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|dentification of a Managed River Reach

by a Bayesian Approach

Magalie Thomassin, Thierry Bastogne, and Alain Richaieémber, IEEE

Abstract

This paper considers the problem of identification, and nparticularly of time-delay estimation, of a river reach
managed to produce hydroelectric power. Difficulties liethie obligation to use data collected during a combined
feedback/feedforward control carried out by a human oper&te propose a Bayesian identification method, non-
supervised and simple to implement, estimating jointly tinee-delay and a finite impulse response (FIR). It is
based on the detection of an abrupt change in the FIR at a tijmal ¢o the time-delay. Experimental results show
the effectiveness of the proposed method to estimate tlee reach time-delay from data collected in imposed

experimental conditions.

Index Terms

Delay estimation, Bayesian identification, degeneracpuise response, open-channel system.

I. INTRODUCTION

The problem addressed in this paper is the identification ofamaged river reach, described in Fig. 1, and
more precisely the estimation of the time-delay betweeninflew rate and the downstream water level of the
reach. Several works dealing with modeling and identifwatf open water channels have been already published
[1]-[8]. In [9]-[11], second and third order plus time-dglaon linear models have been developed. However, few
applications concern the time-delay estimation in thietgp plant [12], although it directly influences the control
performances and, in particular, the control stabilizatjb3]. This is particularly true for cascaded systems like
run-of-river hydroelectric plants [14]. In practice, tirdelays are either empirically estimated from knowledge of
operators or experimentally determined from the measunenféntumescence propagation time. But in both cases,
the estimates are still characterized by a large unceytaint

For safety precautions and economic reaseng,flood risks or fall-off in hydroelectric power productiorhet

implementation of experimental protocols is not possibiethis case, estimation data are collected under normal
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operating conditionsi.e. in a context of water level regulation carried out by a humaerator. The purpose
is, on the one hand, to estimate the nominal value of the tielay and, on the other hand, to determine its
evolution over one year. Indeed, the time-delay is a flowavdrparameter and the mean flow rate of the reach
can be multiplied by ten during a year. The difficulty is twofol) taking into account the actions of the human
operator; and 2) compensating the lack of information indkmation data sets. Indeed, if the operator actions
are not considered (closed-loop system identification birectapproach [15]), then most of time-delay estimation
methods, like the exhaustive search based on the minimizafithe output error, fail due to correlations between
the input and the output data [16], [17]. Moreover, it is shoin this paper that human operators introduce a
feedforward compensation to anticipate output variatidrgs feedforward control “hides” the reach time-delay
in the transfer function of the closed-loop system. The fifficients of its impulse response are not equal to
zero. So, classical time-delay estimation methods, likerttethod using a shift operator model with an expanded

numerator polynomial [18], are inappropriate.

The problem addressed herein is the identification and tielay estimation of systems equipped with combined
feedback/feedforward control systems (carried out by humperators) subject to large uncertainties (human
operator is changed every 8 hours) and from few informatata dets, collected during regulation. To overcome
these difficulties, a Bayesian method which jointly estiesathe time-delay and a finite impulse response (FIR), is
proposed. It is based on the fact that the time-delay inteda discontinuity in the impulse response. In presence of
few informative data, the FIR identification is an ill-cotidned inverse problem. The Bayesian approach provides
a coherent and complete framework to take into account sartoe knowledge. The latter corresponds classically
in the case of a FIR estimation to a temporal smoothnessreimisimposed by using a differentiation matrix [19].

In our problem, the FIR is slowly time-variant except at adimqual to the time-delay. The joint estimation of

the FIR and the abrupt change instant are then performed Hiifyimg the differentiation matrix. Unlike some

inflow
control outflow
uQ, control
. uQ,
! downstream 1
water level !

hr,

. reach
upstream
da dow(rilstream

Fig. 1. River reach managed to produce hydroelectric power.
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classical approaches which first estimate a FIR and therctdetdiscontinuity, this method requires only one step.
The choice of the FIR model structure allows to limit the pesb of model uncertainties introduced by the human
operator.

The paper is organized as follows. In section II, the vasiatiange of the time-delay is evaluated from average
hydraulic characteristics. A simplified modeling of a mamégiver reach is then presented in section Ill. The
simplified model points out the main issues of the identificaproblem of this process. In section IV, a Bayesian
method which jointly estimates the time-delay and the fimt@ulse response is proposed. During the hyperpa-
rameters estimation step, a degeneracy of a probabilitgiyefunction, leading to unreal results, is highlighted in
section V and a solution is developed. In section VI, the fifieation method is applied to the data sets collected
from a reach of the ‘Basse-Isére’ river, in France, over gear and aime-day representatioonf the estimated
impulse responses is presented. This original descrigltmvs to clearly observe the evolution of the impulse
response (and of the time-delay) over the year. Finally,application results are analyzed and compared with

empirical knowledge.

Il. A PRIORI VARIATION RANGE OF THE TIME-DELAY FROM HYDRAULIC ANALYSIS

The propagation of shallow water waves in channel with regptidar cross section is controlled by the various
forces included in the equation of motion

10v wvov Oz
§E+§%+3_x+(sf_sb)_o Q)

wherevw is the velocity averaged in a vertical sectianis the depth of flowy is the acceleration of gravityy; is

the friction slope and, is the bed slope. Ponce and Simons in [20] give the expressitie waves celerity
c=(1+4c¢ )" (2
wherev* is the mean flow velocity and,., the relative celerity, verifies
05<e <1/F, if F,<2 3)
whereF, is the Froude number
F,= — 4)
gz*
with z* the mean depth. As a consequence, the propagation time @swgvequal toL/c whereL is the reach

length, in a straight channel with rectangular cross sectierifies

@gmgm if F, <2. (5)
The lower bound corresponds to the propagation time of aityraxave, whereas the upper bound corresponds to
the one of a kinematic wave.

Let consider now the hydraulic characteristics of the redealble | gives its main physical specifications. Other

values are not available. Fig. 2 gives the mean daily digghawer the year (in downstream). It lies from about
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TABLE |
CHARACTERISTIC VALUES OF THE REACH

length L 8.2 km
average width* 81.6 m
average depth* 49 m

surface aread 6.7 x 10% m?2
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Fig. 2. Mean daily discharge (im?/s) over the year

100 m3/s to 800m3/s, but most are lower than 50@:3/s. The mean variation (peak-to-peak) over one day is
about 150m3/s. Fig. 3 gives the evolution of the mean daily level (in doweam with reference to NGF-IGN69)
over the year. The down peaks correspond to an increase afothiestream flow rate (downstream dam release).

Over one day, the mean variation is about ©.2Fig. 4 represents the evolution of the mean daily Froudebarm
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Fig. 3. Mean daily level (inm with reference to NGF-IGN69) over the year
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Fig. 4. Mean daily Froude number over the year
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Fig. 5. Bounds of the waves propagation tinfe & 133 s) versus the flow rate (im3 /s)

over the year. The Froude number can be interpreted as tioeofathe inertial to gravity forces in the flow. The
mean daily Froude number is obtained by the relation

° T Ver  Sgr  Taer

wherev* is the mean daily velocityp* is the mean daily dischargé;* = [*z* is the mean daily section arefd,

is the average width of the reach section afids the mean daily level. The mean Froude number is lower than 2
therefore the propagation time verifies (5) . Its bounds dottqul in Fig. 5 versus the mean flow rate in order to
evaluate its variation. It can vary from few sampling pesidith 7, = 133s) for gravity waves to several tens
for kinematic waves. Thus the propagation time of kinematiwes depends much more on the flow rate than the
one of gravity waves (especially i, is weak). Fig. 6 shows the daily lower and upper bounds of tiopamation
time evaluated from the daily data sets (or more precis@gfmean daily flow rates —Fig. 2— and mean daily
Froude numbers —Fig. 4—). Small variations (betweffi,7and about.5 T.) of the lower bounds are observed

for gravity waves. However, the upper bounds (for kinematawes) range from 2d; to more 1007, which is
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Fig. 6. Bounds of the waves propagation time for each day=£ 133 s)

not realistic in this case.

In conclusion, the fastest waves are the gravity waves.rTgreipagation time fluctuates between 7 and’,8
However, these results are obtained in an ideal case ofigldtractangular channel with average values whereas the
geometry of the studied reach is very space-variant. Forimdtion, note that the reference value of the time-delay

usually used by operators for the manual control of the resdietween 5, and 1175%.

IIl. SIMPLIFIED MODELING OF THE RIVER REACH

In this section, a simplified model of the river reach is depeld to explicitly state the time-delay estimation
problem in this practical framework and to explain failuofsusual estimation approaches.

The river reach is described by a continuous-time model irckvthe input variables are the inflow and outflow
rates, respectively denoted B and(@,, and the output variable is the downstream water laéyelThe inflow and
outflow rates are not measured, but the control signglsandug, are known. A one-day data set is presented in

Fig. 7 and the main process variables are summarized in table



THOMASSIN et al: IDENTIFICATION OF A RIVER REACH BY A BAYESIAN APPROACH 7

400

,,,,,, inflow rate control g,

350r _ sutflow rate control uQ, =

control variables (m?/s)

128.7

128.65f

128.6[

water level (m)
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time (h)
Fig. 7. A one-day estimation data set
TABLE Il

MAIN PROCESS VARIABLES

uQ Flow rate control of a dam

Q Real flow rate of a dam

Subscript:  Variable of the upstream dam (inflow)
Subscripto  Variable of the downstream dam (outflow)

hr Downstream water level

A river reach is armpen-channel flow systerits behavior can thus be modeled by the Saint-Venant expsati
(or shallow water equations) [21], [22]. However, theseatiuns are difficult to apply in the case of a river mainly
because the river geometry is seldom known and is genenadlgesvariant [3] (see [7]-[11] for an application
to an irrigation channel). Consequently, we have to use aldgied model allowing to reproduce the essential
characteristics of the system at a given point of the reaclo(ir case atr = L, where L is the reach length).
This problem reduction allows us to transform a partial \d#ive equation into a differential one. Indeed, in the
absence of tributary inflows, the river reach dynamics adoam operating point can be approximately described
by a model structure whose main elements are a time-delayaritegrator term [2]

Bhr(s) = o= (¢ BQi(s) ~ BGo(s) + i) @)

with notations given in table 1114 is the reach water surface (in?) andr denotes the unknown time-delay between
the inflow rate and the downstream water level. The timeydeéween the outflow rate and the downstream water
level is fixed to zero because the water level measuremetirstia close to the downstream dam. This model
describes the essential volume variation of the reach, sgpiesents only the low frequency characteristics of the
reach dynamics. Nevertheless, it is sufficient for the admiurposes where the bandwidth is limited. As already

seen in section I, the flow propagation time is a functiontef mean level and of the mean flow rate. However,
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TABLE Il
MAIN NOTATIONS.

s Laplace transform variable
T(s) Laplace transform of the signai(t)

o Modeling errors and measurement uncertainties of
Az = x — xo With ¢ initial condition and stationary point
g~  Shift operator

Ts Sampling period & 133s)

T Estimate ofx

considering the level variations of only a few centimetesee(Fig. 7) and a weak variation of the flow rate over a
day, 7 is supposed to be a slowly time-varying parameter that cacobsidered as constant over a day (duration
of a data set). In the same way, considering the geometri@iacteristics of the reachi(x~ 640 000 m?) and
the weak variations of the level and of the flow rate, the irdégn gain can also be considered as a constant
parameter over a day. Nevertheless, the mean daily flon(Jatean be multiplied by ten over the year (see Fig. 2).
The consequences of this variation erare not well-known. This is another objective hergin, to estimate the
variation interval ofr over a year.

Each dam is equipped with flow control loops whose respomse is negligible as compared to the sampling
periodTs ~ 133s. Consequently, these loops may be modeled by constant g@ensted byk,; and K, for the
upstream and downstream dams, respectively) and a zeeo-bodd since flow rates are continuous-time signals
whereas control signals are discrete-time ones.

After discretizatioh and under the assumption that the time-delay is a multipte@sampling period = d Tk,

the system “reach+dams” can be described by the followinggon

—d—1 —1

q
Aug, k] — ao e

Ahrlk] = o 1q Aug, [K] + v[k] (8)

—_ q—l
wherea; = K;Ts/A, o, = K,Ts/A andd > 1 is the time-delay betweeh;, andug,. The signalv[k] represents
the measurement, modeling and quantification errors.

In a managed river reach, the water levels at some criticatpbave to be controlled. In our case, there is only
one critical point (corresponding to the downstream waggellh;). The water level regulation is carried out by a
human operator who assigns outflow rate control values. Diective of the operator is to maintain the water level
at a given setpoint by taking into account the water levelsoesments and by anticipating variations of the inflow
rate. So, the operator performs a combined feedback/feedfd control depicted by the block diagram in Fig. 8.

Feedback and feedforward actions of the operator are tbeschy two proportional gains, respectively denoted by

1The discrete-time variables are denotedaf¥] and correspond to the time sampling with a constant sampkmigpd 75 of the continuous-
time variablex(t): z[k] = z(kTs).



THOMASSIN et al: IDENTIFICATION OF A RIVER REACH BY A BAYESIAN APPROACH 9

ARE[K] =0
—®

Fig. 8. Block-diagram of the managed river reach.

TABLE IV
ESTIMATION ALGORITHM OF d WITH AN EXHAUSTIVE SEARCH.

o Ford = dpin, dmin + 1, . .., dmax, €Stimation of@ at d fixed:

0, = argmin J(6,d)
]

© Estimation ofd at 8, fixed: d = arg min J(04,d).
deD(dmin,dmax)

Ky, andKQ
AUQO [k] = KQ AUQi [k] — Kh AhL [k] (9)

Theoretically, the feedforward action contains a timeaglelhich should counteract the process time-delay. However
in practice, it has been observed that operators usualtytteneject the disturbance effects by handling the control
variable without waiting for its effect on the water levelc@ordingly, the controller time-delay is fixed to zero.
Note that (9) is a very simplified model of human operators Whee not the same behavior and change every 8
hours.

Finally, a managed river reach, controlled by a human opgeriat modeled by the block-diagram in Fig. 8. The
variation of the downstream water level referens®; [k] is assumed to be null (regulation mode). Accordingly,

the model structure can be represented by the followingessgion

d 1

;g% — Kgoy, 1—q~
v
—(Kpao+1)g 1 +1 (Kpao+ g7t +1

H(g=1) w(k]

Ahp[k] = q " Aug,[k] + — k] . (10)

The time-delay of the transfer functidid(¢—') is equal to 1 and does not depend K g, # 0).

A simple solution to estimate the time-deldyis through an exhaustive search oW ,in, dmax) = {d € N* :
dmin €< d < dmax}, Whered,,;, andd,.x are known, as described by the algorithm in table IV. Two apphes
can be applied in this context of feedback/feedforward rhamtification: 1) the direct approach which takes no
account of the feedback/feedforward action and treats datg,, Aug, and Ahy, in the open loop context (8);
and 2) the indirect approach which identifies the feedbaekiforward model (10) from the inpliug, to the
output Ahy. Note that the direct approach has been successfully applig23] to identify an irrigation channel
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Fig. 9. Histograms of the time-delay estimates.

(with a first order nonlinear model in which the time-delakimwn) in a closed loop context (without feedforward
action).

The criterion to minimize for the direct approach is the daling

=2

J(0,d) = % %(@[k,e,dw (11)
k=0
_ 1N (AhL[k] — @[k, d)6)° (12)
N &2 ’

with 0 = [, ao]” and [k, d] = [Aul, [k — 1 —d], —Au, [k —1]] where the superscript indicates that the

signal is filtered by#: o/ [k] = #x[kz]. This criterion has an explicit solution at a fixéddunder invertibility

condition)
R N-1 “INn-1
0a= > @[k,d]soT[k,d]] > olk, diAh[k (13)
k=0 k=0
For the indirect approach, the criterion to minimize is
1 N=1y ; . 9
JO0.0) =+ > 5 (Ah-L[k] —p [k,d]e) (14)

. T ' '
with 0 = [Kya0 + 1, —Kqao, ;] andeT[k,d] = [Ah] [k — 1], Aul, [k — 1], Aul, [k —d —1]]. It has an

explicit solution which is:

R N—1 1y
Ou=|> v[k,d]soT[k,d]] Z [k, AN [k (15)
k=0

We have at our disposal 332 data sets, relative to as many |ota3d§ ~ 650 (see Fig. 7 for a data set example).
Fig. 9a represents the histogram of the time-delay estsrfatethe direct approach witlh,;, = 1 andd,,., = 15.
A large part of the estimates are equal to 1 or 15 (values sporading to the bounds). The reach length being
around &m, a time-delay equal to 1 means that an action on the upstregmopagated at a speed faster than
60m /s, that is not realistic. Next, most of other estimates cquesls to the upper bound (30%). In other terms,
for 30% of the data sets, the time-delay is upper than 15 (@tdhatd = 15). So, the most frequent estimate is
1 which is not admissible. This approach gives unsuccessftdomes. This failure can be explained by the fact

that the model structure (8) does not match with the ‘truestam (including the noise properties) [15]. Fig. 9b
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Fig. 10. Example of a theoretical impulse respohgk] between the leveNhz, (in m) and the inflowAug, (m3/ s).

represents the histogram of the time-delay estimates #rirttlirect approach. The results analysis leads to the
same conclusion than the direct approach. This failure eaexplain by the fact that the model structure (10)
is based on the very simplified model of humain operators [(@the continuation of this article, a FIR model
betweenAug, and Ak, is considered. Its higher degree-of-freedom should allovedtter take into account the
operators behavior. The price to pay is a higher number aimaters to estimate and as a consequence a risk of
ill-conditionned problem which can be resolved by introdigcprior knowledge with a Bayesian approach.

The transfer function (10) can be used to get prior knowlegsily¢he FIR model. It may be viewed as the sum
of two first order models. The first one, with negative gaingdédayed of one sample, and the second one, with
positive gain, is delayed of + 1 samples. Fig. 10 represents the theoretical impulse respbatweem\h;, and
Aug, (with d =7, K;Ts /A =10"* s/m?, K,T5/A =1.2.10~* s/m?, Ko = 1 and K;, = —1000). This impulse
responséi[k] has two “discontinuities”™ a first one between the poif andh[1] and a second one betwekfi]
andh[d + 1]. Apart from these discontinuities, the impulse respongesaslowly. It is thus possible to estimate
the time-delayd by detecting the second discontinuity.

From these observations, the following section presemtbposed Bayesian method for estimating jointly the

FIR and the time-delay.

IV. JOINT IMPULSE RESPONSE AND TIMEDELAY ESTIMATION

Consider a single-input single-output discrete-timedindynamic model described by a system of linear equations

based on the available data (I8t be the length of data set)
y=Uh+w (16)

wherey = [y[0],--- ,y[N — 1]]T € R" is the output vectorh = [[0],--- ,h[M — 1]]T € RM is the unknown

FIR, M being its truncation orderd( < N), w = [w[0], - ,w[N — 1]}T € RY represents a noise term due to
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model, truncation errors and measurement uncertaintieatm and

[ o] 0 0 |
u[1] u[0]
U= |uM -2 u[M-3 0 e RVM
ulM —1] u[M —2] u[0]
|u[N —1] u[N—2] o u[N = M]]

is a Toeplitz matrix composed of samples of the input

A. Standard FIR estimator: the maximum likelihood

If we assume thatv is a zero-mean white Gaussian noise sequence with covarraatrixc21 and thatw is

independent oh, an explicit expression of the maximum likelihoodL() estimator is obtained
n" = (UTu)~tuTly. (17)

This is a well-posed problem (in sense oAbAMARD), but it can be ill-conditionned [19] if the condition numbe
of UTU is high. In this case, theiL solution is unsuitable because it is too sensitive to dataend\ solution

consists in taking into account other information on the kK8 the fact that it varies slowly.

B. Bayesian FIR estimator: the maximurposteriori

The introduction ofa priori information in the estimation problem is made by multiplyithe likelihood
function by the prior probability density function (pdf),hich is representative of the available information. After

normalization, we obtain the posterior pdf (Bayes’ thegrem

(y|ha Ua ﬁw)pH(hL@h)
pY(y|U7 /Ghv /Gw)

wherepy (y|h, U, 3,,) is the likelihood functionpg (h|3,,) is the prior pdf ofh andpy (y|U, By, B, ), €qual to

pu(bly, U, By, By) = 2% (18)

the integral of the product of the likelihood function ane trior pdf, allows to normalize the product. The variables
By, andg3,, represent the hyperparameters of the priohogndw, respectively. The maximura posteriori(MAP)
estimator provides the argument of the maximum of this pustedf.

The a priori information about the temporal smoothness of the FIR isothiced by considering the second

derivative$ of h (second order finite differences approximatioris)y = Dh whereD is the following Teeplitz

2Superior derivatives could be used but for this applicatiopenalization with second derivatives is sufficient.
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roughening matrix of dimension/ x M

2-1
TN\ 0
D= -12-1 (19)

0 Ny

and by assuming thahp is a zero-mean white Gaussian noise sequence with covariaratrix a,%DI. The
smoothness constraint is then parameterizedhy because a low value af; means a low variation between
the successive points d@f, and conversely. The vectdr then follows a zero-mean Gaussian distribution with a

covariance matrix, (DTD)_I. So the posterior pdf is proportional to
exp ( 5o |ly — UB|” — oy [IDh]’ (20)
<0 | ——— |y — -
P 202, Y 207
and its maximization (or the minimization of its negativgdmithm) leads to thenap estimator given by (under

the inversion condition of the matri@J” U + aD? D))
b — (UTU+ o D"D)" U”y (21)

wherea = crfu/cr?m. Nevertheless, this expression is obtained by assumirtgthieaFIR is globally smooth. So,
in our case, the smoothness constraint will reduce the &ndpliof the discontinuity to be detected and thus will
complicate the detection task. In order to avoid this pnobleve propose a method introducing a smoothness

constraint on the FIR while preserving the discontinuities

C. Bayesian FIR and time-delay estimator: joint maximaimosteriori

In order to refine thea priori information coding, we propose to force a smoothness canston the FIR,
except at times characterizing the two discontinuitiesveenh[0] and h[1], and betweerk[d] and h[d + 1], while
estimating the time-delay. Note that the FIR estimate dépem the time-delay.

Thea priori information on the objecth andd is expressed in terms of a joint prior pdf equalipg;, p (h, d| 8y, B4) =
pu(hl|d, By)pp(d|B,), wheres,, and 3, are vectors composed of the hyperparameters of the pridt andd,
respectively. The joint posterior pdf & andd, pu, p(h,d|y, U, By, B4, Bw), cOMbining thea priori information

with the one of the data, is the following

pY(y|Uv Bhs Bas Bw)

We choose the estimator maximizing the joint posterior pdfnedjoint maximum a posterior{JMAP).

. (22)

Always under the hypothesis that the noise is a zero-meateWdussian noise sequence with covariance matrix

021 and that it is independent df, the likelihood function is

1

@roz)~2 P

1
pY(y|hadaUaU12u) = _FH)’_Uh”Q . (23)
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po(dlog)
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04 = 7
Fig. 11. The Rayleigh probability density function withy = 7.

We want to force the FIR to be relatively smooth, except betwg0] andh[1], and betweerk[d] and h[d + 1].

For that, we modify the matri in (19), used before to obtain a smoothness constraint aalFIR. This new

matrix, denoted byD, (because it depends af), is defined as follows

«— (d — 1)th row (24)
. «—dth row

Note that the rowd — 1 contains[—1 2 0] instead of[—1 1 0]. It is a small, but necessary, trick to obtain an
invertible matrix. This change does not significantly mgdifie proposed approach. With this definition Bf;,
the vectorhp = Djh corresponds to the second derivativeshofexcept at times 0, 1J andd + 1, so that no
constraint is applied betwedr{0] andh[1], and betweerk[d] and h[d + 1]. Hence, the prior pdf is equal to
2 1 1 2
pu(h|d, O'hD) = W exp l_ﬁHDth ] (25)
becauselet((DID,)~1) = 1.
The a priori information about the time-delay is represented by a Ragkleiistribution whose expression is as
follows
o d d?
pp(dlog) = 0—2 exp [—@} Ljo, +o0)(d) (26)
whereo; = arg max [pp(d|o?)] is a hyperparameter anih . ) (d) is the interval indicator function which is
equal to 1 ifd € [0,400) and O otherwise. This law is depicted on Fig. 11 & = 7. It has the advantages
of taking into account the time-delay positiitand having a single hyperparameter whose value can be fixed

proportionally to the reach length.

3In all rigor, the prior law on the delay should also be diseriet order to take into account the discrete character of ét@ydHowever, this

discrete character will only be considered at the optinomastep.
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TABLE V
ESTIMATION ALGORITHM OF h AND d WITH PREDETERMINED HYPERPARAMETERS

© Ford = dmin, dmin + 1, ..., dmax,
a) construction of the matri 4,
b) estimation ofh at d fixed:

h(d) = (UTU + oaDTD,) U Ty

~

c) computation of the criterion”*” (h(d), d)

o dMAP = arg min J“‘"Ap(il\(d)7 d).
d€D(dmin,dmax)

o b = h(d™®) = (UTU +aD?,, D) Uy,

The criterion to minimize/™47(h, d) is obtained by keeping the negative logarithm of the proddi¢he terms
of (23), (25) and (26) which depend afandd. That givesJ*?(h, d) equal to

o d?
Iy = OB+ 5 (Dl + o (% - 2ma) @)
Fidelity to "D ey o 4 —
data the a priori Fidelity to

the a priori on d
onh

for h € RM andd € D(dwin, dmax). The hyperpar:’;\metea;rﬁD allows to adjust the priori smoothness constraint
on h and the noise variance? allows to adjust a compromise between the fidelity to data thaedfidelity to
the prior onh and d. Note that if we do not have prior on the time-delay, it is plolesto consider a uniform
distribution (instead of the Rayleigh pdf), which leads he following criterion
2
g
Jon” (b, d) = ||y — Uh|f* + UT“’IIDthIZ- (28)
hp

The criterionJ™™*7(h, d) is quadratic inh and, at a fixedl, has an explicit solution
™ (d) = (UTU + aDiD,) U Ty (29)

wherea = afu/a,%D corresponds to a regularization parameter, but it is noveoin d. Nevertheless, the set of
admissible time-delay®(dmin, dmax) is finite. So, a simple method consists in performing an estiea search
by computing the criterion/"*" (h, d) for all values of D(din, dmax). Finally, the estimation oh and d are
summarized by the algorithm V.

However, if it is possible to fixe the single parameter o—fu/cr,?ID for all data sets during thevap estimation
with a uniform distribution (28) (because this hyperparsnenly influences the smoothness constraint on the
FIR), the two hyperparametess, ando—,%D must be estimated in the case of a Rayleigh priotld@7) in order to
accurately adjust the smoothness constraint and the icueitthe prior ond. In conclusion the problem resolution

requires the determination of the hyperparameﬁt%gs ando? which is detailed in the next section.
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V. HYPERPARAMETER ESTIMATION

Hyperparameters constitute a second level of descripfitiregoroblem, essential to the resolution of the first level
constituted by parameters themselves [24]. Note that the gosterior pdf of parametets, d and hyperparameters
oy, ando?, denoted byp(h,d, 07,05y, U,03) and equal to

p(yh, d, U, o3 )p(h|d, o} )p(dlod)p(o, )p(or,)
p(y|U.0})

summarizes all information in both inference levels. Sas interesting to jointly maximize it with respect to both

(30)

parameters and hyperparameters. Moreover, if the hypnﬁersf,%D anda?, each follow a uniforma priori distri-
bution (the choice of an other non-informative prior disiion is possible), it follows that(h, d, o}, 0% |y, U, 073)
is proportional to
p(y|h,d, U, o3, )p(h|d, o7 ) )p(dloy)
p(y[U,0})

The problem is that the limit of this pdf (with the choices mad the previous section) tends towards infinity,

: (31)

whereas the samples hfand the hyperparameteﬁD tend towards zero. Consequently, theap estimator, which
maximizes this pdf, theoretically leads to a null ElRhatever data is.

The degeneracy of the likelihood function in the estimafiamework of a Gaussian mixture is a known problem
[25]. A solution consists to penalize the likelihood fumctiwith a prior pdf on the noise variance of inverse gamma
type. Thus singularities are removed and the problem is-pasded [26], [27]. Based on the same idea, a solution
to our problem consists to assume th%lt) follows a prior pdf of inverse gamma type s¢h, d, U,QID,072U|y, U,0)

is proportional to

p(y|h7 da Ua G'?u)p(h|d7 U}%D )p(d|03)p(a}2“3 |Oéh, ﬁh)

(32)
p(y|U,03)
(o9 eXp[_ 0.62’1 ]
with p(a7 e, Br) = F(h = )a:}il Lj0,400) (07, ), WhereI'(-) is the Gamma functior® = {03, a,, 3} and
ap o g ’
(an, By) € R2T*. As a consequeDnce (fer; , > 0 andd > 0), p(h,d,o}_, 02|y, U, ®) is proportional to
d 1 , 1 ) &2
((:7_121))]\7/2(0_}2I )M/2+0¢h,+10-§ €Xp [_m||y - Uh|| - 20}2I (||Ddh|| + 26h) - 27‘(21 (33)
D D

and we can verify that there is no more degeneracy problem.
Now, it remains to determine;, and 3,. From the prior pdf ofh (25), we can deduce the likelihood function
of O'}%D

o 1 D h|?
p(hld, o} ) = ——5 5 exp [—szignl : (34)
UhD

4In practice, the estimate can be not null if the optimizatigorithm leads to a local maximum. Nevertheless, in thé regority of these
cases, we note that the smoothness constraint on the FIR isyfortant, that means thaffID is too small.
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The posterior pdf is then

. 1 v/2+ B
2
p(Uthh,d, O‘haﬁh) X (U}QL )I\l/2+ah+1 exp [_ 0}21
D D

wherev = ||[D h|[2. It is an inverse gamma distribution of parametags= M/2 + a;, and Gy = v/2 + f.
Consequently, the parametexg and 5, can be obtained from an appropriate shape of themdﬁD|u). The
problem is thatv is unknown. Close information can be used instedtt: = ||D h"||2. Then we show that
the choicé o = M et 3, = v™ leads to a suitable shape pfo7_|v) [17]. That yields toa; = M/2 and
Br =M /2.

The criterion to be minimized % (h,d, o} _,0%) is

1 1 d?
U—QIIy — Uh|)? + — (IDah]|® +28;) + Nn(o2) + (M + 2(a + 1)) In(o? ) + o7 21In(d). (35)
w D

The optimization problem can be solved by an iterative allgor maximizing successively the pdf (33) according

to the parameterh, d, and then according to the hyperparametejsand o2

(i) —~(i =~ ;
(07211) ) 0'7%;( )) :afgggna;(z p(h(z_l)a (/i\(z_l)7 U%D ’ 01211)
o (i) — (i) .
(h(i)’g(i)) = arg r?liixp(h, d, U;QID 0 )

For U;QLD and o2 fixed, minimizing the criterion (35) amounts to minimizing"4?(h, d). For h andd fixed, this

yields
oy 2y _ |Dahll* + 26,
o, (h,d, os) = M+ 200+ 1) (37)
o~ _ 2
o2(h,d,o? ) = w (38)

Finally, the iterative algorithm based on (36) is given ibléaVI in which the subroutine for the estimation bf
andd (algorithm of table V) is integrated. The algorithm convamnge can be proved by inspecting the convergences
of a,ﬁD and o2, with iterations. The risk of convergence to a local minimwsmiinimized by choosing correctly

the initialization parameters from priori knowledge.

VI. APPLICATION RESULT

Fig. 12 represents the FIR estimates obtained withmhe MAP and JMAP estimators kM-, k4", and for the
JMAP with and without prior information on the hyperparametgr,: h™*" and h?"4Pded  respectively) from a
one-day data set. The hyperparameter of Nia@ estimator is fixed tax = 10000. This quite high value can be
explained: sincer = o7, /o7, it is all the higher as, is high (much noise) and;, | is small (strong smoothness
constraint). Parameters of tamap algorithm ared;,;; = 10, dynin = 1, dmax = 15 andoy = 6.5. TheML solution
is very rough, which can make it difficult to detect the “redi5continuity. Note that a typical condition number for

UTU is around2.10* and it can rise td..10°. The MAP solution is smoother but, unfortunately, the discontipuit

5In the current state of this work, this choice is heuristiotained by successive tests.
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TABLE VI
ESTIMATION ALGORITHM OF h, d AND OF THE HYPERPARAMETERS;ELD, o2

w*

1. Initialization: i = 0, h(®) = hM | d&) = diny,
€=10"3, ap = M/2, By = ||DR"[|2/2.

2. lteration:i =7 + 1.

o — (%) D h(=D|2 42
o Estimation ofale: gle — 1D gi-1) I Bn
M +2(ap +1)

@ |ly = UhG=D|2

o Estimation ofo2: 02, N

o For d(z) = dmim dmin + 17 e dmaxv
a) construction of the matrib ),

b) estimation ofh(9) with d(*) fixed:
/2\(2')
h(z)(d(z)) (UTU + — )Dd( )de)ﬂUTy7
0'
hp

c) computation of the criterion "% (h<”(d(z))7 d(z))

o d® = arg min Jmae ([ (g ,dm .
d(i>€D(dminvdmax) ahvﬁh( ( ) )

/\()

oh® = (UTU+ 2 - —7 P Piw) Uy

O'hD

3. Continue the iteration (step 2.) while

) ——(i-1)

—~(i ~(i—1
ale - ale o2 ® _ o2 (-1
—2 2P I<eand| X2 —Y | <e
/\(171) /\(271)
o2 o2
hD w

4. hJMAP h( i) and dJMAP d( )

to detect is very attenuated. The estimat#*es jllustrates the degeneracy problem. The estimator hasecgeu
towards a local extremum: the solution is not null, but th@sthness constraint is too high. Moreover, the estimated
time-delay is not very realistic?*"¥9 = 1. Finally, the JMAP solution is relatively smooth and preserves the
discontinuity. The time-delay estimate 44" = 7. Note that the same result is obtained with = 10 for this

data set.

We have at our disposal 332 data sets, relative to as many idayd ~ 650 with T = 133s (see Fig. 7 for a
data set example). The FIR estimated for each data set iss@mted in the form of a “bar” where each coefficient
is represented by a gray level corresponding to its valumm(fwhite for the lowest value —with sign— to black
for the highest one). For example, thé"*" bar is represented on the bottom of Fig. 12. This allows tenles

the time evolution of the estimates by placing side by sidébats of the FIR estimated for each data set. This
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Fig. 12. Estimates of the impulse response and of the tintstde

0 5 10 15 20 25
discrete time &

Fig. 13. TDR of the impulse responses estimated bymheestimator.

juxtaposition creates a “time-day representation” (TDR)paesented in Fig. 13 to 16.

Fig. 13 represents the TDR of FIR estimated by the estimator over one year. The solutions are very rough
but the presence of two discontinuities, characterized thiga gray level change, can be observed. Note that
this estimator does not take into account their presence rEsult corroborates the simplified model obtained
in section Il and especially consolidates the assumptimd (the prior knowledge) of the existence of two
discontinuities. A visual analysis indicates that the migjoof the time-delays lies between 6 and 7. It is possible
to estimate the time-delays by detecting a change in the wietdmrese FIR estimates with for example the CUSUM

algorithm [28], but in order to give satisfactory resultssthlgorithm requires a parameter tuning for each data set
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0 5 10 15 20 25
discrete time &

Fig. 14. TDR of the impulse responses estimated bymhe estimator.

0 5 10 15 20 25
discrete time k

Fig. 15. TDR of the impulse responses estimated byJthep estimator (uniform pdf withx fixed to 10000).

(different estimation error), which is tedious with moreuth300 data sets.

Fig. 14 represents the FIR estimates obtained with MA@ estimator with a regularization hyperparameter
«a = 10000. As expected, the estimates are smoother than those otbtaitte the ML estimator. This is reflected
by weak variations of the gray levels between the samples-(inordinate direction). However, the discontinuities
are less marked than previously, thus making the visuatteteof the time-delay more tricky. Just like for thve
method, it is also possible to use the CUSUM algorithm tonestie the time-delay. Nevertheless, the time-delay
estimated by the detector will be imprecise (detectionyjdiecause of the smoothness constraint.

Fig. 15 represents the FIR estimates obtained withutiver estimator (29) with a uniform distribution as prior
on the time-delay and fixed to 1000. As it can be seen, the proposed method giveder Inedp in the sense that

the discontinuity is highlighted. Moreover, the methodegiwirectly access to the time-delay estimates (without the
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0 5 10 15 20 25
discrete time &

Fig. 16. TDR of the impulse responses estimated byJthep estimator (Rayleigh pdf).
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Fig. 18. Histograms of the time-delay estimatesi4P).

need of another detection algorithm). Fig. 17a and Fig. #Baaisent the distribution over the year of the time-delay
estimates and their histogram, respectively. A large piatth® estimates lies between 5 and 7 with a uniform prior

and this number increases when the hyperparaneeterestimated as shown Fig. 17b and Fig. 18b.

Fig. 16 represents the FIR estimates obtained withither estimator with a Rayleigh prior od by using the
algorithm given in table VI. The distribution over the yedrthe time-delay estimates and their histogram are
shown respectively on Fig. 18b and 18c. More than 95% of thienates are equal to 6 or 7. This result tends to
show that the time-delay variation over a year is weak. Tlereace value of this time-delay normally used by
operators for the manual control of the reach correspondsdtidetween 6 and 12. As a result, we have sensibly
reduced the uncertainty about the variation interval oftiime-delay over a year. Of course, these results are based
on a priori assumptions, and particularly on the time-delay one.

Nevertheless, by comparison with the propagation timesuated from hydraulic analysis in section Il, the
estimated time-delay are closed to the propagation timénefgravity waves with a shift of one sampling time
instant. This difference is explained in (8) where the tideday between the inflow rate and the downstream water
level is equal tal + 1. Consequently, the estimation results show that the tiglaydcorresponds to the propagation
time of the gravity waves (the fastest waves). Lastly, ttat fhat the time-delay is only weakly linked to the flow
is justified by the hydraulic analysis of the section II.

The JMmAP method (with uniform prior onl) has been applied on 4 river reaches, of different lengttrapged
in cascade along the “Basse-Isere” river (in France). Tdm@ation intervals of the time-delays estimated for each

reach are shown on Fig. 19. This figure also represents thertanties intervals of the time-delays obtained from
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Fig. 19. Fluctuation intervals of empirical and estimat&detdelays according to the reach length.

empirical knowledge. The latter are the reference valuemalty used by the operators for the manual control of
the reaches. Note that the uncertainty of these estimatgmpi®ximately three sampling periods around the nominal
value. Lastly, Fig. 19 also shows the significant improvenadrthe precision of the new estimates compared to
the old ones since their variation intervals were at leastldd by two for the first three reaches. The comparison
of these results, with the ones of the section Il, corrolezrdhe relevance of the estimates and emphasizes the

effectiveness of the proposed Bayesian identification @ggr in such an experimental context.

VIl. CONCLUSION

This paper focuses on the identification problem of a rivacheamanaged by human operators from data sets which
are daily collected in a production context. This practisalie is imposed by flood risks and fall-off in hydroelectric
power production which prohibit any experimental protocidie first difficulty lies in the model structure which
contains a combined feedback/feedforward control cawigdy a human operator. The second one comes from the
few informative data sets due to the lack of persistent igfrials. To compensate for these difficulties, a Bayesian
method which jointly estimates the time-delay and a finitputse response, is proposed. It is based on the fact
that the time-delay introduces a discontinuity in the ingeulesponse. The major difficulty encountered during this
study is the degeneracy of the joint posterior probabilépsity function during the hyperparameter estimation.step
The suggested solution consists in penalizing this pdf byiar pdf on the hyperparameter which is the cause of
the degeneracy. The price of this change is the introduafamew parameters which are empirically tuned. This
easy-to-implement method is applied to one-day data se&suned during one year. Results are described by a
time-day representatiowhich clearly points out a weak evolution of the estimatedetidelay over a year. Lastly,

these results are in accordance with the waves propagéaties obtained from a hydraulic analysis of the reach.
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