(s) Laplace transform of the signalx(t)

δx Modeling errors and measurement uncertainties ofx

∆x = x − x0 with x0 initial condition and stationary point

q−1 Shift operator

Ts Sampling period (≈ 133s)

x̂ Estimate ofx

considering the level variations of only a few centimeters (see Fig. 7) and a weak variation of the flow rate over a

day, τ is supposed to be a slowly time-varying parameter that can beconsidered as constant over a day (duration

of a data set). In the same way, considering the geometrical characteristics of the reach (A ≈ 640 000 m2) and

the weak variations of the level and of the flow rate, the integration gain can also be considered as a constant

parameter over a day. Nevertheless, the mean daily flow rateQ∗ can be multiplied by ten over the year (see Fig. 2).

The consequences of this variation onτ are not well-known. This is another objective herein,i.e. to estimate the

variation interval ofτ over a year.

Each dam is equipped with flow control loops whose response time is negligible as compared to the sampling

periodTs ≈ 133s. Consequently, these loops may be modeled by constant gains(denoted byKi andKo for the

upstream and downstream dams, respectively) and a zero-order hold since flow rates are continuous-time signals

whereas control signals are discrete-time ones.

After discretization1 and under the assumption that the time-delay is a multiple ofthe sampling periodτ = d Ts,

the system “reach+dams” can be described by the following equation

∆hL[k] = αi
q−d−1

1 − q−1
∆uQi

[k] − αo
q−1

1 − q−1
∆uQo

[k] + v[k] (8)

whereαi = KiTs/A, αo = KoTs/A andd > 1 is the time-delay betweenhL anduQi
. The signalv[k] represents

the measurement, modeling and quantification errors.

In a managed river reach, the water levels at some critical points have to be controlled. In our case, there is only

one critical point (corresponding to the downstream water level hL). The water level regulation is carried out by a

human operator who assigns outflow rate control values. The objective of the operator is to maintain the water level

at a given setpoint by taking into account the water level measurements and by anticipating variations of the inflow

rate. So, the operator performs a combined feedback/feedforward control depicted by the block diagram in Fig. 8.

Feedback and feedforward actions of the operator are described by two proportional gains, respectively denoted by

1The discrete-time variables are denoted byx[k] and correspond to the time sampling with a constant samplingperiodTs of the continuous-

time variablex(t): x[k] = x(kTs).
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Fig. 8. Block-diagram of the managed river reach.

TABLE IV

ESTIMATION ALGORITHM OF d WITH AN EXHAUSTIVE SEARCH.

⋄ For d = dmin, dmin + 1, . . . , dmax, estimation ofθ at d fixed:

θ̂d = arg min
θ

J(θ, d)

⋄ Estimation ofd at θ̂d fixed: d̂ = arg min
d∈D(dmin,dmax)

J(θ̂d, d).

Kh andKQ

∆uQo
[k] = KQ ∆uQi

[k] − Kh ∆hL[k]. (9)

Theoretically, the feedforward action contains a time-delay which should counteract the process time-delay. However,

in practice, it has been observed that operators usually tend to reject the disturbance effects by handling the control

variable without waiting for its effect on the water level. Accordingly, the controller time-delay is fixed to zero.

Note that (9) is a very simplified model of human operators whohave not the same behavior and change every 8

hours.

Finally, a managed river reach, controlled by a human operator, is modeled by the block-diagram in Fig. 8. The

variation of the downstream water level reference∆h∗

L[k] is assumed to be null (regulation mode). Accordingly,

the model structure can be represented by the following expression

∆hL[k] =
αiq

−d − KQαo

−(Khαo + 1)q−1 + 1
q−1

︸ ︷︷ ︸
H(q−1)

∆uQi
[k] +

1 − q−1

−(Khαo + 1)q−1 + 1
v[k]

︸ ︷︷ ︸
w[k]

. (10)

The time-delay of the transfer functionH(q−1) is equal to 1 and does not depend ond (KQαo 6= 0).

A simple solution to estimate the time-delayd is through an exhaustive search overD(dmin, dmax) = {d ∈ N
∗ :

dmin 6 d 6 dmax}, wheredmin anddmax are known, as described by the algorithm in table IV. Two approaches

can be applied in this context of feedback/feedforward model identification: 1) the direct approach which takes no

account of the feedback/feedforward action and treats data∆uQi
, ∆uQo

and ∆hL in the open loop context (8);

and 2) the indirect approach which identifies the feedback/feedforward model (10) from the input∆uQi
to the

output∆hL. Note that the direct approach has been successfully applied by [23] to identify an irrigation channel
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(a) direct approach (b) indirect approach

Fig. 9. Histograms of the time-delay estimates.

(with a first order nonlinear model in which the time-delay isknown) in a closed loop context (without feedforward

action).

The criterion to minimize for the direct approach is the following

J(θ, d) =
1

N

N−1∑

k=0

1

2
(v̂[k, θ, d])

2 (11)

=
1

N

N−1∑

k=0

1

2

(
∆hL[k] − ϕT [k, d]θ

)2
(12)

with θ = [αi, αo]
T andϕT [k, d] =

[
∆uf

Qi
[k − 1 − d], −∆uf

Qo
[k − 1]

]
where the superscriptf indicates that the

signal is filtered by 1
1−q−1 : xf [k] = 1

1−q−1 x[k]. This criterion has an explicit solution at a fixedd (under invertibility

condition)

θ̂d =

[
N−1∑

k=0

ϕ[k, d]ϕT [k, d]

]−1 N−1∑

k=0

ϕ[k, d]∆hL[k]. (13)

For the indirect approach, the criterion to minimize is

J(θ, d) =
1

N

N−1∑

k=0

1

2

(
∆hf

L[k] − ϕT [k, d]θ
)2

(14)

with θ =
[
Khαo + 1, −KQαo, αi

]T
andϕT [k, d] =

[
∆hf

L[k − 1], ∆uf
Qi

[k − 1], ∆uf
Qi

[k − d − 1]
]
. It has an

explicit solution which is:

θ̂d =

[
N−1∑

k=0

ϕ[k, d]ϕT [k, d]

]−1 N−1∑

k=0

ϕ[k, d]∆hf
L[k]. (15)

We have at our disposal 332 data sets, relative to as many days, i.e. N ≈ 650 (see Fig. 7 for a data set example).

Fig. 9a represents the histogram of the time-delay estimates for the direct approach withdmin = 1 anddmax = 15.

A large part of the estimates are equal to 1 or 15 (values corresponding to the bounds). The reach length being

around 8km, a time-delay equal to 1 means that an action on the upstream is propagated at a speed faster than

60m/s, that is not realistic. Next, most of other estimates corresponds to the upper bound (30%). In other terms,

for 30% of the data sets, the time-delay is upper than 15 (and not that d̂ = 15). So, the most frequent estimate is

1 which is not admissible. This approach gives unsuccessfuloutcomes. This failure can be explained by the fact

that the model structure (8) does not match with the ‘true’ system (including the noise properties) [15]. Fig. 9b
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Fig. 10. Example of a theoretical impulse responseh[k] between the level∆hL (in m) and the inflow∆uQi
(m3/ s).

represents the histogram of the time-delay estimates for the indirect approach. The results analysis leads to the

same conclusion than the direct approach. This failure can be explain by the fact that the model structure (10)

is based on the very simplified model of humain operators (9).In the continuation of this article, a FIR model

between∆uQi
and∆hL is considered. Its higher degree-of-freedom should allow to better take into account the

operators behavior. The price to pay is a higher number of parameters to estimate and as a consequence a risk of

ill-conditionned problem which can be resolved by introducing prior knowledge with a Bayesian approach.

The transfer function (10) can be used to get prior knowledgeon the FIR model. It may be viewed as the sum

of two first order models. The first one, with negative gain, isdelayed of one sample, and the second one, with

positive gain, is delayed ofd + 1 samples. Fig. 10 represents the theoretical impulse response between∆hL and

∆uQi
(with d = 7, KiTs/A = 10−4 s/m2, KoTs/A = 1.2.10−4 s/m2, KQ = 1 andKh = −1000). This impulse

responseh[k] has two “discontinuities”: a first one between the pointsh[0] andh[1] and a second one betweenh[d]

andh[d + 1]. Apart from these discontinuities, the impulse response varies slowly. It is thus possible to estimate

the time-delayd by detecting the second discontinuity.

From these observations, the following section presents the proposed Bayesian method for estimating jointly the

FIR and the time-delay.

IV. JOINT IMPULSE RESPONSE AND TIME-DELAY ESTIMATION

Consider a single-input single-output discrete-time linear dynamic model described by a system of linear equations

based on the available data (letN be the length of data set)

y = Uh + w (16)

wherey =
[
y[0], · · · , y[N − 1]

]T ∈ R
N is the output vector,h =

[
h[0], · · · , h[M − 1]

]T ∈ R
M is the unknown

FIR, M being its truncation order (M < N ), w =
[
w[0], · · · , w[N − 1]

]T ∈ R
N represents a noise term due to
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model, truncation errors and measurement uncertainties ondata, and

U =




u[0] 0 . . . 0

u[1] u[0]
. . .

...
...

...
. . .

...

u[M − 2] u[M − 3] 0

u[M − 1] u[M − 2] u[0]
...

...
...

u[N − 1] u[N − 2] . . . u[N − M ]




∈ R
N×M

is a Tœplitz matrix composed of samples of the inputu.

A. Standard FIR estimator: the maximum likelihood

If we assume thatw is a zero-mean white Gaussian noise sequence with covariance matrixσ2
wI and thatw is

independent ofh, an explicit expression of the maximum likelihood (ML ) estimator is obtained

ĥML = (UT U)−1UT y. (17)

This is a well-posed problem (in sense of HADAMARD ), but it can be ill-conditionned [19] if the condition number

of UT U is high. In this case, theML solution is unsuitable because it is too sensitive to data noise. A solution

consists in taking into account other information on the FIRlike the fact that it varies slowly.

B. Bayesian FIR estimator: the maximuma posteriori

The introduction ofa priori information in the estimation problem is made by multiplying the likelihood

function by the prior probability density function (pdf), which is representative of the available information. After

normalization, we obtain the posterior pdf (Bayes’ theorem)

pH(h|y,U, βh, βw) =
pY(y|h,U, βw)pH(h|βh)

pY(y|U, βh, βw)
(18)

wherepY(y|h,U, βw) is the likelihood function,pH(h|βh) is the prior pdf ofh andpY(y|U, βh, βw), equal to

the integral of the product of the likelihood function and the prior pdf, allows to normalize the product. The variables

βh andβw represent the hyperparameters of the prior onh andw, respectively. The maximuma posteriori(MAP)

estimator provides the argument of the maximum of this posterior pdf.

The a priori information about the temporal smoothness of the FIR is introduced by considering the second

derivatives2 of h (second order finite differences approximations):hD = Dh whereD is the following Tœplitz

2Superior derivatives could be used but for this applicationa penalization with second derivatives is sufficient.
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roughening matrix of dimensionM × M

-1
-1
2

-1 2
-1

D =

0

0
-1 2 -1 (19)

and by assuming thathD is a zero-mean white Gaussian noise sequence with covariance matrix σ2
hD

I. The

smoothness constraint is then parameterized byσ2
hD

because a low value ofσ2
hD

means a low variation between

the successive points ofh, and conversely. The vectorh then follows a zero-mean Gaussian distribution with a

covariance matrixσ2
hD

(
DTD

)
−1

. So the posterior pdf is proportional to

exp

(
− 1

2σ2
w

||y − Uh||2 − 1

2σ2
hD

||Dh||2
)

(20)

and its maximization (or the minimization of its negative logarithm) leads to theMAP estimator given by (under

the inversion condition of the matrix(UT U + αDT D))

ĥMAP =
(
UT U + α DT D

)−1
UT y (21)

whereα = σ2
w/σ2

hD
. Nevertheless, this expression is obtained by assuming that the FIR is globally smooth. So,

in our case, the smoothness constraint will reduce the amplitude of the discontinuity to be detected and thus will

complicate the detection task. In order to avoid this problem, we propose a method introducing a smoothness

constraint on the FIR while preserving the discontinuities.

C. Bayesian FIR and time-delay estimator: joint maximuma posteriori

In order to refine thea priori information coding, we propose to force a smoothness constraint on the FIR,

except at times characterizing the two discontinuities betweenh[0] andh[1], and betweenh[d] andh[d + 1], while

estimating the time-delay. Note that the FIR estimate depends on the time-delayd.

Thea priori information on the objectsh andd is expressed in terms of a joint prior pdf equal to:pH,D(h, d|βh, βd) =

pH(h|d, β
h
)pD(d|βd), whereβ

h
and βd are vectors composed of the hyperparameters of the prior onh and d,

respectively. The joint posterior pdf ofh andd, pH,D(h, d|y,U, βh, βd, βw), combining thea priori information

with the one of the data, is the following

pY(y|h, d,U, β
w

)pH(h|d, β
h
)pD(d|βd)

pY(y|U, β
h
, βd, βw

)
. (22)

We choose the estimator maximizing the joint posterior pdf,namedjoint maximum a posteriori(JMAP).

Always under the hypothesis that the noise is a zero-mean white Gaussian noise sequence with covariance matrix

σ2
wI and that it is independent ofh, the likelihood function is

pY(y|h, d,U, σ2
w) =

1

(2πσ2
w)N/2

exp

[
− 1

2σ2
w

||y − Uh||2
]

. (23)
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Fig. 11. The Rayleigh probability density function withσd = 7.

We want to force the FIR to be relatively smooth, except betweenh[0] andh[1], and betweenh[d] andh[d + 1].

For that, we modify the matrixD in (19), used before to obtain a smoothness constraint on allthe FIR. This new

matrix, denoted byDd (because it depends ond), is defined as follows

1 0 0
0 1 -1
0 -1 2 -1

-1 2 -1
-1 2 0

0 1 -1
-1 2 -1

0
-1 2 -1
0 -1 2

Dd =

0

0

(d − 1)th row
dth row.

(24)

Note that the rowd − 1 contains[−1 2 0] instead of[−1 1 0]. It is a small, but necessary, trick to obtain an

invertible matrix. This change does not significantly modify the proposed approach. With this definition ofDd,

the vectorhD = Ddh corresponds to the second derivatives ofh, except at times 0, 1,d and d + 1, so that no

constraint is applied betweenh[0] andh[1], and betweenh[d] andh[d + 1]. Hence, the prior pdf is equal to

pH(h|d, σ2
hD

) =
1

(2πσ2
hD

)M/2
exp

[
− 1

2σ2
hD

||Ddh||2
]

(25)

becausedet((DT
d Dd)

−1) = 1.

The a priori information about the time-delay is represented by a Rayleigh distribution whose expression is as

follows

pD(d|σ2
d) =

d

σ2
d

exp

[
− d2

2σ2
d

]
I[0,+∞)(d) (26)

whereσd = arg max
d

[
pD(d|σ2

d)
]

is a hyperparameter andI[0,+∞)(d) is the interval indicator function which is

equal to 1 ifd ∈ [0, +∞) and 0 otherwise. This law is depicted on Fig. 11 forσd = 7. It has the advantages

of taking into account the time-delay positivity3 and having a single hyperparameter whose value can be fixed

proportionally to the reach length.

3In all rigor, the prior law on the delay should also be discrete in order to take into account the discrete character of the delay. However, this

discrete character will only be considered at the optimization step.
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TABLE V

ESTIMATION ALGORITHM OF h AND d WITH PREDETERMINED HYPERPARAMETERS.

⋄ For d = dmin, dmin + 1, . . . , dmax,

a) construction of the matrixDd,

b) estimation ofh at d fixed:

ĥ(d) = (UT U + αDT
d Dd)−1UT y

c) computation of the criterionJ JMAP(ĥ(d), d)

⋄ d̂ JMAP = arg min
d∈D(dmin,dmax)

J JMAP(ĥ(d), d).

⋄ ĥ JMAP = ĥ(d̂ JMAP) = (UT U + αDT

d̂ JMAP
D

d̂ JMAP)
−1UT y.

The criterion to minimizeJ JMAP(h, d) is obtained by keeping the negative logarithm of the productof the terms

of (23), (25) and (26) which depend ofh andd. That givesJ JMAP(h, d) equal to

||y − Uh||2︸ ︷︷ ︸
Fidelity to

data

+
σ2

w

σ2
hD

||Ddh||2︸ ︷︷ ︸
Fidelity to

the a priori

on h

+ σ2
w

(
d2

σ2
d

− 2 ln(d)

)

︸ ︷︷ ︸
Fidelity to

the a priori on d

(27)

for h ∈ R
M andd ∈ D(dmin, dmax). The hyperparameterσ2

hD
allows to adjust thea priori smoothness constraint

on h and the noise varianceσ2
w allows to adjust a compromise between the fidelity to data andthe fidelity to

the prior onh and d. Note that if we do not have prior on the time-delay, it is possible to consider a uniform

distribution (instead of the Rayleigh pdf), which leads to the following criterion

J JMAP
unif (h, d) = ||y − Uh||2 +

σ2
w

σ2
hD

||Ddh||2. (28)

The criterionJ JMAP(h, d) is quadratic inh and, at a fixedd, has an explicit solution

ĥJMAP(d) = (UT U + αDT
d Dd)

−1UT y (29)

whereα = σ2
w/σ2

hD
corresponds to a regularization parameter, but it is not convex in d. Nevertheless, the set of

admissible time-delaysD(dmin, dmax) is finite. So, a simple method consists in performing an exhaustive search

by computing the criterionJ JMAP(h, d) for all values ofD(dmin, dmax). Finally, the estimation ofh and d are

summarized by the algorithm V.

However, if it is possible to fixe the single parameterα = σ2
w/σ2

hD
for all data sets during theJMAP estimation

with a uniform distribution (28) (because this hyperparameter only influences the smoothness constraint on the

FIR), the two hyperparametersσ2
w andσ2

hD
must be estimated in the case of a Rayleigh prior ond (27) in order to

accurately adjust the smoothness constraint and the influence of the prior ond. In conclusion the problem resolution

requires the determination of the hyperparametersσ2
hD

andσ2
w which is detailed in the next section.
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V. HYPERPARAMETER ESTIMATION

Hyperparameters constitute a second level of description of the problem, essential to the resolution of the first level

constituted by parameters themselves [24]. Note that the joint posterior pdf of parametersh, d and hyperparameters

σ2
hD

andσ2
w, denoted byp(h, d, σ2

hD
, σ2

w|y,U, σ2
d) and equal to

p(y|h, d,U, σ2
w)p(h|d, σ2

hD
)p(d|σ2

d)p(σ2
hD

)p(σ2
w)

p(y|U, σ2
d)

(30)

summarizes all information in both inference levels. So, itis interesting to jointly maximize it with respect to both

parameters and hyperparameters. Moreover, if the hyperparametersσ2
hD

andσ2
w each follow a uniforma priori distri-

bution (the choice of an other non-informative prior distribution is possible), it follows thatp(h, d, σ2
hD

, σ2
w|y,U, σ2

d)

is proportional to

p(y|h, d,U, σ2
w)p(h|d, σ2

hD
)p(d|σ2

d)

p(y|U, σ2
d)

. (31)

The problem is that the limit of this pdf (with the choices made in the previous section) tends towards infinity,

whereas the samples ofh and the hyperparameterσ2
hD

tend towards zero. Consequently, theJMAP estimator, which

maximizes this pdf, theoretically leads to a null FIR4 whatever data is.

The degeneracy of the likelihood function in the estimationframework of a Gaussian mixture is a known problem

[25]. A solution consists to penalize the likelihood function with a prior pdf on the noise variance of inverse gamma

type. Thus singularities are removed and the problem is well-posed [26], [27]. Based on the same idea, a solution

to our problem consists to assume thatσ2
hD

follows a prior pdf of inverse gamma type sop(h, d, σ2
hD

, σ2
w|y,U,Θ)

is proportional to

p(y|h, d,U, σ2
w)p(h|d, σ2

hD
)p(d|σ2

d)p(σ2
hD

|αh, βh)

p(y|U, σ2
d)

(32)

with p(σ2
hD

|αh, βh) =
βαh

h

Γ(αh)

exp[− βh

σ2
hD

]

(σ2
hD

)
αh+1 I[0,+∞)(σ

2
hD

), whereΓ(·) is the Gamma function,Θ = {σ2
d, αh, βh} and

(αh, βh) ∈ R
2+∗. As a consequence (forσ2

hD
> 0 andd > 0), p(h, d, σ2

hD
, σ2

w|y,U,Θ) is proportional to

d

(σ2
w)N/2(σ2

hD
)M/2+αh+1σ2

d

exp

[
− 1

2σ2
w

||y − Uh||2 − 1

2σ2
hD

(
||Ddh||2 + 2βh

)
− d2

2σ2
d

]
(33)

and we can verify that there is no more degeneracy problem.

Now, it remains to determineαh andβh. From the prior pdf ofh (25), we can deduce the likelihood function

of σ2
hD

p(ĥ|d̂, σ2
hD

) =
1

(2πσ2
hD

)M/2
exp

[
−||Dd̂ ĥ||2

2σ2
hD

]
. (34)

4In practice, the estimate can be not null if the optimizationalgorithm leads to a local maximum. Nevertheless, in the vast majority of these

cases, we note that the smoothness constraint on the FIR is too important, that means thatσ2
hD

is too small.
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The posterior pdf is then

p(σ2
hD

|ĥ, d̂, αh, βh) ∝ 1

(σ2
hD

)M/2+αh+1
exp

[
−ν/2 + βh

σ2
hD

]

whereν = ||Dd̂ ĥ||2. It is an inverse gamma distribution of parametersα0 = M/2 + αh and β0 = ν/2 + βh.

Consequently, the parametersα0 and β0 can be obtained from an appropriate shape of the pdfp(σ2
hD

|ν). The

problem is thatν is unknown. Close information can be used instead:νML = ||Dd̂ ĥML ||2. Then we show that

the choice5 α0 = M et β0 = νML leads to a suitable shape ofp(σ2
hD

|ν) [17]. That yields toαh = M/2 and

βh = νML /2.

The criterion to be minimizedJ JMAP
αh,βh

(h, d, σ2
hD

, σ2
w) is

1

σ2
w

||y − Uh||2 +
1

σ2
hD

(
||Ddh||2 + 2βh

)
+ N ln(σ2

w) + (M + 2(αh + 1)) ln(σ2
hD

) +
d2

σ2
d

− 2 ln(d). (35)

The optimization problem can be solved by an iterative algorithm maximizing successively the pdf (33) according

to the parametersh, d, and then according to the hyperparametersσ2
w andσ2

d

(σ̂2
hD

(i)
, σ̂2

w

(i)
)=arg max

σ2
hD

,σ2
w

p(ĥ(i−1), d̂(i−1), σ2
hD

, σ2
w)

(ĥ(i), d̂(i)) = arg max
h,d

p(h, d, σ̂2
hD

(i)
, σ̂2

w

(i)
).

(36)

For σ2
hD

andσ2
w fixed, minimizing the criterion (35) amounts to minimizingJ JMAP(h, d). For h andd fixed, this

yields

σ̂2
hD

(h, d, σ2
w) =

||Ddh||2 + 2βh

M + 2(αh + 1)
(37)

σ̂2
w(h, d, σ2

hD
) =

||y − Uh||2
N

. (38)

Finally, the iterative algorithm based on (36) is given in table VI in which the subroutine for the estimation ofh

andd (algorithm of table V) is integrated. The algorithm convergence can be proved by inspecting the convergences

of σ2
hD

and σ2
w with iterations. The risk of convergence to a local minimum is minimized by choosing correctly

the initialization parameters froma priori knowledge.

VI. A PPLICATION RESULT

Fig. 12 represents the FIR estimates obtained with theML , MAP and JMAP estimators (̂hML , ĥMAP , and for the

JMAP with and without prior information on the hyperparameterσhD
: ĥJMAP and ĥJMAPdeg, respectively) from a

one-day data set. The hyperparameter of theMAP estimator is fixed toα = 10000. This quite high value can be

explained: sinceα = σ2
w/σ2

hD
, it is all the higher asσ2

w is high (much noise) andσ2
hD

is small (strong smoothness

constraint). Parameters of theJMAP algorithm are:dinit = 10, dmin = 1, dmax = 15 andσd = 6.5. TheML solution

is very rough, which can make it difficult to detect the “real”discontinuity. Note that a typical condition number for

UT U is around2.104 and it can rise to1.105. The MAP solution is smoother but, unfortunately, the discontinuity

5In the current state of this work, this choice is heuristic, obtained by successive tests.
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TABLE VI

ESTIMATION ALGORITHM OF h, d AND OF THE HYPERPARAMETERSσ2
hD

, σ2
w .

1. Initialization: i = 0, ĥ(i) = ĥML , d̂(i) = dinit ,

ǫ = 10−3, αh = M/2, βh = ||DĥML ||2/2.

2. Iteration: i = i + 1.

⋄ Estimation ofσ2
hD

: σ̂2
hD

(i)
=

||D
d̂(i−1) ĥ

(i−1)||2 + 2βh

M + 2(αh + 1)
.

⋄ Estimation ofσ2
w : σ̂2

w

(i)
=

||y − Uĥ(i−1) ||2

N
.

⋄ For d(i) = dmin, dmin + 1, . . . , dmax,

a) construction of the matrixD
d(i) ,

b) estimation ofh(i) with d(i) fixed:

ĥ(i)(d(i)) = (UT U +
σ̂2

w

(i)

σ̂2
hD

(i)
DT

d(i)Dd(i) )
−1UT y,

c) computation of the criterionJ JMAP
αh,βh

(
ĥ(i)(d(i)), d(i)

)

⋄ d̂(i) = arg min
d(i)∈D(dmin,dmax)

J JMAP
αh,βh

(ĥ(i)(d(i)), d(i)).

⋄ ĥ(i) = (UT U +
σ̂2

w

(i)

σ̂2
hD

(i)
DT

d̂(i)Dd̂(i) )
−1UT y.

3. Continue the iteration (step 2.) while
∣∣∣∣∣∣
σ̂2

hD

(i)
− σ̂2

hD

(i−1)

σ̂2
hD

(i−1)

∣∣∣∣∣∣
< ǫ and

∣∣∣∣∣
σ̂2

w

(i)
− σ̂2

w

(i−1)

σ̂2
w

(i−1)

∣∣∣∣∣ < ǫ.

4. ĥJMAP = ĥ(i) and d̂JMAP = d̂(i).

to detect is very attenuated. The estimateĥJMAPdeg illustrates the degeneracy problem. The estimator has converged

towards a local extremum: the solution is not null, but the smoothness constraint is too high. Moreover, the estimated

time-delay is not very realistic:̂dJMAPdeg = 1. Finally, the JMAP solution is relatively smooth and preserves the

discontinuity. The time-delay estimate iŝdJMAP = 7. Note that the same result is obtained withσd = 10 for this

data set.

We have at our disposal 332 data sets, relative to as many days, i.e. N ≈ 650 with Ts = 133s (see Fig. 7 for a

data set example). The FIR estimated for each data set is represented in the form of a “bar” where each coefficient

is represented by a gray level corresponding to its value (from white for the lowest value —with sign— to black

for the highest one). For example, theĥJMAP bar is represented on the bottom of Fig. 12. This allows to observe

the time evolution of the estimates by placing side by side all bars of the FIR estimated for each data set. This
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Fig. 12. Estimates of the impulse response and of the time-delay.

Fig. 13. TDR of the impulse responses estimated by theML estimator.

juxtaposition creates a “time-day representation” (TDR) as presented in Fig. 13 to 16.

Fig. 13 represents the TDR of FIR estimated by theML estimator over one year. The solutions are very rough

but the presence of two discontinuities, characterized by ahigh gray level change, can be observed. Note that

this estimator does not take into account their presence. This result corroborates the simplified model obtained

in section III and especially consolidates the assumption (and the prior knowledge) of the existence of two

discontinuities. A visual analysis indicates that the majority of the time-delays lies between 6 and 7. It is possible

to estimate the time-delays by detecting a change in the meanof these FIR estimates with for example the CUSUM

algorithm [28], but in order to give satisfactory results this algorithm requires a parameter tuning for each data set
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Fig. 14. TDR of the impulse responses estimated by theMAP estimator.

Fig. 15. TDR of the impulse responses estimated by theJMAP estimator (uniform pdf withα fixed to 10000).

(different estimation error), which is tedious with more than 300 data sets.

Fig. 14 represents the FIR estimates obtained with theMAP estimator with a regularization hyperparameter

α = 10000. As expected, the estimates are smoother than those obtained with the ML estimator. This is reflected

by weak variations of the gray levels between the samples (ink-coordinate direction). However, the discontinuities

are less marked than previously, thus making the visual detection of the time-delay more tricky. Just like for theML

method, it is also possible to use the CUSUM algorithm to estimate the time-delay. Nevertheless, the time-delay

estimated by the detector will be imprecise (detection delay) because of the smoothness constraint.

Fig. 15 represents the FIR estimates obtained with theJMAP estimator (29) with a uniform distribution as prior

on the time-delay andα fixed to 1000. As it can be seen, the proposed method gives a better map in the sense that

the discontinuity is highlighted. Moreover, the method gives directly access to the time-delay estimates (without the
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Fig. 16. TDR of the impulse responses estimated by theJMAP estimator (Rayleigh pdf).

(a) with uniform prior ond (α = 10000)

(b) with uniform prior ond (α estimated)

(c) with Rayleigh prior ond

Fig. 17. Time-delay estimates map (JMAP).
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(a) with uniform prior ond (α =

10000)

(b) with uniform prior on d (α

estimated)

(c) with Rayleigh prior ond

Fig. 18. Histograms of the time-delay estimates (JMAP).

need of another detection algorithm). Fig. 17a and Fig. 18a represent the distribution over the year of the time-delay

estimates and their histogram, respectively. A large part of the estimates lies between 5 and 7 with a uniform prior

and this number increases when the hyperparameterα is estimated as shown Fig. 17b and Fig. 18b.

Fig. 16 represents the FIR estimates obtained with theJMAP estimator with a Rayleigh prior ond by using the

algorithm given in table VI. The distribution over the year of the time-delay estimates and their histogram are

shown respectively on Fig. 18b and 18c. More than 95% of the estimates are equal to 6 or 7. This result tends to

show that the time-delay variation over a year is weak. The reference value of this time-delay normally used by

operators for the manual control of the reach corresponds toa d between 6 and 12. As a result, we have sensibly

reduced the uncertainty about the variation interval of thetime-delay over a year. Of course, these results are based

on a priori assumptions, and particularly on the time-delay one.

Nevertheless, by comparison with the propagation times evaluated from hydraulic analysis in section II, the

estimated time-delay are closed to the propagation time of the gravity waves with a shift of one sampling time

instant. This difference is explained in (8) where the time-delay between the inflow rate and the downstream water

level is equal tod+1. Consequently, the estimation results show that the time-delay corresponds to the propagation

time of the gravity waves (the fastest waves). Lastly, the fact that the time-delay is only weakly linked to the flow

is justified by the hydraulic analysis of the section II.

The JMAP method (with uniform prior ond) has been applied on 4 river reaches, of different lengths, arranged

in cascade along the “Basse-Isère” river (in France). The variation intervals of the time-delays estimated for each

reach are shown on Fig. 19. This figure also represents the uncertainties intervals of the time-delays obtained from
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Fig. 19. Fluctuation intervals of empirical and estimated time-delays according to the reach length.

empirical knowledge. The latter are the reference values normally used by the operators for the manual control of

the reaches. Note that the uncertainty of these estimates isapproximately three sampling periods around the nominal

value. Lastly, Fig. 19 also shows the significant improvement of the precision of the new estimates compared to

the old ones since their variation intervals were at least divided by two for the first three reaches. The comparison

of these results, with the ones of the section II, corroborates the relevance of the estimates and emphasizes the

effectiveness of the proposed Bayesian identification approach in such an experimental context.

VII. C ONCLUSION

This paper focuses on the identification problem of a river reach managed by human operators from data sets which

are daily collected in a production context. This practicalissue is imposed by flood risks and fall-off in hydroelectric

power production which prohibit any experimental protocol. The first difficulty lies in the model structure which

contains a combined feedback/feedforward control carriedout by a human operator. The second one comes from the

few informative data sets due to the lack of persistent inputsignals. To compensate for these difficulties, a Bayesian

method which jointly estimates the time-delay and a finite impulse response, is proposed. It is based on the fact

that the time-delay introduces a discontinuity in the impulse response. The major difficulty encountered during this

study is the degeneracy of the joint posterior probability density function during the hyperparameter estimation step.

The suggested solution consists in penalizing this pdf by a prior pdf on the hyperparameter which is the cause of

the degeneracy. The price of this change is the introductionof new parameters which are empirically tuned. This

easy-to-implement method is applied to one-day data sets measured during one year. Results are described by a

time-day representationwhich clearly points out a weak evolution of the estimated time-delay over a year. Lastly,

these results are in accordance with the waves propagation times obtained from a hydraulic analysis of the reach.
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