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Abstract

The ROC curve is one of the most widely used visual tool to evaluate performance
of scoring functions regarding their capacities to discriminate between two populations.
It is the goal of this paper to propose a statistical learning method for constructing
a scoring function with nearly optimal ROC curve. In this bipartite setup, the tar-
get is known to be the regression function up to an increasing transform and solving
the optimization problem boils down to recovering the collection of level sets of the
latter, which we interpret here as a continuum of imbricated classification problems.
We propose a discretization approach, consisting in building a finite sequence of N

classifiers by constrained empirical risk minimization and then constructing a piece-
wise constant scoring function sN(x) by overlaying the resulting classifiers. Given the
functional nature of the ROC criterion, the accuracy of the ranking induced by sN(x)

can be conceived in a variety of ways, depending on the distance chosen for measur-
ing closeness to the optimal curve in the ROC space. By relating the ROC curve of
the resulting scoring function to piecewise linear approximates of the optimal ROC
curve, we establish the consistency of the method as well as rate bounds to control its
generalization ability in sup-norm. Eventually, we also highlight the fact that, as a
byproduct, the algorithm proposed provides an accurate estimate of the optimal ROC
curve.
Keywords: Statistical learning, bipartite ranking, ROC curve, piecewise linear ap-
proximation, minimum volume set estimation, density level set, scoring function, AUC
criterion, sup-norm.
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1 Introduction

In the past years, statistical learning theory has witnessed impressive developments. This
approach was mainly developed through the study of empirical risk minimization proce-
dures and algorithms for standard problems such as classification and regression problems.
A learning method can be described by a risk measure and some data-based optimization
principle. In classification, the optimization criteria are risk functionals, such as the clas-
sification error or its convex surrogates, which take scalar values. However, in many
important applications such as medical diagnosis, credit-risk screening or information re-
trieval, performance is monitored by a function-valued criterion. Function-like perfor-
mance measures, such as Receiver Operating Characteristic (ROC), see [vT68], [Ega75]
or the Precision-Recall curve (Refs.), allow to take into account various constraints in
the decision process. In the present paper, we focus on scoring applications where the
problem is to rank the data from binary label information. This problem is also known
as the bipartite ranking problem in the machine learning literature. We will also focus on
the ROC curve which permits, through a graphical display, to judge rapidly how a scoring
rule discriminates the two populations (positive against negative). A scoring rule whose
ROC curve is close to the diagonal line does not discriminate at all, while the one lying
above all others is the best possible choice. From a statistical learning perspective, risk
minimization (or performance maximization) strategies for bipartite ranking have been
based mostly on a popular summary of the ROC curve known as the Area Under the ROC
Curve (AUC - see [CLV08], [FISS03], [AGH+05], [UAG05], ...) which corresponds to the
L1-metric on the space of ROC curves.

In the present paper, we propose a statistical methodology to estimate the optimal
ROC curve in a stronger sense than the AUC, namely in the the supremum norm. In the
same time, we will explain how to build a nearly optimal scoring function. Our approach
is based on a simple observation: optimal scoring functions can be represented from the
collection of level sets of the regression function. Hence, the bipartite ranking problem
may be viewed as a ’continuum’ of classification problems with asymmetric costs where
the targets are the level sets. In a nonparametric setup, regression or density level sets
can be estimated with plug-in methods ([Cav97], [RV06], [AA07], [WN07], ...). Here,
we follow the work in [SN06] on minimum-volume set estimation and adapt it to our
problem. We provide rates of convergence with which a point of the optimal ROC curve
can be recovered according to this principle. We also develop a practical ranking method
based on a discretization of the original problem. From the resulting classifiers and their
related empirical errors, we show how to build a linear-by-part estimate of the optimal
ROC curve and a quasi-optimal piecewise constant scoring function. Rate bounds in terms
of sup-norm in the ROC space for these procedures are also established.

The rest of the paper is organized as follows. In Section 2, we present the scoring prob-
lem and recall key notions of ROC analysis. In Section 3, we describe the approach of over-
laying classifiers used to approximate optimal scoring rules and introduce the RankOver
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algorithm. We study statistical performance of the output of this algorithm in Section 4
and derive the rate of convergence of an empirical estimate to the optimal ROC curve. In
Section 5, we consider the subproblem of constrained empirical risk minimization problem.
The main strategy described as empirical minimum-volume set estimation is provided, fast
rates of convergence are established and alternative methods are also discussed. Proofs
are postponed to the Appendix section.

2 The scoring approach to bipartite ranking

In this section, we first set out the notations and recall the key concepts related to the
bipartite ranking problem that shall needed throughout the paper.

2.1 Notations and setup

Let X be a measurable space which can be thought as a high-dimensional Euclidean space.
Consider a random pair (X, Y) over X × {−1,+1} where X is called the descriptor and Y is
the binary label. We denote by P = (µ, η) the distribution of (X, Y), where µ is the marginal
distribution of X and η is the regression function (up to an affine transformation): η(x) =

P{Y = 1 | X = x}, x ∈ X . We will also denote by p = P{Y = +1} the expected proportion
of positive labels. We also denote by G(dx) and H(dx) the conditional distributions of
the random variable X given Y = +1 and given Y = −1 respectively. In the sequel, we
assume that these distributions are equivalent and absolutely continuous with respect to
Lebesgue measure. We point out that, equipped with these notations, one may write
µ = pG + (1 − p)H and dG/dH(x) = (1 − p)η(x)/(p(1 − η(x))).

The scoring problem. A possible and natural approach in order to rank the objects
x ∈ X is to map them onto R through a certain measurable function s : X → R and
use the natural order on the real line. We call such a function s a scoring function and
the statistical challenge is to build an s from sampling data Dn = {(X1, Y1), . . . , (Xn, Yn)}

which mimics the ranking induced by the regression function η. Hence, ideally, the higher
the score s(X) is, the more likely should one observe Y = +1. We naturally define the
class of optimal scoring functions for bipartite ranking as the class of strictly increasing
transforms of the regression function η.

Definition 1 (Optimal scoring functions) The class of optimal scoring functions is
given by the set

S∗ = { s∗ = T ◦ η | T : [0, 1] → R strictly increasing }.

The statistical problem consists in finding a scoring function as ”close” as possible to
the class S∗ from the i.i.d. sample Dn. The concept of ROC analysis provides a means
of measuring the quality of a scoring function through distances in a function space and,
thus, a constructive meaning to the notion of close scoring functions.
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ROC analysis. We now recall the concept of ROC curve and explain why it is a natu-
ral choice of performance measure for the ranking problem with classification data. We
consider here true ROC curves which correspond to the situation where the underlying
distribution is known. First, we need to introduce some notations. For a given scoring
rule s, the conditional cumulative distribution functions of the random variable s(X) are
denoted by

Gs(z) = P {s(X) ≤ z | Y = +1} ,

Hs(z) = P {s(X) ≤ z | Y = −1} ,

for all z ∈ R. We also set, Ḡs(z) = 1 − Gs(z) and H̄s(z) = 1 − Hs(z) to be s(X)’s the
residual conditional cumulative distribution functions. The residual cdf Ḡs is also called
the true positive rate while H̄s is the false positive rate. When s = η, we shall denote the
previous functions by G∗, H∗, Ḡ∗, H̄∗ respectively. We introduce the notation Q(Z, α) to
denote the quantile of order 1 − α for the distribution of a random variable Z conditioned
on the event Y = −1. In particular, the following quantile will be of interest:

Q∗(α) = Q(η(X), α) = H̄∗−1(α) ,

where we have used here the notion of generalized inverse F−1(z) = inf{t ∈ R | F(t) ≥ z}

of a càdlàg function F. We now turn to the definition of the ROC curve as the PP-plot of
the true positive rate against the false positive rate.

Definition 2 (True ROC curve) The ROC curve of a scoring function s is the para-
metric curve:

z 7→
(
H̄s(z), Ḡs(z)

)

for thresholds z ∈ R. If Hs has no flat parts, the ROC curve can also be defined as the
plot of the mapping:

ROC(s, ·) : α ∈ [0, 1] 7→ Ḡs ◦ H̄−1

s (α) = Ḡs (Q(s(X), α)) .

For s = η, we take the notation ROC∗(α) = ROC(η, α).

By convention, points of the curve corresponding to possible jumps are connected by
line segments, so that the ROC curve is always continuous. We point out that, equipped
with this usual convention, the ROC curve of any piecewise constant scoring function is
linear-by-parts.

Optimality. As a functional criterion, the ROC curve induces a partial order over the
space of all scoring functions. A scoring function s1(x) will be said more accurate than a
competitor s2(x) if and only if its ROC curve is above the one of s2(x) everywhere, i.e.
for all α ∈ [0, 1]:

ROC(s2, α) ≤ ROC(s1, α).
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Equivalently, this condition means that the test defined by the statistic s1(X) for testing
the null hypothesis H0 : "Y = −1" against the alternative H1 : "Y = +1" is uniformly more
powerful than the one defined by s2(X), the quantity ROC(s, α) representing simply the
power of the test of exact level α for testing H0 based on the diagnostic statistic s(X). We
expect optimal scoring functions to be those for which the ROC curve dominates all the
others for all α ∈ (0, 1). The next proposition highlights the fact that the ROC curve is
relevant when evaluating performance in the bipartite ranking problem.

Proposition 3 The class S∗ of optimal scoring functions provides the best possible rank-
ing with respect to the ROC curve. Indeed, for any scoring function s, we have:

∀α ∈ (0, 1) , ROC∗(α) ≥ ROC(s, α) ,

and
∀s∗ ∈ S∗ , ∀α ∈ (0, 1) , ROC(s∗, α) = ROC∗(α) .

Regularity. In this paper, we will assume that ROC∗ is twice differentiable with bounded
second derivative. The assumption of twice differentiability of the optimal curve ROC∗

can be translated in terms of the regularity of the conditional distributions of the random
variable η(X). Indeed, assume that the cumulative distribution functions G∗ and H∗

are both differentiable and that H∗ ′ is continuous and bounded by below by some strictly
positive constant on its support. Then, from Proposition 8 in [CV08d], we have ∀α ∈]0, 1]:

(ROC∗) ′(α) =
Q∗(α)

1 − Q∗(α)
· p

1 − p
.

In order to guarantee that ROC∗ is differentiable at 0, we need to assume that 1 − η(X)

stays bounded away from zero almost-surely or equivalently that Q∗(0) < 1 (so that:
η(X) ≤ Q∗(0) < 1 a.s.). As we have:

dG

dH
(X) =

1 − p

p
· η(X)

1 − η(X)
,

this assumption simply means that the likelihood ratio is upper bounded almost surely,
by (1 − p)Q∗(0)/(p(1 − Q∗(0))) namely. In addition, as we also have:

dG

dH
(X) =

dG∗

dH∗
(η(X)),

see Corollary 7 in [CV08d], this also means that the ratio dG∗/dH∗(u) remains bounded in
the neighborhood of Q∗(0). This is also enough to ensure that ROC∗ is twice differentiable
on [0, 1], since: ∀α ∈ [0, 1],

(ROC∗) ′′(α) =
(Q∗) ′(α)

(1 − Q∗(α))2
· p

1 − p
.

We point out that these assumptions on the regularity of the ROC curve are strong
requirements and restrict significantly the range of distributions which can be considered
for modeling the data. Relaxing these assumptions and building consistent estimators of
the optimal ROC curve is the subject of work under progress.
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2.2 Metrics in ROC space, excess risk and optimal scoring functions

We may now compare the ranking performance of a given s to the one of the optimal
elements in S∗ in terms of closeness of their ROC curves, closeness being possibly measured
by any metric in the space D([0, 1]) of càdlàg curves f : [0, 1] → R. Let us denote by
d(s, s∗) the distance describing the criterion of interest. The statistical problem consists
in constructing a scoring function sn based on the available data Dn such that d(sn, s∗)

can be upper bounded with high probability in terms of the sample size n, the level of
confidence and possibly some structural parameters such as the complexity of the class S
of candidate scoring functions. In statistical learning theory, standard problems, such as
classification or regression, benefit from the ’excess-risk’ decomposition of the risk measure.
Hence d(s, s∗) can be written as a difference A(s) − A(s∗) so that minimizing d(s, s∗) is
equivalent to minimizing A(s). Then, by M-estimation arguments which are now standard
(see [BBL05]), it is possible to show that strategies based on the minimization of an
empirical counterpart of A(s) can be efficient.

In the case of ranking/scoring applications, many different metrics can be introduced.
Here we focus on the L1 and L∞ cases.

The L1-distance and the AUC criterion. Consider first the L1-distance between ROC
curves as a measure of closeness for scoring functions. For any scoring function, we set:

d1(s, η) = ||ROC(s, .) − ROC∗(.)||1 =

∫
1

0

|ROC∗(α) − ROC(s, α)| dα .

By Proposition 3, we have:

d1(s, η) = ||ROC∗||1 − ||ROC(s, .)||1 .

In this case, rendering d(s, η) minimum boils down to maximizing a popular quantity
known as the Area Under the ROC curve (or AUC, see [HM82]):

AUC(s) = ||ROC(s, .)||1 =

∫
1

0

ROC(s, α) dα .

In this particular case, the analysis of empirical risk minimization strategies is greatly facil-
itated by the fact that the AUC performance measure may be interpreted in a probabilistic
fashion and natural estimates of the risk are of the form of a U-statistic.

Proposition 4 ([CLV05]) For any scoring function s such that Hs and Gs are continu-
ous distribution functions, we have:

AUC(s) = P{s(X) > s(X ′) | Y = 1, Y ′ = −1}

=
1

2p(1 − p)
P{(s(X) − s(X ′))(Y − Y ′) > 0} .

where (X, Y) and (X ′, Y ′) are i.i.d. copies.
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From this observation, ranking can be indeed interpreted as classification of pairs
of observations. We refer to [CLV08] for a systematic study of related empirical and
convex risk minimization strategies which involve U-statistics. From a machine learning
perspective, there is a growing literature in which existing algorithms are adapted in order
to perform AUC optimization (such as, for instance: [CM04], [Rak04], [YDMW03]).

However, the AUC as a summary criterion presents some drawbacks since two scoring
functions can have the same AUC but behave very differently in the ROC space. Hence,
more stringent notions of distance need to be considered.

The L∞-distance. As an example of a strong notion of distance, we propose to study
the distance induced by the L∞-norm:

d∞(s, s∗) = ||ROC(s, .) − ROC∗(.)||∞ = sup
α∈[0,1]

(ROC∗(α) − ROC(s, α)) .

The main difficulty for dealing with such a criterion from the perspective of empirical
risk minimization is that there is no simple empirical counterpart. Indeed, in this case the
usual ’excess-risk’ decomposition of the form d(s, s∗) = A∗ − A(s) does not hold and it is
not straightforward how to relate the empirical risk minimization (ERM) approach to the
d∞ criterion.

The goal of this paper is to show that empirical risk minimization procedures can be
tailored for the ranking/scoring problem under the criterion induced by the L∞-norm. The
ERM strategy will here be combined with an approximation stage, involving very mild
smoothness assumptions for the optimal curve ROC∗. As a byproduct of the analysis we
will also provide a statistical estimation of the optimal ROC curve which can also be of
interest per se.

Optimal scoring functions as overlaid classification rules. From the angle embraced
in this paper, ranking amounts to recovering the decreasing collection of level sets of the
regression function η(x):

{{x ∈ X | η(x) > u}, u ∈ [0, 1]} ,

without necessarily disposing of the corresponding levels. Indeed, any scoring function of
the form

s∗(x) =

∫1

0

I{η(x) > Q∗(α)} dν(α), (1)

where ν(dα) is an arbitrary finite positive measure on [0, 1] with same support as H∗(dα),
is optimal with respect to the ROC criterion. Notice that s∗(x) = H∗(η(x)) when ν is
chosen to be the Lebesgue measure. The next proposition also illustrates this view on the
problem. We set the notations:

R∗
α = {x ∈ X | η(x) > Q∗(α)} ,

Rs,α = {x ∈ X | s(x) > Q(s(X), α)} .
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Proposition 5 Let s be a scoring function and α ∈ (0, 1) such that Q∗(α) < 1. Suppose
additionally that the cdf Hs (respectively, H∗) is continuous at Q(s(X), α) (resp. at Q∗(α)).
Then, we have:

ROC∗(α) − ROC(s, α) =
E(|η(X) − Q∗(α)| I{X ∈ R∗

α∆Rs,α})

p(1 − Q∗(α))

where ∆ denotes the symmetric difference between sets.

This result shows that the pointwise difference between the dominating ROC curve
and the one related to a candidate scoring function s may be interpreted as the error
made in recovering the specific level set R∗

α through Rs,α.

In contrast, standard binary classification amounts to recover a single, very specific,
η-level set, namely {x ∈ X | η(x) > 1/2}. It is well-known that the latter corresponds
to the classifier C∗(X) = 2 · I{η(X) > 1/2} − 1 with minimum classification error L(C) =

P {Y 6= C(X)} with C : X → {−1,+1}.

Remark 1 (On the excess of risk) We point out that Proposition 5 generalizes the
well-known relationship in the classification setup, see [DGL96]:

L(C) − L(C∗) = p (G(C∗) − G(C)) + (1 − p) (H(C) − H(C∗))

= E [|2η(X) − 1| I{X ∈ R∗∆R}] ,

where R = {x ∈ X | C(x) = +1} and R∗ = R∗
α∗ with Q∗(α∗) = 1/2.

Plug-in scoring rules. A possible angle to approach optimal scoring rules is the plug-
in approach, see [DGL96]. The idea of plug-in consists of using an estimate η̂(x) of the
regression function as a scoring function. It is expected that, whenever η̂(x) is close to
η(x) in a certain sense, then ROC(η̂, ·) and ROC∗ are also close.

Proposition 6 Let η̂(x) be an approximant of η(x) and suppose that Gbη(dx) and Hbη(dx)

are continuous distribution functions.

(i) We have:

AUC∗ − AUC(η̂) ≤ 1

p(1 − p)
E (|η̂(X) − η(X)|) .

(ii) Assume in addition that H∗ has a density which is bounded by below on [0, 1]: ∃c > 0

such that ∀α ∈ [0, 1], dH∗

dα
(α) ≥ c−1. Then, we have: ∀α ∈ [0, 1] such that Q∗(α) < 1,

ROC∗(α) − ROC(η̂, α) ≤ cE (|H∗(η(X)) − Hη̂(η̂(X))|)

p(1 − Q∗(α))
.
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It clearly follows from (i) that a L1(µ)-consistent estimator, i.e. an estimator η̂n(x)

such that E (|η̂n(X) − η(X)|) → 0 as n → ∞ with probability one, yields a consistent
ranking rule in the AUC-sense. It is however much more difficult to guarantee the pointwise
convergence ROC∗(α)−ROC(η̂n, α) → 0: this would be again implied by L1(µ)-consistency
provided that η̂n(X) has a density uniformly bounded in n. In addition, plug-in rules face
computational difficulties when dealing with high-dimensional data ([GKKW02]). These
observations provide the motivation for exploring algorithms based on direct empirical
risk minimization.

3 Ranking by overlaying classifiers

The approach considered in this paper consists of a discretization of the ranking problem.
The main idea is to build a scoring function close to the one obtained by overlaying a
finite collection of level sets R∗

α1
, . . . , R∗

αK
, where the subdivision σ : 0 = α0 < α1 ≤

. . . ≤ αK ≤ αK+1 = 1 is fixed in advance and K is a tuning parameter that controls the
complexity of the method:

s∗σ(x) =

K∑

i=1

I{x ∈ R∗
αi

}, (2)

which may be seen as a discrete version of (1), where ν is taken as the point measure∑K
i=1 δαi

, where δx denotes the Dirac mass at x.

3.1 Piecewise linear approximation of the optimal ROC curve

Observe that the ROC curve of the stepwise scoring function s∗σ(x) is the broken line
that connects the knots {(αi,ROC∗(αi)) , 0 ≤ i ≤ K + 1}. In order to explicit the latter,
we classically consider the ”hat functions” related to the meshgrid {αi; 0 ≤ i ≤ K + 1}:
∀i ∈ {1, . . . , K}, ∀α ∈ [0, 1],

Φ∗
i(α) = Φ(α, αi−1, αi) − Φ(α, αi, αi+1),

and Φ∗
K+1(α) = Φ(α, αK, 1), where for all α ′ < α ′′,

Φ(α, α ′, α ′′) =
α − α ′

α ′′ − α ′
I{α ∈ [α ′, α ′′]}.

Equipped with these notations, the ROC curve of the piecewise constant scoring function
(2) is the linear-by-parts curve given by:

ROC(s∗σ, .) =

K+1∑

i=1

ROC∗(αi)Φ
∗
i (.),

which may serve as a simple approximant of the optimal curve ROC∗, see Fig. 3.1.
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Figure 1: 2-spline approximant of the curve ROC∗

The next result, providing a bound for the corresponding approximation error, is well-
known folklore in linear approximation theory.

Proposition 7 Suppose that ROC∗ is twice differentiable with bounded second derivative.
In addition, set ∆ = max0≤i<K{αi+1 − αi} . Then, we have:

||ROC(s∗σ, .) − ROC∗(.)||∞ ≤ −
∆2

8
inf

α∈[0,1]

d2

dα2
ROC∗(α) .

Remark 2 (On adaptive approximation by 2-splines) Of course, considering ap-
proximation by piecewise linear functions with k pieces, the class of functions correspond-
ing to the approximation order O(k−1) in sup-norm is much larger than the collection of
twice differentiable functions with bounded derivatives, see Chapter 12 in [DL93]. How-
ever, any practical procedure permitting to achieve this approximation rate under weaker
hypotheses would require to choose the breakpoints αk depending on the properties of the
target curve ROC∗, not in advance anymore. In order to consider a more general setup, in-
cluding cases where η(X)’s essential supremum is equal to 1 (i.e. limα→0 ROC∗ ′(α) = +∞),
extensions of the premier approach developed in this article will be tackled in a future
article, where the meshgrid is refined adaptively from the data. Incidentally, we point
out that the spacings ∆k between the breakpoints should be ideally chosen non decreasing
given the geometry of the optimal ROC curve (concave and strictly increasing).

3.2 Empirical MV-set estimation

In the next section, we shall introduce a procedure for estimating the discrete scoring
function s∗σ for a given meshgrid σ. This method will be based on the statistical estimation
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of the sets R∗
α = {x ∈ X | η(x) > Q∗(α)} for specific choices of α ∈ (0, 1). This subproblem

which is related to the design of statistical tests of composite hypotheses is interesting in
itself. Applications include in particular anomaly/outlier detection, when the probability
distribution corresponding to normal system activity is unknown or only partially known.
More details will be provided in Section 5.

Interestingly, the level set R∗
α can be interpreted as the solution of the constrained

optimization problem:

sup
R∈B(X )

P {X ∈ R | Y = +1} subject to P {X ∈ R | Y = −1} ≤ α , (3)

where the supremum is taken over the set B(X ) of all measurable subsets of X . This fact
follows from Neyman-Pearson’s lemma once the problem is cast as a hypothesis testing
problem: test the null hypothesis H0 : Y = −1 against the alternative H1 : Y = +1 with
a type I error equal to α and maximal power.

Note that this formulation is equivalent to the Minimum Volume (MV) set estimation
framework (see [SN06] and references therein), since the complement set S∗

α = X \R∗
α may

be seen as the solution of:

min
S∈B(X )

G(S) subject to H(S) > 1 − α ,

the distribution G of positive instances being the volume to be minimized, while the
distribution H of negative instances corresponds to the reference measure.

In our case, the major difference with the usual setting lies in the fact that the measure
of reference H involved in the mass constraint is unknown, like G, and must be estimated
from sampling data. A statistical search strategy based on the training sample Dn could
naturally consists of replacing the unknown probability distributions G and H by their
empirical counterparts

Ĝn =
1

n+

n∑

i=1

I{Yi = +1} · δXi
and Ĥn =

1

n−

n∑

i=1

I{Yi = −1} · δXi

with n+ =
∑n

i=1 I{Yi = +1} = n − n−.

Let R a class of measurable subsets of X . We consider the following optimization
problem as the empirical version of the previous one:

sup
R∈R

Ĝn(R) subject to Ĥn(R) ≤ α + φ ,

where φ is a complexity penalty, serving as a tolerance parameter. The success of this
program in recovering a set close to R∗

α will depend on both choices of the class R and the
parameter φ which will be discussed in Section 5.1.
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3.3 The RankOver algorithm

We now describe a very simple ranking procedure which builds an estimator of s∗σ in
(2). The RankOver algorithm has two steps: Optimization and Monotonicity. The
crucial part is the Optimization step. At each iteration, the procedure calls a clas-
sification algorithm which extracts, from the class R of sets, the empirical counterpart
of a level set of the regression function which contains a certain proportion of best in-
stances. The grid of proportion levels depends on the partition σK. More precisely, if
we set uk = P{η(X) ≥ Q∗(αk)}, the method will successively target the best (100u1)%
among all instances, then the best (100u2)%, etc. Note that the classification algorithm
invoked here is nonstandard since an additional constraint on the classifiers is involved.
In this paper (see Section 5), we shall explore three possible strategies to solve this con-
strained classification problem: (i) empirical MV-set, (ii) threshold rules, (iii) weighted
classification error. Here we only focus on statistical aspects, the design of practical tech-
niques for empirical MV-set estimation such as grid methods will be investigated in a
forthcoming paper. The Monotonicity step aims at deriving an increasing sequence
of sets. This is a desirable property for estimators of the increasing sequence of the
true level sets of the regression function. Additionally, this construction facilitates the
analysis provided in Section 4. The other parameters of the algorithm are the partition
σK : α0 = 0 < α1 < . . . < αK < αK+1 = 1, K ≥ 1, and the tolerance parameter denoted
by φ.

The RankOver Algorithm

Input. Meshgrid σK, tolerance parameter φ, class R of sets

1. Optimization. For k = 1, . . . , K, compute:

R̂k = arg max
R∈R

Ĝn(R) subject to Ĥn(R) ≤ αk + φ.

2. Monotonicity. Build recursively the increasing sequence (R̃k)k≥1 through:

R̃1 = R̂1 and R̃k+1 = R̃k ∪ R̂k+1 , for all k ∈ {1, . . . , K − 1}.

Output. The piecewise constant scoring function obtained by overlaying
the indicator functions of the sets R̃k:

sK(x) =

K∑

k=1

I{x ∈ R̃k}.

Statistical performance of this procedure will be discussed in the sequel. For now, we
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provide some comments on possible modifications or additional outputs.

Remark 3 (Bottom-up vs. top-down.) Another strategy for constructing an increas-
ing sequence of subsets from the collection (R̂k)k≥1 could be to proceed in a top-down

manner. Start with R̃K+1 = X and R̃k = R̃k+1 ∩ R̂k for k = K, . . . , 1. Similar results as
those established in this paper could easily be derived for such a construction.

Remark 4 (Plug-in estimator.) From Proposition 6, it turns out that a canonical
scoring function would be H∗(η(x)). As a byproduct of the procedure, one may derive
the following estimate of this function by reweighting the terms in the sum:

∑K
k=1(αk −

αk−1)I{x ∈ R̃k}.

Beyond the overlaid scoring function sK(x) resulting from the RankOver algorithm,
additional outputs of the procedure are the estimates of the ROC curve and the AUC. Let
(α̃k, β̃k) = (Ĥn(R̃k), Ĝn(R̃k)) for all k ∈ {0, . . . , K + 1}, where by convention R̃0 = ∅ and
R̃K+1 = X . We point out that the empirical ROC curve of the scoring function output by
the RankOver algorithm is the piecewise linear function:

∀α ∈ [0, 1], R̃OC(sK, α) =

K+1∑

k=1

β̃k · Φ̃k(α) ,

where Φ̃k = Φ(α, α̃k−1, α̃k) − Φ(α, α̃k, α̃k+1) for all k ∈ {1, . . . , K} and Φ̃K+1(α) =

Φ(α, α̃K, 1). Moreover, it follows from this expression that the corresponding empirical
AUC is given by:

ÃUC(sK) =
1

2

K∑

k=1

(α̃k+1 − α̃k−1)β̃k .

3.4 Algorithmic approaches to scoring

Until recently the one and only known method for ranking/scoring binary-valued data was
logistic regression or its numerous variants. Problems with high-dimensional data as those
generated by the development of internet technologies naturally oriented the research of
efficient ranking algorithms towards machine learning techniques. A nice illustration is the
RankBoost algorithm (see [FISS03]) exporting the boosting approach of combination of
weak learners to the problem of bipartite ranking. In a series of papers, we have developed
our view of the ranking/scoring problem and proposed various approaches leading to or
inspiring practical algorithms for doing the job:

• W-ranking functionals. This approach describes M-estimation strategies based on
linear rank functionals (see [CV07] and [CV08b]). Indeed, many empirical summaries
of the ROC curve such as the AUC ([HM82]), the local AUC ([CV07]), the p-
norm push ([Rud06]), can be expressed as linear rank statistics. These statistics are
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to be maximized over the functional class of scoring functions and the theoretical
properties of this empirical risk maximization strategies require the control of a
new class of stochastic processes, called rank processes (see [CV08b] for preliminary
results).

• Partitioning methods. We have developed various partitioning methods for bi-
partite ranking. In [CV08c], we consider fixed partitions and histogram scoring rules
for bipartite ranking. We also studied adaptive partitions based on decision trees in
order to monitor the ranking performance in terms of the ROC curve (see [CV08a],
[CV08d]).

Instead of partitioning the input space, the approach taken in this paper consists of
taking a partition of the ROC space to build a finite-dimensional approximation of the op-
timal ROC curve. As illustrated above, the ranking problem reduces then to a collection
of classification problems with an additional constraint. Solving each of these classifi-
cation problems and then combining/overlaying their solutions through the RankOver
algorithm leads to a scoring rule with good statistical performance (see Section 4). The
main question for practitioners would be how to implement the Optimization step. For
some clues on practical strategies devoted to this problem, we refer to Section 7 of [SN06]
and the references therein.

4 Main results

4.1 Statistical properties of the RankOver algorithm

The next result offers a rate bound for the scoring function output by the RankOver
algorithm in the ROC space, equipped with a sup-norm. Up to our knowledge, this is the
first result on the generalization ability of decision rules in such a functional space. Given
a class R of sets in X , we introduce the Rademacher average:

An = E

(
sup
R∈R

1

n

∣∣∣∣∣

n∑

i=1

ǫiI{Xi ∈ R}

∣∣∣∣∣

)

where (ǫi)i≥1 forms an i.i.d. sequence which is independent of (Xi)i≥1.

Theorem 8 We consider a class R of sets and we assume the following:

• the class R of sets contains R∗
α for all α ∈ (0, 1),

• the Rademacher average An is of the order of O(n−1/2),

• both G∗ and H∗ are twice continuously differentiable and have strictly positive first
derivatives,

• the function ROC∗ has a bounded second derivative.
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For all k ∈ {0, . . . , K + 1}, set αk = k/(K + 1) and set the tolerance parameter to be:

φ = φ(δ, n) = 2An +

√
2 log(1/δ)

n
.

Denote by sK the output of the RankOver algorithm with these parameters. If K = Kn ∼

n1/6 as n → ∞, then there exists a constant c = c(δ) such that, with probability at least
1 − δ, we have, for n large enough:

||ROC∗(.) − ROC(sKn
, .)||∞ ≤ cn−1/3 .

Remark 5 (Choice of the penalty.) The issue of penalty calibration has been a
topic of intensive research in the last years (see [BBL05] and references therein). We
do not enter in the subtleties related to this important question and we have chosen to
use Rademacher averages as a complexity measure which covers most of the important
examples of classes R of sets (see [BBL05]).

Remark 6 (On the complexity assumption) The assumption on the Rademacher
average An being of the order of n−1/2 is fulfilled for instance if R is a VC class. in that
case, the constant c also depends on the VC dimension.

Remark 7 (Optimality issue.) The rate of convergence in the theorem is not proved
to be optimal. The investigation of lower bounds for this problem is the object of work
under progress.

Remark 8 (Performance of classifiers and ROC curves.) In the present paper,
we have adopted a scoring approach to ROC analysis which is somehow related to the
evaluation of the performance of classifiers in ROC space. Using combinations of such
classifiers to improve performance in terms of ROC curves has also been pointed out in
[BDH06] and [BCT07].

Remark 9 (Adaptivity of the partition.) A natural extension of the approach
would be to consider a flexible meshgrid {αk} depending on the local smoothness of the
optimal ROC curve. However, under the present assumptions, using an adaptive partition
of [0, 1] may yield sharper constants but will not improve the rate of convergence. We
have investigated adaptive partitions of the interval [0, 1] corresponding to tree-structured
recursive approximation schemes of the optimal ROC curve elsewhere ([CV08d]), but the
rates of convergence obtained in the present paper are faster.

4.2 Statistical estimation of the optimal ROC curve

We now show how to exploit the output of the Optimization step of the RankOver
procedure in order to produce an accurate empirical estimate of the optimal ROC curve.
We introduce some notations. Set: ∀k ∈ {0, . . . , K + 1}, α̂k = Ĥn(R̂k) and β̂k = Ĝ(R̂k).
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The broken line that connects the knots {(α̂k, β̂k); 0 ≤ k ≤ K + 1} provides an empirical
counterpart of the piecewise linear approximant of the optimal ROC∗ . We also introduce
the ”hat functions” defined by:

∀k ∈ {1, . . . , K − 1}, Φ̂k( · ) = Φ( · ; (α̂k−1, α̂k)) − Φ( · ; (α̂k, α̂k+1)).

We also set Φ̂K( · ) = Φ( · ; (α̂K, 1)) for notational convenience. The statistical estimate
may be then written as:

R̂OC∗(α) =

K∑

k=1

β̂kΦ̂k(α) .

The next result takes the form of a deviation bound for the estimation of the optimal
ROC curve. It quantifies the order of magnitude of a confidence band in supremum norm
around an empirical estimate based on a statistical version of a simple finite elements
method (FEM) approximation scheme.

Theorem 9 Under the same assumptions as in Theorem 8, we set here K = Kn ∼ n1/4.
Then, there exists a constant c = c(δ) such that, with probability at least 1 − δ:

||R̂OC∗ − ROC∗||∞ ≤ c

(
log n

n

)1/2

.

Remark 10 (A nondecreasing estimate of ROC∗.) Notice that the curve R̂OC∗(.)

is not necessarily increasing, in contrast to the empirical ROC curve R̃OC
∗
. However, the

accuracy of the latter estimate is worst (only of order OP((log(n)/n)1/3) with the best
possible choice of K = Kn ∼ n1/6).

5 On learning a statistical test of composite hypotheses

In this section, we focus on the statistical study of the subprocedure called the Optimiza-
tion step in the RankOver algorithm. Recall that the purpose of this step is to estimate
the sets R∗

αk
through solving the following problem:

sup
R∈R

Ĝn(R) subject to Ĥn(R) ≤ α + φ .

In other words, the goal is to select a critical region R ∈ R in order to construct a decision
rule based on the observation X, i.e. a classifier C(X) = 2 · I{X ∈ R}−1, for testing the null
hypothesis H0 : Y = −1 with type I error α and maximum power. As the distribution
of the observation X is unknown under both hypotheses, this may be interpreted as the
problem of learning an optimal statistical test of composite hypotheses. Even though this
only corresponds to a step towards reaching the overall goal considered in this paper, this
problem is interesting in itself. Our main approach in this section will follow the work of
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Scott and Nowak ([SN06]) on learning minimum volume sets, but we also refer to [SN05],
[Sco05]. We extend their result to the case where the reference measure is unknown and
provide fast rates of convergence of MV-set estimators. In the end of the section, we
also describe alternative methods to the MV-set approach and describe their statistical
properties.

5.1 Rate bounds for empirical MV-set estimation

We denote by R̂α the solution to this problem. The next result can be interpreted as a
rate bound, in terms of type II error, for the excess risk of the classifier defined by R̂α with
a simultaneous control of the type I error. A similar result was also obtained in [SBW08].

The main assumptions for consistency results to hold concerns the complexity of the
collection R of candidate sets, as well as its capacity to represent the target set R∗

α. For
simplicity, we have chosen to describe the complexity in terms of the Rademacher average
and we have also assumed that the class R contains the optimal element.

Theorem 10 Let α ∈ (0, 1). Assume that R∗
α belongs to the set R of region candidates.

Suppose in addition that R forms a class of subsets of X with Rademacher average denoted
by An. For all (δ, n) ∈ (0, 1) × N∗, set

φ(δ, n) = 2An +

√
2 log(1/δ)

n
.

Then, for all δ > 0, we simultaneously have with probability at least 1 − δ: ∀n ≥ 1,

H(R̂α) ≤ α + 2φ(δ/2, n) and G(R̂α) ≥ G(R∗
α) − 2φ(δ/2, n).

Remark 11 (On recovering a point on the optimal ROC curve) When the cdf
H∗ (respectively, G∗) is continuous at Q∗(α), the point (H(R∗

α), G(R∗
α)) naturally coincides

with the point on (α, ROC∗(α)) of the optimal curve. As may be shown by examining The-
orem 10’s proof, the euclidean distance in the ROC space of the point (Ĥn(R̂α), Ĝn(R̂α))

determined by solving the constrained ERM problem (3) to (α, ROC∗(α)) is then of order
OP(1/

√
n). This will be exploited later when constructing an estimate of the curve ROC∗

with a controlled approximation error.

5.2 Fast (but not so fast) rates of convergence

We now exhibit assumptions under which faster rates of convergence can be attained. In
[Tsy04], conditions leading to rate bounds faster than n−1/2 have been examined in the
binary classification setting. It is the purpose of this subsection to adapt the latter to the
hypothesis testing setup.
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Noise assumption (NA). There exist constants a ∈ (0, 1) and D > 0 such that: ∀t ≥ 0,

P {|η(X) − Q∗(α)| ≤ t} ≤ D · t a
1−a .

We point out that this assumption corresponds to the one introduced in [Tsy04], except
that here the quantile Q∗(α) replaces 1/2.

Remark 12 (On the noise assumption) It is noteworthy that as soon as η(X)’s dis-
tribution, namely F∗ = pG∗ + (1 − p)H∗, has a bounded density f∗, this hypothesis is
automatically fulfilled with a = 1/2 and D = supt f∗(t). Indeed, the finite increments
theorem yields:

P {|η(X) − Q∗(α)| ≤ t} = F∗ (Q∗(α) + t) − F∗ (Q∗(α) − t)

≤ 2Dt.

The next result describes an important consequence of this condition.

Lemma 11 (Variance control) Suppose that condition (NA) is fulfilled. Set for all
R ∈ R,

s2
α(R)

def
= var (I{Y = +1}(I{X ∈ R∗

α} − I{X ∈ R}))

Then, we have:

∀r ∈ R , s2
α(R) ≤ c (p(1 − Q∗(α)) (G(R∗

α) − G(R)) + Q∗(α)(1 − p) (H(R) − α))a
.

Theorem 12 (Fast rates) Assume that the assumptions of Theorem 10 are fulfilled.
Suppose that, additionally, η(X) has a bounded density and that An = O

(
n−1/2

)
. Then,

for all δ > 0, we simultaneously have with probability at least 1−δ: ∃C = C(R, δ, α, p), n0,
∀n ≥ n0,

H(R̂α) ≤ α + 2φ(δ/2, n) and ROC∗(α) − G(R̂α) ≤ Cn−5/8.

Remark 13 (MV-set estimation with known reference measure) We point out
that it follows from the proof of Theorem 12 that, in the case where the reference measure
is known, condition (NA) ensures that, when performing empirical risk minimization over
the set {R ∈ R : H(R) ≤ α}, the rate of the excess of risk (in terms of type II error) is
of the order of O(n−1/(2−a)). Here, there is no guarantee that the H-term in the variance
control bound can be either negative or neglected. Thus, we obtain a not so fast rate of
the order of n−5/8 instead of the expected n−2/3 with a = 1/2.
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5.3 Alternative methods for solving the ERM under constraints

Here we consider alternatives to the empirical MV-set estimation method for solving the
constrained classification problem. The first example consists of threshold rules which were
introduced in [CV07]. We also consider an empirical risk minimization method based on
a weighted classification error. The latter method is not a true competitor of the others
in the sense that it does not lead to an estimator of the target level set R∗

α. However, we
present it for completeness as it could inspire a similar overlaying scheme from a finite
collection of level sets of the regression function.

Threshold rules. In order to guarantee the constraint to be satisfied, we could consider
sets of the form Rα(s) = {x ∈ X : s(x) ≥ Q(s(X), α)}, where s belongs to a collection S of
scoring functions. However, since the distribution H is unknown, the quantile Q(s, α) has
to be replaced by its empirical counterpart Q̂n(s, α) = Ĥ−1

n (1−α), which leads to consider
actually the set

R̂α(s)
def
=

{
x ∈ X : s(x) ≥ Q̂n(s, α)

}
.

The next result shows that, under basic complexity assumptions, the type I errors are
uniformly controlled over s ∈ S. We introduce a different penalty based on Vapnik-
Chervonenkis (VC) type characterization, for δ > 0 and n ≥ 1:

φ̃(δ, n) = 2

√
2V log(n + 1)

n
+

√
2 log(1/δ)

n

where V is the VC dimension of the underlying functional class.

Lemma 13 (Type I error - uniform bound) Suppose that S is a major VC class of
functions with finite VC dimension V. Then, for all δ ∈ (0, 1), we have with probability
at least 1 − δ,

sup
s∈S

H(R̂α(s)) ≤ α + φ̃(δ, n) .

Remark 14 (On the complexity assumption) For further details on the terminology
of major sets and major classes one may refer to [Dud99]. This notions determine the
combinatorial complexity of sets of the form {x ∈ X : s(x) ≤ t} or {x ∈ X : s(x) ≥ t}.
The complexity assumption involved in Lemma 13 ensures that the collection of sets and
indexed by (s, t) ∈ S × R form a VC class of sets.

Let us investigate the performance of the test with maximum power, which corresponds
to the test function:

ŝn = arg max
s∈S

Ĝn(Rα(s)).
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Theorem 14 Suppose that S ∩ S∗ 6= ∅. Under the assumptions of Lemma 13, for all
δ ∈ (0, 1), we have with probability at least 1 − δ:

H(R̂α(ŝn)) ≤ α + 2φ̃(δ/2, n) and G(R̂α(ŝn)) ≥ ROC∗(α) − 2φ̃(δ/2,n)

As it immediately follows from Lemma 13 combined with the proof argument of The-
orem 10, the proof is omitted.

Remark 15 (On fast rates) We also point out that this result may be viewed as a
variant of Theorem 5 in [CV07], related to the so-termed classification problem with mass-
constraint. The difference with the present setting lies in the fact that the ’volume’ to be
minimized is a signed measure up to an additive constant, namely the classification error
P {Y 6= 2I{X ∈ R} − 1} = pH(R) + (1 − p)(1 − G(R)), and the reference measure involved in
the constraint is the marginal distribution µ. In addition, it is noteworthy that, under
Theorem 12’s conditions combined with the assumption that the cdf’s Hs and Gs are both
twice differentiable at Q(s(X), α) for all s ∈ S, the rate n−2/3 for the excess of type II
error can be achieved, see Theorem 10 in [CV07].

Classification with asymmetric costs. For any measurable set C ⊂ X , we define the
weighted classification error :

Lω(C) = 2p(1 − ω) (1 − G(C)) + 2(1 − p)ω H(C) ,

with ω ∈ (0, 1) being the asymmetry factor. For ω = 1/2 one recovers the standard
classification error L(C) = P {C(X) 6= Y}. As shown by the next result, the minimizers of
this collection of risk measures coincide with the η-level sets. The proof is left to the
reader.

Proposition 15 The optimal set for this error measure is C∗
ω = {x : η(x) > ω}. We

have indeed, for all C ⊂ X :
Lω(C∗

ω) ≤ Lω(C) .

Also the optimal error is given by:

Lω(C∗
ω) = 2E min{ω(1 − η(X)), (1 − ω)η(X)} .

The excess risk for an arbitrary set C can be written:

Lω(C) − Lω(C∗
ω) = 2E (| η(X) − ω | I{X ∈ C∆C∗

ω}) ,

where ∆ stands for the symmetric difference between sets.
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The empirical counterpart of the weighted classification error can be defined as:

L̂ω(C) =
2ω

n

n∑

i=1

I{Yi = −1, Xi ∈ C} +
2(1 − ω)

n

n∑

i=1

I{Yi = +1, Xi /∈ C} .

This leads to consider the weighted empirical risk minimizer over a class R of candidate
sets:

Ĉω = arg min
C∈R

L̂ω(C).

The next result provides rates of of convergence of the weighted empirical risk mini-
mizer Ĉω to the best set in the class in terms of the two types of error.

Theorem 16 Let ω ∈ (0, 1). Assume that R is of finite VC dimension V and contains
C∗

ω. Suppose also that both G∗ and H∗ are twice continuously differentiable with strictly
positive first derivatives and that ROC∗ has a bounded second derivative. Then, for all
δ > 0, there exist constants c(V) independent of ω such that, with probability at least 1−δ:

|H(Ĉω) − H(C∗
ω)| ≤ c(V)√

p(1 − ω)
·
(

log(1/δ)

n

) 1
3

.

The same result also holds for the excess risk of Ĉω in terms of the true positive rate with
a factor term of

√
(1 − p)ω in the denominator instead .

It is noteworthy that, while convergence in terms of classification error is expected to
be of the order of n−1/2, its two components corresponding to the rate of false positive
and true positive present slower rates. Hence, even though through usual classification
methods can readily be used for recovering a collection of η-level sets, the empirical MV
set approach should be preferred regarding the rate of convergence.

6 Conclusion

In the paper, we proposed a ranking/scoring algorithm based on the resolution of a col-
lection of constrained classification problems. Statistical performance in terms of the con-
vergence towards the optimal ROC curve in supremum norm is studied. We also consider
various strategies for solving the constrained classification problem: empirical MV-set ap-
proach, threshold rules, weighted empirical risk minimization. Several issues remain open:
optimality of convergence rate bounds, adaptive grid for approximation, practical imple-
mentations of empirical MV-set estimation. Their investigation is undertaken through
ongoing projects.
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Appendix - Proof section

Proof of Proposition 5

First, we observe that, for any measurable function h, we have, by a change of probability,
that:

E(h(X) | Y = +1) =
1 − p

p
E

(
η(X)

1 − η(X)
h(X)

∣∣∣∣ Y = −1

)
.

We apply this to h(X) = I{X ∈ R∗
α} − I{X ∈ Rs,α} in order to get:

ROC∗(α) − ROC(s, α) =
1 − p

p
E

(
η(X)

1 − η(X)
h(X)

∣∣∣∣ Y = −1

)
.

Then we add and substract Q∗(α)/(1 − Q∗(α)) and using the fact that

α = P{X ∈ Rs,α | Y = −1} = P{X ∈ R∗
α | Y = −1} ,

we get:

ROC∗(α) − ROC(s, α) =

(
1 − p

p

)
E

((
η(X)

1 − η(X)
−

Q∗(α)

1 − Q∗(α)

)
h(X)

∣∣∣∣ Y = −1

)
.

We remove the conditioning with respect to Y = −1 and using then conditioning on X, we
obtain:

ROC∗(α) − ROC(s, α) =
1

p
E

((
η(X) − Q∗(α)

1 − Q∗(α)

)
h(X)

)
.

Proof of Proposition 6

We recall (see [CLV08]) that:

AUC∗ − AUC(η̂) =
E (|η(X) − η(X ′)|I{(X,X ′) ∈ Γ })

2p(1 − p)
.

where
Γ = {(x, x ′) : sgn(η̂(X) − η̂(X ′)) 6= sgn(η(X) − η(X ′))}

But, one may easily check that:
if sgn(η̂(X) − η̂(X ′)) 6= sgn(η(X) − η(X ′)), then

|η(X) − η(X ′)| ≤ |η(X) − η̂(X)| + |η(X ′) − η̂(X ′)| ,

which gives the first part of the result.
Turning to the second assertion, consider the event

E = {X ∈ R∗
α∆Rη̂,α}.
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Notice first that, after Proposition 5, we have:

ROC∗(α) − ROC(η̂, α) =
E(|η(X) − Q∗(α)| IE)

p(1 − Q∗(α))

≤ cE(|H∗(η(X)) − 1 + α| IE)

p(1 − Q∗(α))

by virtue of the finite increments theorem. Now, observing that

E = {sgn(H∗(η(X)) − 1 + α) 6= sgn(Hη̂(η̂(X)) − 1 + α)},

we have in a similar fashion as above: if X ∈ R∗
α∆Rη̂,α, then

|H∗(η(X)) − 1 + α| ≤ |H∗(η(X)) − Hη̂(η̂(X))|,

which, combined to the previous bound, proves the second part.

Proof of Theorem 8

We note α̃i = H(R̃i), β̃i = G(R̃i) and also Φ̃i( · ) = Φ( · ; (α̃i−1, α̃i)) − Φ( · ; (α̃i, α̃i+1)).
We then have

ROC(s̃σK
, α) =

K∑

i=1

β̃iΦ̃i(α)

and we can use the following decomposition, for any α ∈ [0, 1]:

ROC∗(α)−ROC(s̃σK
, α) =

(
ROC∗(α) −

K∑

i=1

ROC∗(α̃i)Φ̃i(α)

)
+

K∑

i=1

(ROC∗(α̃i)−β̃i)Φ̃i(α) .

From Proposition 7 we can bound the first term (which is positive), ∀α ∈ [0, 1], by:

−
1

8
inf

α∈[0,1]

d2

dα2
ROC∗(α) · max

0≤i≤K
(α̃i+1 − α̃i)

2 .

Now, to control the second term, we upper bound the following quantity:

|ROC∗(α̃i) − β̃i| ≤ sup
α∈[0,1]

d

dα
ROC∗(α) · |α̃i − αi| + |ROC∗(αi) − β̃i|

We further bound: |α̃i − αi| ≤ |α̃i − ᾱi| + |ᾱi − αi| where ᾱi = H(R̂αi
). In order to deal

with the first term, the next lemma will be needed:

Lemma 17 We have, for all k ∈ {1, . . . , K}:

H(R̃k) = H(R̂αk
) + (k − 1)OP(φ(δ, n)) .

where the notation OP(1) is used for a r.v. which is bounded in probability.
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From the lemma, it follows that: max1≤i≤K |α̃i − ᾱi| = OP(Kφ(δ, n)). We can then
use Theorem 10 with δ replaced by δ/K to get that max1≤i≤K |ᾱi − αi| = OP(φ(δ/K, n)).
The same inequalities hold with the β’s. It remains to control the quantity α̃i+1 − α̃i. We
have:

| α̃i+1 − α̃i |≤ max
1≤k≤K

| H(R̂αk
) − H(R̂αk−1

) | +K OP(φ(δ, n)) .

We have that:

max
1≤k≤K

| H(R̂αk
) − H(R̂αk−1

) |≤ 2 max
1≤k≤K

| H(R̂αk
) − αk | + max

1≤k≤K
| αk − αk−1 | .

As before, we have that the first term is of the order φ(δ/K, n) and since the second
derivative of the optimal ROC curve is bounded, the second term is of the order K−1.
Eventually, we choose K in order to optimize the quantity: K2A2

n + K2n−1 + K−2 + A2
n +

log K/n + KAn + Kn−1/2 + An + (log K/n)1/2. Using the assumption on the rate of An,
the optimization in K leads to the choice of K = Kn ∼ n1/6.

Proof of Lemma 17.

We have that H(R̃2) = H(R̂α2
) + H(R̂α1

\ R̂α2
). Therefore, since R∗

α1
⊂ R∗

α2
and observing

that

H(R̂α1
\ R̂α2

) = H(((R̂α1
\ R∗

α1
) ∪ (R̂α1

∩ R∗
α1

)) \ ((R̂α2
\ R∗

α2
) ∪ (R̂α2

∩ R∗
α2

)) ,

it suffices to use the additivity of the probability measure H(.) to get: H(R̃2) = H(R̂α2
) +

OP(φ(δ, n)). Eventually, errors are stacked and we obtain the result.

Proof of Theorem 9.

We use the following decomposition, for any fixed α ∈ (0, 1):

R̂OC∗(α)−ROC∗(α) =

(
R̂OC∗(α) −

K∑

i=1

ROC∗(α̂i)Φ̂i(α)

)
+

(
K∑

i=1

ROC∗(α̂i)φ̂i(α) − ROC∗(α)

)
.

Therefore, we have by a triangular inequality: ∀α ∈ [0, 1],

∣∣∣∣∣R̂OC∗(α) −

K∑

i=1

ROC∗(α̂i)φ̂i(α)

∣∣∣∣∣ ≤ max
1≤i≤K

|β̂i−β̄i|+|β̄i−ROC∗(αi)|+|ROC∗(αi)−ROC∗(α̂i)| ,

where β̄i = G(R̂αi
) for i ∈ {1, . . . , K}. And, by the finite increments theorem, we have:

|ROC∗(αi) − ROC∗(α̂i)| ≤
(

sup
α∈[0,1]

d

dα
ROC∗(α)

)
(|αi − ᾱi| + |ᾱi − α̂i|) .
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For the other term, we use the same result on approximation as in the proof of Theorem
8:

∣∣∣∣∣

K∑

i=1

ROC∗(α̂i)φ̂i(α) − ROC∗(α)

∣∣∣∣∣ ≤ −
1

8
inf

α∈[0,1]

d2

dα2
ROC∗(α) · max

0≤i≤K

(α̂i+1 − α̂i)
2

max
0≤i≤K

(α̂i+1 − α̂i) ≤ max
0≤i≤K

(αi+1 − αi) + 2 max
1≤i≤K

|αi − ᾱi| + 2 max
1≤i≤K

|α̂i − ᾱi| .

We recall that: max1≤i≤K |α̂i − ᾱi|. = OP(Kn−1/2). Moreover, max0≤i≤K{αi+1 − αi} is of
the order of K−1. And with probability at least 1 − δ, we have that max1≤i≤K |αi − ᾱi| is
bounded as in Theorem 10, except that δ is replaced by δ/K in the bound. Eventually, we
get the generalization bound: K−2 + (log K/n)1/2, which is optimal for a number of knots:
K ∼ n1/4.

Proof of Theorem 10

In order to prove the desired result, we introduce further notation, namely

R̂α =
{

R ∈ R : Ĥn(R) ≤ α + φ(δ/2, n)
}

,

so that one may write
R̂α = arg max

R∈ bRα

Ĝn(R) .

We shall consider the following events:

ΘH =
{

H(R̂α) > α + 2φ(δ/2, n)
}

and ΘG =
{

G(R̂α) < G(R∗
α) − 2φ(δ/2, n)

}
,

as well as

ΩH =

{

sup
R∈R

|Ĥn(R) − H(R)| > φ(δ/2, n)

}

and ΩG =

{

sup
R∈R

|Ĝn(R) − G(R)| > φ(δ/2, n)

}

.

The complementary event of any event E will be denoted by Ec. The matter is to establish
a lower bound for the probability of occurrence of the complementary event of ΘH ∪ ΘG.
We shall prove that

ΘH ∪ ΘG ⊂ ΩH ∪ ΩG. (4)

and the result will then follow from the union bound combined with McDiarmid’s concen-
tration inequality and the control of empirical process by a Rademacher average through
a double symmetrization argument (see [BBL05] for details). We have, indeed, that, for
all δ ∈ (0, 1), the event ΩH (respectively, the event ΩG) occurs with probability less than
δ/2.
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Observe first that Ωc
H ∩ Ωc

G ⊂ Θc
G. As a matter of fact, on the event Ωc

H we have

Ĥn(R∗
α) − α ≤ sup

R∈R

|Ĥn(R) − H(R)| ≤ φ(δ/2, n),

so that we have R∗
α ∈ R̂α and thus, Ĝn(R̂α) ≥ Ĝn(R∗

α). In addition, since

G(R̂α) = (G(R̂α) − Ĝn(R̂α)) + (Ĝn(R̂α) − Ĝn(R∗
α)) + (Ĝn(R∗

α) − G(R∗
α)) + G(R∗

α),

on the event of Ωc
H ∩ Ωc

G we have G(R̂α) ≥ G(R∗
α) − 2φ(δ/2, n), and the latter event

corresponds to Θc
G. Eventually, on the event Ωc

H, we have

H(R∗
α) ≤ Ĥn(R∗

α) + sup
R∈R

|H(R) − Ĥn(R)|

≤ α + 2φ(δ/2, n),

so that Ωc
H ⊂ Θc

H.

Proof of Lemma 11

It is straightforward to extend the equivalent statements of the noise assumption (NA) in
the standard classification setup (see [BBL05]) to an arbitrary level. We use the following
equivalent condition: there exists a positive constant c such that, for any set R, we have

E(I{X ∈ R∗
α∆R}) ≤ c(F(R∗

α) − F(R))a ,

where F = pG + (1 − p)H. From there, we can deduce the next bound:

s2
α(R) ≤ c (E(|η(X) − Q∗(α)| · I{X ∈ R∗

α∆R}))a
,

by Hölder’s inequality.

Observe also that

p (G(R∗
α) − G(R)) = E [(η(X) − Q∗(α)) · (I{X ∈ R∗

α} − I{X ∈ R})]

+ Q∗(α) (P{X ∈ R∗
α} − P{X ∈ R}) ,

and

(1 − p) (H(R∗
α) − H(R)) = E [(Q∗(α) − η(X)) · (I{X ∈ R∗

α} − I{X ∈ R})]

+ (1 − Q∗(α)) (P{X ∈ R∗
α} − P{X ∈ R}) .

This yields

E[|η(X) − Q∗(α)| · I{X ∈ R∗
α∆R}] = p(1 − Q∗(α)) (G(R∗

α) − G(R))
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+ (1 − p)Q∗(α) (H(R) − H(R∗
α)) .

Combined with the previous bound, this entails that

s2
α(R) ≤ c

1 − 2Q∗(α)
(p(1 − Q∗(α)) (G(R∗

α) − G(R)) + (1 − p)Q∗(α) (H(R) − H(R∗
α)))a

,

which concludes the proof.

Proof of Theorem 12

For simplicity, we provide the proof for a finite class R with cardinality N. First observe
that from Theorem 10 and its proof, we have, with probability larger than 1 − δ:

H(R̂α) ≤ α + 2φ(δ/2, n) , G(R̂α) ≥ G(R∗
α) − 2φ(δ/2, n) and R∗

α ∈ R̂α .

For all R ∈ R, we set:

Pn(R) =
n+

n

{
Ĝn(R∗

α) − Ĝn(R)
}

,

so that we have Pn(R̂α) ≤ 0 since R∗
α ∈ R̂α. We also introduce:

P(R) = E

(
1

p
Pn(R)

)
= G(R∗

α) − G(R) .

Now from Bernstein’s inequality and the union bound, we have, with probability larger
than 1 − δ:

∀R ∈ R , pP(R) ≤ Pn(R) +

√
2s2

α(R) log(N/δ)

n
+

4 log(N/δ)

3n
.

Using this inequality for R = R̂α, we get:

p(G(R∗
α) − G(R̂α)) ≤

√
2s2

α(R̂α)) log(N/δ)

n
+

4 log(N/δ)

3n
.

We set the notations: ∆G = G(R∗
α) − G(R̂α), ∆H = H(R̂α) − H(R∗

α) and q = Q∗(α).
Then, from the variance control lemma with a = 1/2, we get:

p∆G ≤
√

2c log(N/δ)

n(1 − 2q)

(
(p(1 − q)∆G)1/4 + ((1 − p)q∆H)1/4

)
+

4 log(N/δ)

3n
.

Eventually, using the control on ∆G and ∆H from Theorem 10, we obtain that there
exists a constant C = C(N, δ, α, p):

∆G ≤ Cn−5/8 .
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Proof of Lemma 13

For all (s, t) ∈ S × R, set Rs,t = {x ∈ X : s(x) ≥ t}. For all s0 ∈ S, we have

H
(
R̂α(s0)

)
≤ sup

(s,t)∈S×R

|H(Rs,t) − Ĥn(Rs,t)| + Ĥn

(
R̂α(s0)

)

≤ sup
(s,t)∈S×R

|H(Rs,t) − Ĥn(Rs,t)| + α +
1

n
.

As noticed in Remark 14,the collection of sets {Rs,t}(s,t)∈S×R has finite VC-dimension,
this observation permits to conclude the proof.

Proof of Theorem 16.

The idea of the proof is to relate the excess risk in terms of type I error to the excess risk in
terms of weighted classification error. First we re-parameterize the weighted classification
error. Set:

ℓω(α) = Lω(R∗
α) = 2(1 − p)ω α + 2p(1 − ω)(1 − ROC∗(α))

Since ROC∗ is assumed to be differentiable, it is easy to check that the value α∗ = H(C∗
ω)

minimizes ℓω(α). Denote by ℓ∗ω = ℓω(α∗). It follows from a Taylor expansion of ℓω(α)

around α∗ at the second order that there exists α0 ∈ [0, 1] such that:

ℓω(α) = ℓ∗ω − p(1 − ω)
d2

dα2
ROC∗(α0) (α − α∗)2

Using also the fact that ROC∗ dominates any other curve of the ROC space, we have:
∀C ⊂ X measurable, G(C) ≤ ROC∗(H(C)). Also, by assumption, there exists m such

that: ∀α ∈ [0, 1], d2

dα2 ROC∗(α) ≥ −m. Hence, since ℓω(H(Ĉω)) = Lω(Ĉω), we have:

(
H(Ĉω) − H(C∗

ω)
)2 ≤ 1

mp(1 − ω)

(
Lω(Ĉω) − Lω(C∗

ω)
)

.

We have obtained the desired inequality. It remains to get the rate of convergence for the
weighted empirical risk.

Now set: F∗ = pG∗ + (1 − p)H∗. We observe that: ∀t > 0, P(|η(X) − ω| ≤ t) =

F∗(ω + t) − F∗(ω − t) ≤ 2t supu(F∗) ′(u). We have thus shown that the distribution
satisfies a modified margin condition [Tsy04], for all ω ∈ [0, 1], of the form:

P(|η(X) − ω| ≤ t) ≤ D t
γ

1−γ .

with γ = 1/2 and D = 2 supu(F∗) ′(u). Adapting slightly the argument used in [Tsy04],
[BBL05], we have that, under the modified margin condition, there exists a constant c

such that, with probability 1 − δ:

Lω(Ĉω) − L∗
ω(C∗

ω) ≤ c

(
log(1/δ)

n

) 1
2−γ

.
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