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DG-METHODS FOR MICROLOCALIZATION

STÉPHANE GUILLERMOU

Abstract. For a complex manifold X the ring of microdifferential operators
EX acts on the microlocalization µhom(F,OX), for F in the derived category of
sheaves on X. Kashiwara, Schapira, Ivorra, Waschkies proved, as a byproduct
of their new microlocalization functor for ind-sheaves, µX , that µhom(F,OX)
can in fact be defined as an object of D(EX ): this follows from the fact that
µXOX is concentrated in one degree.

In this paper we prove that the tempered microlocalization T−µhom(F,OX),
or µXOt

X
, also are objects of D(EX). Since we don’t know whether µXOt

X

is concentrated in one degree, we built resolutions, of EX and µXOt

X
, such

that the action of EX is realized in the category of complexes (and not only
up to homotopy). To define these resolutions we introduce a version of the de
Rham algebra on the subanalytic site which is quasi-injective. We prove that
some standard operations in the derived category of sheaves can be lifted to
the (non-derived) category of dg-modules over this de Rham algebra. Then
we built the microlocalization in this framework, together with a convolution
product.

1. Introduction

For a complex analytic manifold the sheaf of microlocal differential operators on
its cotangent bundle was introduced by Sato, Kashiwara and Kawai using Sato’s
microlocalization functor. Let us recall briefly the definition, in the framework
of [5]. Let X be a manifold and let Db(CX) be the bounded derived category of
sheaves of C-vector spaces on X . For objects F,G ∈ Db(CX), a generalization of
Sato’s microlocalization functor gives µhom(F,G) ∈ Db(CT∗X), and a convolution
product is defined in [5] for this functor µhom. When X is a complex analytic
manifold of complex dimension dX , one version of the ring of microlocal operators

is defined by ERX = µhom(C∆,O
(0,dX)
X×X )[dX ], where ∆ is the diagonal of X ×X and

O
(0,dX)
X×X denotes the holomorphic forms of degree 0 on the first factor and degree

dX on the second factor. It has support on the conormal bundle of ∆, which may
be identified with T ∗X . The product of ERX is given by the convolution product of
µhom.

The convolution product also induces an action of ERX on µhom(F,OX), for any
F ∈ Db(CX), i.e. a morphism in Db(CT∗X), ERX ⊗ µhom(F,OX )→ µhom(F,OX),
satisfying commutative diagrams which express the properties of an action.

A natural question is then whether µhom(F,OX) has a natural construction
as an object of Db(ERX ). It was answered positively in [9] as a byproduct of the
construction of a microlocalization functor for ind-sheaves. The category of ind-
sheaves on X , I(CX), is introduced and studied in [7]. It comes with an internal
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2 STÉPHANE GUILLERMOU

Hom functor, IHom, and contains Mod(CX) as a full subcategory; the embedding
of Mod(CX) in I(CX) admits a left adjoint (which corresponds to taking the limit)
αX : I(CX)→ Mod(CX) which is exact. In this framework the construction of [9]
yields a new microlocalization functor µX : Db(I(CX))→ Db(I(CT∗X)) such that

(1) µhom(F,G) ≃ αT∗X RIHom(µXF, µXG).

In particular µX applies to a single object of Db(I(CX)) and µhom(F,G) takes the
form of a usual Hom functor between objects on T ∗X .

The convolution product is also defined in this context, and now it gives an action
of ERX on µX(OX). Through isomorphism (1) this action on µX(OX) induces the
action on µhom(F,OX). Hence it is enough to define µX(OX) as an object of
Db(ERX ) to have the answer for all µhom(F,OX ). It turns out that, outside the
zero section of T ∗X , µX(OX) is concentrated in degree −dX . Thus µX(OX) ≃
H−dXµX(OX)[dX ] and, since the action of ERX gives an ERX -module structure on
H−dXµX(OX), we see that µX(OX) naturally belongs to Db(ERX ), as required.

However in many situations differential operators of finite order are more appro-
priate. In this paper we solve the same problem in the tempered situation, i.e. for

the sheaf ER,fX of differential operators with bounded degree and for the tempered
version of µhom(F,OX). This tempered microlocalization T−µhom(F,OX) is intro-
duced in [1] and also has a reformulation in terms of ind-sheaves. Namely it makes
sense to consider the ind-sheaf of tempered C∞-functions and the corresponding
Dolbeault complex OtX (it is actually a motivation for the theory of ind-sheaves).
Then

T−µhom(F,OX) ≃ αT∗XR IHom(µXF, µXO
t
X).

We have as above a natural action of ER,fX on µX(OtX). Unfortunately this last
complex is a priori not concentrated in one degree and we cannot conclude directly

that µX(OtX) is an object of Db(ER,fX ).

We will in fact find resolutions of ER,fX and µX(OtX) such that the action corre-
sponds to a dg-module structure over a dg-algebra. More precisely we will define
an ind-sheaf of dg-algebras EAX on T ∗X (outside the zero section) with cohomology

only in degree 0 and such that H0(EAX ) = ER,fX . We will also find a dg-EAX -module,
say M , such that M ≃ µX(OtX) in Db(I(CT∗X)) and such that the morphism of
complexes EAX ⊗M → M given by the dg-EAX -module structure coincides with the

action ER,fX ⊗ µX(OtX) → µX(OtX). Then, as recalled in section 3, extension and

restriction of scalars yield an object M ′ ∈ Db(ER,fX ) which represents µX(OtX) with

its ER,fX -action. So we conclude as in the non tempered case.
Now we explain how we construct EAX and M . The main step in the definition of

ER,fX , as well as its action on µhom(F,OX), is the microlocal convolution product

(2) µX×XO
t(0,dX)
X×X

a
◦ µX×XO

t(0,dX)
X×X [dX ]→ µX×XO

t(0,dX)
X×X ,

where
a
◦ denotes the composition of kernels. This is a morphism in the derived

category. It is obtained from the integration morphism for the Dolbeault complex
and the commutation of the functor µX×X with the convolution of sheaves. In
order to obtain a true dg-algebra at the end, and not a complex with a product
up to homotopy, we will represent the functor µ by a functor between categories of
complexes, which satisfies enough functorial properties so that the convolution also
corresponds to a morphism of complexes.
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Let us be more precise. The first step is the construction of injective resolu-
tions, with some functorial properties. For this we introduce a quasi-injective de
Rham algebra, A, below (quasi-injectivity is a property of ind-sheaves weaker than
injectivity but sufficient to derive the usual functors). We use the construction of
ind-sheaves from sheaves on the “subanalytic site” explained in [7]. For a real an-
alytic manifold X , the subanalytic site, Xsa, has for open subsets the subanalytic
open subsets of X and for coverings the locally finite coverings. On Xsa it makes
sense to consider the sheaf of tempered C∞ functions, C∞,tX .

We consider the embedding iX : X = X × {0} → X ×R and define a sheaf of

i-forms on Xsa, AiX = i−1
X ΓX×R>0

(C
∞,t(i)
X×R

). This gives a de Rham algebra AX
and it yields a quasi-injective resolution of CXsa

. For a morphism of manifolds
f : X → Y we have an inverse image f∗ : f−1AY → AX . If f is smooth, with fibers
of dimension d, we also have an integration morphism

∫
f

: f!!AX ⊗ orX|Y [d]→ AY ,

which represents the integration morphism Rf!!orX|Y [d]→ CY .
We denote by Mod(AX) the category of sheaves of dg-AX -modules. We have

an obvious forgetful functor For′X : Mod(AX) → D(CXsa
). We will prove that the

operations needed in the construction of (2) are defined in Mod(AX) and commute
with For′X . For example, for a morphism of manifolds f : X → Y we have functors,
f∗ and f∗, f!!, of inverse and direct images of dg-A-modules. In some cases this gives
a way to represent the derived functors f−1 and Rf∗, Rf!!. For example, since A0

X is
quasi-injective we can prove, for F ∈ Mod(AX), For′Y (f!!(F )) ≃ Rf!!(For′X(F )). If
f is smooth we also prove, for G ∈ Mod(AY ), For′X(f∗G) ≃ f−1(For′Y (G)). When
X is a complex manifold, we also have a resolution, OX , of OtX by a dg-AX -module
which is locally free over A0

X (it is deduced from the Dolbeault resolution).
Once we have these operations we define a microlocalization functor for dg-

A-modules. Let us recall that the functor µX is given by composition with a
kernel LX ∈ Db(C(X×T∗X)sa

): for F ∈ Db(CXsa
) we have µX(F ) = LX ◦ F =

Rp2!!(LX ⊗ p
−1
1 F ). We define a corresponding dg-A-module, LAX , which is quasi-

isomorphic to LX outside the zero section of T ∗X , i.e. over X ×
.

T ∗X , and we set,
for a dg-AX -module F :

µAX(F ) = LAX ◦ F = p2!!(L
A
X ⊗A p

∗
1F ).

This functor is defined on the categories of complexes, i.e. it is a functor from
Mod(AX) to Mod(AT∗X). If F is locally free over A0

X , we show that µAX(F )
is quasi-injective and represents µX(F ) over

.

T ∗X : we have For′T∗X(µAX(F )) ≃
µX(For′X(F )). In particular, when X is a complex manifold we obtain the dg-
AT∗X -module µAX(OX) which represents µX(OtX) and can be used to compute
RHom(·, µX(OtX)).

With these tools in hand we define the sheaf EAX mentioned above from µA, the

same way ER,fX was defined from µ. The definition of the product involves a convo-
lution product for µA. The kernel LAX has indeed the same functorial behavior as
LX , not with respect to all operations, but at least those needed in the composition
of kernels. We end up with a dg-AT∗X -module EAX , which is a ring object in the cat-

egory of dg-AT∗X -modules and which represents ER,fX . In the same way we obtain
a structure of EAX -module on µAX(OX), as desired. As said above this EAX -module

gives a βT∗X(ER,fX )-module by extension and restriction of scalars (here β is the
functor from sheaves to ind-sheaves which is left adjoint to α). Our result is more
precisely stated in Theorem 12.4:
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Theorem 1.1. There exists OµX ∈ D(βT∗X(ER,fX ))), defined over
.

T ∗X, which
is send to µXOtX in D(I(C .

T ∗X)) by the forgetful functor and satisfies: for F ∈
D−(I(CX)) the complex

αT∗X RIHom(π−1F,OµX)

which is naturally defined in D(ER,fX ), over
.

T ∗X, is isomorphic in D(C .

T ∗X) to

T−µhom(F,OX) endowed with its action of ER,fX .

Acknowledgements. The starting point of this paper is a discussion with Raphaël
Rouquier and Pierre Schapira. The author also thanks Luca Prelli for his comments,
especially about soft sheaves on the analytic site.

2. Notations

If X is a manifold or a site and R a sheaf of rings on X , we denote by Mod(R) the
category of sheaves of R-modules on X . The corresponding category of complexes is
C(R), and the derived category D(R); we use superscripts b,+,− for the categories
of complexes which are bounded, bounded from below, bounded from above. More
generally, if R is a sheaf of dg-algebras on X , Mod(R) is the category of sheaves
of dg-R-modules on X , D(R) its derived category (see section 3). In particular,
if X is a real analytic manifold, this applies to the subanalytic site Xsa whose
definition is recalled in section 4. We denote by ρX or ρ the natural morphism of
sites X → Xsa. We denote by CX and CXsa

the constant sheaves with coefficients
C on X and Xsa.

If X is a manifold we denote by I(CX) the category of ind-sheaves of CX -vector
spaces on X (see section 4), and D(I(CX)) its derived category. This category
comes with a natural functor αX , or α : I(CX)→ Mod(CX) which corresponds to
taking the limit. Its left adjoint is denoted βX , or β.

The dimension of a (real) manifold X is denoted dX ; if X is a complex manifold,
its complex dimension is dcX .

For a morphism of manifolds f : X → Y , we let ωX|Y = f !CY be the relative

dualizing complex. Hence ωX|Y is an object of Db(CX). If Y is a point we simply
write ωX ; then ωX ≃ orX [dX ], where orX is the orientation sheaf of X . In fact,
for X connected, ωX|Y is always concentrated in one degree (since X and Y are

manifolds), say i, and we will use the notation ω′X|Y = HiωX|Y [−i]; hence ω′X|Y is

a well-defined object of Cb(CX). For an embedding of manifolds iZ : Z →֒ X we
will often abuse notations and write ωZ|X for iZ∗ωZ|X .

For a manifold X , we let TX and T ∗X be the tangent and cotangent bundles.
For a submanifold Z ⊂ X we denote by TZX and T ∗ZX the normal and conormal
bundle to Z. In particular T ∗XX ≃ X is the zero section of T ∗X and we set
.

T ∗X = T ∗X \ T ∗XX . We denote by X̃Z the normal deformation of Z in X (see for

example [5]). We recall that it contains TZX and comes with a map τ : X̃Z → R

such that τ−1(0) = TZX and τ−1(r) ≃ X for r 6= 0. We also have another map

p : X̃Z → X such that p−1(z) = (TZX)z ∪ {z}×R for z ∈ Z and p−1(x) ≃ R \ {0}
for x ∈ X \ Z. We set Ω = τ−1(R>0).

For a morphism of manifolds f : X → Y , the derivative of f gives the morphisms:

T ∗X
fd←− X ×Y T

∗Y
fπ
−→ T ∗Y.



DG-METHODS FOR MICROLOCALIZATION 5

For two manifolds X,Y , F ∈ D+(CX), G ∈ D+(CY ), we set F⊠G = p−1
1 F⊗p−1

2 G,
where pi is the projection from X×Y to the ith factor. For three manifolds X,Y, Z,
and “kernels” K ∈ D+(CX×Y ), L ∈ D+(CY×Z), we denote the “composition of
kernels” by K◦L = Rp23!(p

−1
12 K⊗p

−1
23 L), where pij is the projection from X×Y ×Z

to the ith × jth factors. We use the same notations for the variants on subanalytic
sites or using ind-sheaves.

3. dg-algebras

In this section we recall some facts about (sheaves of) dg-algebras and their
derived categories. We refer the reader to [2].

A dg-algebraA is a Z-graded algebra with a differential dA of degree +1. A dg-A-
module M is a graded A-module with a differential dM such that, for homogeneous
elements a ∈ Ai, m ∈M j , dM (a ·m) = dA(a) ·m+ (−1)ia · dMm.

We consider a site X and a sheaf of dg-algebras AX on X . We denote by

Mod(AX) the category of (left) dg-AX-modules. We let ÃX be the graded al-
gebra underlying AX (i.e. forgetting the differential). A morphism f : M → N

in Mod(AX) is said to be null homotopic if there exists an ÃX -linear morphism
s : M → N [−1] such that f = sdM + dNs. The homotopy category, K(AX), has
for objects those of Mod(AX), and for sets of morphisms those of Mod(AX) quo-
tiented by null homotopic morphisms. A morphism in Mod(AX) (or K(AX)) is a
quasi-isomorphism if it induces isomorphisms on the cohomology groups. Finally,
the derived category D(AX) is the localization of K(AX) by quasi-isomorphisms.

Derived functors can be defined in this setting, in particular the tensor product
· ⊗LAX

·. If φ : AX → BX is a morphism of sheaves of dg-algebras, we obtain

the extension of scalars φ∗ : D(AX) → D(BX), M 7→ BX ⊗
L
AX

M , which is left
adjoint to the natural restriction of scalars φ∗ : D(BX)→ D(AX). By [2] (Theorem
10.12.5.1), if φ induces an isomorphism H(A) ∼−→ H(B), then these functors of
restriction and extension of scalars are mutually inverse equivalences of categories
D(AX) ≃ D(BX).

Some dg-algebras considered in this paper will appear as ring objects in cate-
gories of complexes. We recall briefly what it means. We let C be a tensor category
with unit C (C will be D(CY ), D(I(CY )) or Mod(AY ) for some manifold Y and
the unit is C = CY ).

Definition 3.1. A ring in C is a triplet (A,m, ε) where A ∈ C, m : A⊗A→ A and
ε : C→ A are morphisms in C such that the following diagrams commute:

A⊗C
A⊗ε //

$$JJJJJJJJJJ
A⊗A

m

��
A

C⊗A
ε⊗A //

$$JJJJJJJJJJ
A⊗A

m

��
A

A⊗A⊗A
m⊗A //

A⊗m

��

A⊗A

m

��
A⊗A

m // A

In the same way, for such a “ring” (A,m, ε), an action of A on M ∈ C is a morphism,
α : A ⊗M → M , compatible with m and ε. The pairs (M,α) of this type form a
category, where the morphisms from (M,α) to (M ′, α′) are the morphisms from M
to M ′ commuting with the action.

If EX is a sheaf of (usual) algebras on X , we may consider EX as a ring object
in D(CX) and we denote by DEX

(CX) the category of “objects of D(CX) with
EX -action” as above.
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We consider again a sheaf AX of dg-algebras on X . We assume that its coho-
mology sheaves are 0 except in degree 0 and we set EX = H0(AX). Hence, if we
forget the structures and view AX , EX as objects of D(CX), we have isomorphisms
AX

∽←− τ≤0AX
∼−→ EX (where τ≤0, τ≥0 denote the truncation functors). We note

that τ≤0AX = · · · → A−1
X → kerd0 → 0 is sub-dg-algebra of AX (whereas τ≥0AX

has no obvious structure of dg-algebra). The multiplications of AX and EX induce
morphisms in D(CX): AX ⊗AX → AX , EX ⊗EX → EX . These morphisms coin-
cide under the identification AX ≃ EX . Hence AX and EX are isomorphic as ring
objects in D(CX).

For M ∈ D(AX), the structure of AX -module induces a morphism in D(CX):
α : EX ⊗M ≃ AX ⊗M → M . Then α is an action of EX on M . In this way we
obtain a forgetful functor FAX

: D(AX)→ DEX
(CX).

Lemma 3.2. Let AX be a sheaf of dg-algebras, with cohomology sheaves concen-
trated in degree 0 and EX = H0(AX). Let φ : AX → BX be a morphism of sheaves
of dg-algebras such that φ induces an isomorphism H(A) ∼−→ H(B). Then we have
isomorphisms of functors FAX

◦ φ∗ ≃ FBX
and FBX

◦ φ∗ ≃ FAX
.

Proof. The first isomorphism is obvious and the second one follows because φ∗ and
φ∗ are inverse equivalences of categories. �

Applying this lemma to the morphisms AX
φ≤0

←−− τ≤0AX
φ0
−→ EX , we obtain:

Corollary 3.3. With the hypothesis of the above lemma, we have the commutative
diagram:

D(AX)

φ∗0◦φ≤0∗

��

FAX

,,XXXXXXXXXXXX

DEX
(CX).

D(EX)
FEX

22ffffffffffff

In particular, forM ∈ DEX
(CX), if there existsN ∈ D(AX) such that FAX

(N) ≃
M then there exists N ′ ∈ D(EX) such that FEX

(N ′) ≃M

4. Ind-sheaves and subanalytic site

We recall briefly some definitions and results of [7] about ind-sheaves. To define
the ind-sheaves we are interested in we will use the “subanalytic site” as in [7],
where it is introduced to deal with tempered C∞ functions. It is studied in more
details in [10].

4.1. Ind-sheaves. For a category C we denote by C∧ the category of functors from
Cop to the category of sets. It comes with the “Yoneda embedding”, h : C → C∧,
X → HomC(·, X). The category C∧ admits small inductive limits but, in general,
even if C also admits such limits, the functor h may not commute with inductive
limits. We denote by “ lim

−→
” the inductive limit taken in the category C∧.

An ind-object in C is an object of C∧ which is isomorphic to “ lim−→ ” i for some

functor i : I → C, with I a small filtrant category. We denote by Ind(C) the full
subcategory of C∧ of ind-objects.

We are interested in two cases. Let X be a real analytic manifold, Mod(CX)
the category of sheaves of C-vector spaces on X , ModR−c(CX) the subcategory of
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R-constructible sheaves, Modc(CX) and Modc
R−c(CX) their respective full subcat-

egories of objects with compact support. We define as in [7]:

I(CX) = Ind(Modc(CX)) and IR−c(CX) = Ind(ModcR−c(CX)).

There are natural exact embeddings Iτ : IR−c(CX)→ I(CX) and ιX : Mod(CX)→
I(CX), F 7→ “ lim

−→
”FU , U running over relatively compact open sets. Then ιX

sends ModR−c(CX) into IR−c(CX).
The functor ιX admits an exact left adjoint functor αX : I(CX) → Mod(CX),

“ lim
−→

”
i∈I

Fi 7→ lim
−→i∈I

Fi. Since ιX is fully faithful, we have αX ◦ ιX ≃ id.

The functor αX admits an exact fully faithful left adjoint βX : Mod(CX) →
I(CX). Since βX is fully faithful, we have αX ◦ βX ≃ id. For Z ⊂ X a closed
subset, we have

(3) βX(CZ) ≃ “ lim
−→

”
W,Z⊂W

CW , W ⊂ X open subset.

We write α, β for αX , βX when the context is clear. The machinery of Grothen-
dieck’s six operations also applies to this context. There are not enough injectives in
I(CX), but enough “quasi-injectives” (see [7] and [8]): F ∈ I(CX) is quasi-injective
if the functor Hom(·, F ) is exact on Modc(CX). The quasi-injective objects are
sufficient to derive the usual functors. In particular, for a morphism of manifolds
f : X → Y we have the functors:

f−1, f ! : Db(I(CY ))→ Db(I(CX)),

Rf∗, Rf!! : Db(I(CX))→ Db(I(CY )),

RIHom: Db(I(CX))op ×Db(I(CX))→ D+(I(CX)),

⊗ : Db(I(CX))×Db(I(CX))→ Db(I(CX)),

and also RHom = αRIHom: Db(I(CX))op ×Db(I(CX))→ D+(CX).
It will be convenient for us to use the equivalence of categories given in [7]

between IR−c(CX) and sheaves on the subanalytic site, defined below.

4.2. Subanalytic site. In this paragraph X is a real analytic manifold. The open
sets of the site Xsa are the subanalytic open subsets of X . A family

⋃
i∈I Ui of such

open sets is a covering of U if and only if, for any compact subset K, there exists
a finite subfamily of J ⊂ I with K ∩

⋃
i∈J Ui = K ∩ U . We denote by Mod(CXsa

)
the category of sheaves of C-vector on Xsa.

We have a morphism of sites ρX : X → Xsa (where X also denotes the site
naturally associated to the topological space X). We just write ρ if there is no risk
of confusion. In particular we have adjoint functors ρ∗ : Mod(CX) → Mod(CXsa

)
and ρ−1 : Mod(CXsa

)→ Mod(CX).
The functor ρ−1 is exact and ρ∗ is left exact and fully faithful (hence ρ−1 ◦ ρ∗ =

id). We denote by ρc∗ the restriction of ρ∗ to ModR−c(CX). Then ρc∗ is exact
and, for F ∈ ModR−c(CX), we usually write F instead of ρc∗F . The functor ρc∗
induces an equivalence of categories (see [7], Theorem 6.3.5):

λ : IR−c(CX)→ Mod(CXsa
)

“ lim
−→

”
i

Fi 7→ lim
−→
i

ρc∗(Fi).

Through this equivalence, the functor ρ−1 corresponds to α and it also admits an
exact left adjoint functor, corresponding to β. When dealing with the analytic
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site we will use the notation ρ! : Mod(CX) → Mod(CXsa
) for this functor. For

example (3) becomes ρ!CZ ≃ lim
−→Z⊂W

CW , where W runs over the subanalytic

open subsets of X . We note the commutative diagrams:

Mod(CX)

ρ!

vvlllllllllllll

βX

��
IR−c(CX) ≃ Mod(CXsa

)
Iτ

// I(CX)

ModR−c(CX) //

ρc∗

��

Mod(CX)

ιX

��
IR−c(CX) ≃ Mod(CXsa

)
Iτ

// I(CX)

The functors appearing in these diagrams are exact and induce similar commutative
diagrams at the level of derived categories.

The functor Hom is defined on Mod(CXsa
) as on every site and we set, for

Z ⊂ X a locally closed subanalytic subset:

(4) ΓZ(F ) = Hom(ρ∗CZ , F ), FZ = F ⊗ ρ∗CZ .

The functors ρ∗ and Hom commute, hence ρ∗ and ΓZ also commute. For subana-
lytic open subsets U, V ⊂ X we have ΓU (F )(V ) = F (U ∩ V ).

By analogy with ind-sheaves, a notion weaker than injective is introduced in [10]:
F ∈Mod(CXsa

) is quasi-injective if Hom(·, F ) is exact on ρ∗Modc
R−c(CX). In fact,

since we consider coefficients in a field, it is equivalent to ask that for any subanalytic
open subsets U ⊂ V with compact closure Γ(V ;F )→ Γ(U ;F ) is surjective. Quasi-
injective sheaves are sufficient to derive usual left exact functors. In particular we
obtain RHom, RΓZ , and they commute with Rρ∗. We note the following identity
(which has no equivalent on the classical site): for F ∈ Db

R−c(CX), H ∈ D+(CX),

G ∈ D+(CXsa
),

(5) RHom(Rρ∗F,G) ⊗ ρ!H ≃ RHom(Rρ∗F,G⊗ ρ!H) in D+(CXsa
).

We also have another related result (see [10], Proposition 1.1.3): for {Fi}i∈I a
filtrant inductive system in Mod(CXsa

) and U ⊂ X an analytic open subset

(6) lim−→
i

RΓU (Fi)
∼−→ RΓU (lim−→

i

Fi).

For a morphism f : X → Y there are the usual direct and inverse image functors
on the analytic sites f∗, f

−1, but also, as in the case of ind-sheaves, a notion of
proper direct image f!!, with a behavior slightly different from the behavior of f!
on the classical site. The functor f−1 and f∗, f!! admit derived functors. We quote
in particular: for F ∈ D+(CXsa

), G ∈ Db
R−c(CY ) (we identify G with ρ∗G)

f!!F = lim
−→
U

f∗(FU ), U ⊂ X relatively compact open subanalytic,(7)

f!!F = lim
−→
K

f∗(ΓKF ), K ⊂ X compact subanalytic,(8)

Rf!! RHom(f−1G,F ) ∼−→ RHom(G,Rf!!F ),(9)

Rf!!RΓf−1UF
∼−→ RΓURf!!F.(10)

The derived functor Rf!! : D+(CXsa
) → D+(CYsa

) admits a right adjoint f !. The
notation is the same as in the classical case because of the commutation relation
f ! ◦ Rρ∗ ≃ Rρ∗ ◦ f !. Hence f !CYsa

≃ ρ∗ωX|Y and we will usually write ωX|Y
for ρ∗ωX|Y . The adjunction morphism between f!! and f ! induces the integration
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morphism

(11) intf : Rf!!(ωX|Y )→ CYsa
.

4.3. “Soft” sheaves. In this paragraph X is a real analytic manifold and Xsa is
the corresponding subanalytic site. Though we are not in a framework of sheaves
on a locally compact space, we may introduce a notion of soft sheaves on the
subanalytic site which are acyclic for the direct image functors.

Definition 4.1. A sheaf F ∈ Mod(CXsa
) is soft if for any closed subanalytic

subset Z ⊂ X and any open subanalytic subset U ⊂ X the natural morphism
Γ(U ;F )→ Γ(U ;FZ) is surjective.

We note the following isomorphism, as in the case of sheaves on a reasonable
topological space:

(12) Γ(U ;FZ) ≃ lim−→
U∩Z ⊂W ⊂U

Γ(W ;F ), W ⊂ X subanalytic open set.

From this description of sections it follows that quasi-injective sheaves are soft. We
also note that if F is soft and Z ⊂ X is a closed subanalytic subset then FZ is soft.

Before we prove that soft sheaves are acyclic for functors of direct image we need
a lemma on coverings.

Lemma 4.2. Let U =
⋃
i∈N Ui be a locally finite covering by subanalytic open

subsets of X. There exist subanalytic open subsets of X, Vi ⊂ Ui, i ∈ N, such that
U =

⋃
i∈N Vi and (U ∩ Vi) ⊂ Ui.

Proof. We choose an analytic distance d on X and we define Vn inductively as
follows. If Vi, i < n, is built we set Wn = Un \ (

⋃
i<n Vi ∪

⋃
j>n Uj) and

Vn = {x ∈ Un; d(x,Wn) < d(x, ∂Un)}.

We note that Wn is subanalytic because the covering is locally finite. Since d
is analytic the functions d(·, Z), Z ⊂ X subanalytic, are continuous subanalytic
functions (see [3] for the notion of subanalytic function). It follows that Vn is a
subanalytic open subset of X and Vn ⊂ Un.

By construction Wn ⊂ Vn and we deduce by induction that U =
⋃
i≤n Vi ∪⋃

j>n Uj. Since the covering is locally finite this gives U =
⋃
i∈N Vi.

It remains to prove that (U ∩ Vn) ⊂ Un. If this is false there exists x0 ∈
U ∩ Vn ∩ ∂Un. Since Wn is closed in U , we have δ = d(x0,Wn) > 0, and the ball
B(x0, δ/2) doesn’t meet Vn. In particular x0 6∈ Vn which is a contradiction. �

Proposition 4.3. Let 0→ F ′
α
−→ F

β
−→ F ′′ → 0 be an exact sequence in Mod(CXsa

)
with F ′ soft. Then for any open subanalytic subset U ⊂ X the morphisms

Γ(U ;F )→ Γ(U ;F ′′) and lim
−→
K

ΓK(U ;F )→ lim
−→
K

ΓK(U ;F ′′),

where K runs over the compact subanalytic subsets of X, are surjective.

Proof. We first consider a section s ∈ Γ(U ;F ′′). We may find a locally finite
covering U =

⋃
i∈N Ui and si ∈ Γ(Ui;F ) such that α(si) = s|Ui

. By Lemma 4.2

there exists a subcovering U =
⋃
i∈N Vi with (U ∩ Vi) ⊂ Ui.

We set Zn =
⋃n
i=0 Vi and prove by induction on n that there exists a section

s̃n ∈ Γ(U ;FZn
) such that β(s̃n) = s|Zn

and s̃n|Zn−1
= s̃n−1.
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This is clear for n = 0 and we assume it is proved for n. We set tn =
(s̃n − sn+1)|Zn∩Vn+1

. Then β(tn) = 0 so that tn belongs to Γ(U ;F ′
Zn∩Vn+1

) and

by hypothesis we may extend it to t ∈ Γ(U ;F ′). Now we define s̃n+1 ∈ Γ(U ;FZn+1
)

by s̃n+1|Zn
= s̃n and s̃n+1|Vn+1

= sn+1 + α(t). The s̃n glue together into a section

s̃ ∈ Γ(U ;F ) such that β(s̃) = s, which proves the surjectivity of the first morphism.

Now we consider a compact K and s ∈ ΓK(U ;F ′′). We choose an open subana-
lytic subset V such that K ⊂ V and K ′ = V is compact. We set Z = X \ V . We
just have seen that we may find s̃ ∈ Γ(U ;F ) such that β(s̃) = s. Hence β(s̃|Z) = 0
so that s̃|Z ∈ Γ(U ;F ′Z) and we may extend s̃|Z to t ∈ Γ(U ;F ′). Then ŝ = s̃− α(t)
satisfies supp ŝ ⊂ K ′ and β(ŝ) = s. �

Corollary 4.4. If 0 → F ′ → F → F ′′ → 0 is an exact sequence in Mod(CXsa
)

with F ′ and F soft, then F ′′ also is soft.

Proof. For Z ⊂ X a subanalytic closed subset we have the exact sequence 0 →
F ′Z → FZ → F ′′Z → 0 and F ′Z , FZ still are soft. Hence Proposition 4.3 implies that,
for any subanalytic open subset U ⊂ X , the morphisms Γ(U ;F ) → Γ(U ;F ′′) and
Γ(U ;FZ)→ Γ(U ;F ′′Z ) are surjective. Now it follows from the definition that F ′′ is
soft. �

Corollary 4.5. Let f : X → Y be a morphism of analytic manifolds, U ⊂ X
an open subanalytic subset. Then soft sheaves in Mod(CXsa

) are acyclic for the
functors Γ(U ; ·), lim

−→K
ΓK(U ; ·), K running over the compact subsets of X, ΓU , f∗

and f!!.

Proof. For the first two functors this follows from Proposition 4.3 and Corollary 4.4
by usual homological algebra arguments. This implies the result for the other
functors. �

4.4. Tempered functions. Here we recall the definition of tempered C∞ func-
tions. We also state a tempered de Rham lemma on the subanalytic site, which is
actually a reformulation of results of [4]. In this paragraph, X is a real analytic
manifold.

Definition 4.6. A C∞ function f defined on an open set U has “polynomial growth
at p ∈ X” if there exist a compact neighborhood K of p and C,N > 0 such that
∀x ∈ K ∩ U , |f(x)| < C d(x,K \ U)−N , for a distance d defined through some
coordinate system around p.

We say that f is tempered if all its derivatives have polynomial growth at any
point. In [7] it is proved, using results of  Lojasiewicz, that these functions define a

subsheaf C∞,tX of ρ∗C∞X on Xsa.

We denote by Ωt,iX the sheaf onXsa of forms of degree i with tempered coefficients.
We obtain as usual a sheaf of dg-algebras on Xsa, the “tempered de Rham algebra”
ΩtX = 0→ Ωt,0X → · · · → Ωt,nX → 0.

Lemma 4.7. The tempered de Rham algebra is a resolution of the constant sheaf
on the subanalytic site, i.e. we have an exact sequence on Xsa:

0→ CXsa
→ Ωt,0X → · · · → Ωt,nX → 0.
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Proof. In other words we have to prove that the morphism CXsa
→ ΩtX in Db(CXsa

)
is an isomorphism. For this it is enough to see that, for any F ∈ Db

R−c(CX) we
have

(13) RHom(ρ∗F,CXsa
) ≃ RHom(ρ∗F,Ω

t
X).

Indeed for any G ∈ D+(CXsa
), Hk(G) is the sheaf associated to the presheaf

U 7→ RkΓ(U ;G) = Hk RHom(ρ∗CU , G); hence (13) applied to F = CU gives the
result.

Now we prove (13). Actually this is Proposition 4.6 of [4], except that it is not
stated in this language, and that it is given for tempered distributions instead of
tempered C∞ functions. We let CωX be the sheaf of real analytic functions and DX
the sheaf of linear differential operators with coefficients in CωX . Using a Koszul
resolution of CωX we have the standard isomorphism RHomρ!DX

(ρ!CωX , C
∞
X
t) ≃ ΩtX .

In [4] a functor RTHX(F ) is defined (now denoted T Hom(F,DbX)) and Proposi-
tion 4.6 reads:

RHom(F,CX) ≃ RHomDX
(CωX , T Hom(F,DbX)).

To replace distributions by C∞ functions, we have an analog of T Hom(F,DbX)
for C∞ functions, introduced in [6] and [7]. By [6], Theorem 10.5, we have the
comparison isomorphism

RHomDX
(CωX , T Hom(F, C∞X )) ≃ RHomDX

(CωX , T Hom(F,DbX)).

Actually, in [6] X is a complex manifold and the result is stated for the sheaf of
anti-holomorphic functions instead of CωX , but the proof also works in our case. Fol-
lowing [7], Proposition 7.2.6 or [10], Proposition 3.3.5, we may express the functor
T Hom using the analytic site: T Hom(F, C∞X ) ≃ ρ−1 RHom(ρ∗F, C∞X

t).
Putting these isomorphisms together we obtain (13):

RHom(ρ∗F,Ω
t
X) ≃ RHom(ρ∗F,RHomρ!DX

(ρ!C
ω
X , C

∞
X
t))

≃ RHomρ!DX
(ρ!C

ω
X ,RHom(ρ∗F, C

∞
X
t))

≃ RHomDX
(CωX , T Hom(F,DbX))

≃ RHom(F,CX),

where we have used adjunction morphisms between ⊗, Hom and ρ!, ρ
−1. �

The integration of forms also makes sense in the tempered case: we let f : X → Y
be a submersion with fibers of dimension d, V ⊂ Y a constructible open subset and

we consider a form ω ∈ Γ(f−1(V ); Ωt,i+dX ⊗ orX|Y ) such that the closure (in X) of

suppω is compact. Then
∫
f ω ∈ Γ(V ; Ωt,iY ). We deduce the morphism of complexes

(14)

∫

f

: f!!(Ω
t
X ⊗ ω

′
X|Y )→ ΩtY .

Its image in Db(CYsa
) coincides with the morphism intf of (11).

5. Resolution

In this section we consider real analytic manifolds and sheaves on their associated
subanalytic sites.
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Definition 5.1. For a real manifold X we introduce the notations, X̂ = X ×R,

iX : X → X̂, x 7→ (x, 0) and X+ = X ×R>0. We consider the tempered de Rham

algebra on the site X̂sa,

Ωt
X̂

= 0→ Ωt,0
X̂
→ · · · → Ωt,n+1

X̂
→ 0,

and we define a sheaf of anti-commutative dg-algebras on Xsa: AX = i−1
X ΓX+(Ωt

X̂
).

We denote by τX,1 : X̂ → X and τX,2 : X̂ → R the projections, and by t the
coordinate on R. This gives a canonical element dt ∈ A1

X . The decomposition

X̂ = X × R induces a decomposition of the differential d = d1 + d2 in anti-
commuting differentials, where we set d2(ω) = (∂ω/∂t)dt.

The algebra AX comes with natural morphisms related to inverse image and
direct image by a smooth map. Let f : X → Y be a morphism of manifolds. It

induces f̂ = f × id and f+ in the following diagram, whose squares are Cartesian:

X
iX //

f
��

�

X̂

f̂�� �

X+? _oo

f+

��
Y

iY // Ŷ Y +? _oo

We note that X+ = f̂−1(Y +) and this gives a morphism of functors f̂−1ΓY + →

ΓX+ f̂−1. Thus we obtain a morphism of dg-algebras:

f̂−1ΓY +(Ωt
Ŷ

)→ ΓX+ f̂−1(Ωt
Ŷ

)→ ΓX+(Ωt
X̂

).

Definition 5.2. We denote by f ♯ : f−1AY → AX the image of the above morphism
by the restriction functor i−1

X . It is a morphism of dg-algebras.

Now we assume that f is smooth. Hence f̂ is also smooth and we have the

integration morphism (14)
∫
f̂ : f̂!!(Ω

t
X̂
⊗ω′X|Y )→ Ωt

Ŷ
. We apply the functor i−1

Y ΓY +

to this morphism. We note the base change isomorphism f!!i
−1
X ≃ i−1

Y f̂!! and the

morphism f̂!!ΓX+ → ΓY + f̂!!. They give the sequence of morphisms:

f!!(AX ⊗ ω
′
X|Y ) = f!!i

−1
X ΓX+(Ωt

X̂
⊗ ω′

X̂|Ŷ
) ≃ i−1

Y f̂!!ΓX+(Ωt
X̂
⊗ ω′

X̂|Ŷ
)

→ i−1
Y ΓY + f̂!!(Ω

t
X̂
⊗ ω′

X̂|Ŷ
)→ i−1

Y ΓY +Ωt
Ŷ

= AY
(15)

Definition 5.3. For a smooth map f : X → Y , we call morphism (15) the integra-
tion morphism and denote it

∫
f

: f!!(AX ⊗ ω′X|Y )→ AY .

The main result of this section is the following theorem. It is proved in the
remaining part of the section: the quasi-injectivity of the AiX is proved in Propo-
sition 5.9 and the fact that AX is a resolution is Corollary 5.12.

Theorem 5.4. Let X be a real analytic manifold. The sheaf of dg-algebras AX is
a quasi-injective resolution of CXsa

.

Remark 5.5. By this theorem we have f!!(AX ⊗ ω′X|Y ) ≃ Rf!!(ωX|Y ). Hence

the morphism
∫
f

of Definition 5.3 induces a morphism in the derived category

Rf!!ωX|Y → CYsa
. It coincides with the usual integration morphism intf of (11)
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because this holds for the de Rham complex (morphism (14) applied to f̂), and we
have the commutative diagram:

Rf!!ωX|Y
∼

intf

��

Rf!!(i
−1
X RΓX+ωX̂|Ŷ ) // i−1

Y RΓY +Rf̂!!ωX̂|Ŷ

int
f̂

��
CYsa

∼
i−1
Y RΓY +CŶsa

.

For the proof of the theorem we need some lemmas on tempered functions. We
refer to [3] for results on subanalytic sets. We recall that a function is subanalytic
if its graph is a subanalytic set. We introduce the following notation, for U ⊂ X
an open subset, and ϕ : U → R a positive continuous function on U :

Uϕ = {(x, t) ∈ X̂; x ∈ U, |t| < ϕ(x)}, U+
ϕ = Uϕ ∩X

+.

Lemma 5.6. Let U ⊂ X be a subanalytic open subset and V ⊂ X̂ be a subanalytic

open neighborhood of U in X̂. Then there exists a subanalytic continuous function
ϕ defined on U such that ϕ = 0 on the boundary of U and Uϕ ⊂ V .

Proof. We set V ′ = V ∩ (U ×R), Z = X̂ \V ′ and let ϕ be the distance function to

Z: ϕ(x) = d(x, Z). By [3], Remark 3.11, this is a subanalytic function on X̂ and
its restriction to U satisfies the required property. �

The following result is similar to a division property for flat C∞ functions, which
can be found for example in [12], Lemma V.2.4.

Lemma 5.7. Let U ⊂ X be a subanalytic open subset and ϕ : U → R a subanalytic
continuous function on U , such that ϕ = 0 on the boundary of U and ϕ > 0 on U .
Then there exists a C∞ function ψ : U → R such that

(i) ∀x ∈ U , 0 < ψ(x) < ϕ(x),
(ii) ψ and 1/ψ are tempered.

Proof. We first note that it is enough to find a ψ such that ψ is tempered, 0 < ψ < ϕ
and 1/ψ has polynomial growth along ∂U . We may also work locally: assuming
the result is true on local charts, we choose

• locally finite coverings ofX by subanalytic open subsets, (Ui), (Vi), together
with a partition of unity µi : X → R such that U i ⊂ Vi, 0 ≤ µi,

∑
µi = 1,

µi = 1 on Ui and µi = 0 on a neighborhood of X \ Vi,
• C∞ functions ψi : U ∩ Vi → R such that 0 < ψi < ϕ on U ∩ Vi, ψi is

tempered and 1/ψi has polynomial growth along ∂(U ∩ Vi)

and we set ψ =
∑

i µiψi. Then ψ satisfies the conclusion of the lemma. Indeed,
each µiψi is defined and tempered on U , and so is ψ since the sum is locally finite,
and, for x ∈ ∂U , i such that x ∈ Ui, 1/ψ ≤ 1/ψi has polynomial growth at x.

Hence we assume X = Rn and U is bounded. By [12], Lemma IV.3.3, there
exist constants Ck, k ∈ Nn, such that, for any compact K ⊂ Rn and any ε > 0,
there exists a C∞ function α on Rn such that

0 ≤ α ≤ 1, α(x) = 0 if d(x,K) ≥ ε, α(x) = 1 if x ∈ K,

∀k ∈ Nn, |Dkα| ≤ Ckε
−|k|.
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(The function α is the convolution of the characteristic function of {x; d(x,K) ≤
ε/2} with a suitable test function.)

We set Ki = {x ∈ U ; 2−i−1 ≤ d(x, ∂U) ≤ 2−i} and we let αi be the function
associated to K = Ki and ε = 2−i−2 by the above result. In particular αi = 1 on
Ki, suppαi ⊂ Si, where we set Si = Ki−1 ∪Ki ∪ Ki+1, and |Dkαi| ≤ C′k2ik, for
some C′k ∈ R. This implies: ∀x ∈ U , |Dkαi(x)| ≤ C′′k d(x, ∂U)−k, for some other
constants C′′k ∈ R.

 Lojasiewicz’s inequality gives, for x ∈ U , c d(x, ∂U)r ≤ ϕ(x) ≤ c′d(x, ∂U)r
′

, for
some constants c, r, c′, r′ > 0 (see [3], Theorem 6.4). We set λi = min{ϕ(x);x ∈ Si}.
We note that for x, x′ ∈ Si, we have 1/8 ≤ d(x, ∂U)/d(x′, ∂U) ≤ 8. Hence, for

x ∈ Si, we have Cd(x, ∂U)r ≤ λi ≤ C′d(x, ∂U)r
′

, for some C,C′ > 0. Since
suppαi ⊂ Si, we also have ∀i, λiαi ≤ ϕ.

We note that an x ∈ U belongs to at most three sets Si and we define ψ =
(1/3)

∑
i λiαi. The above inequalities give, for x ∈ U , 0 < ψ(x) ≤ ϕ(x) and

|Dkψ(x)| ≤ C′′k C
′ d(x, ∂U)r

′−k,
1

ψ(x)
≤ 3C−1d(x, ∂U)−r,

so that ψ and 1/ψ are tempered. �

Lemma 5.8. Let U ⊂ X and ϕ : U → R be as in Lemma 5.7. There ex-
ist another subanalytic continuous function ϕ′ : U → R and a tempered fuction
α ∈ Γ(X+; C∞,t

X̂
) such that ∀x ∈ U , 0 < ϕ′(x) < ϕ(x) and

∀(x, t) ∈ X+ 0 ≤ α(x, t) ≤ 1, α(x, t) =

{
1 for (x, t) ∈ U+

ϕ′ ,

0 for (x, t) 6∈ U+
ϕ .

Proof. We choose a C∞ function ψ : U →]0,+∞[ satisfying the conclusion of Lem-
ma 5.7 and another C∞ function h : R → R such that ∀t ∈ R, 0 ≤ h(t) ≤ 1,
h(t) = 1 for t ≤ 1/2 and h(t) = 0 for t ≥ 1. We define our function α on X+ by

α(x, t) =

{
h( t

ψ(x)) if x ∈ U

0 if x 6∈ U.

We first see that α is C∞. This is clear except at points (x0, t0) with x0 ∈ ∂U . For
such a point, by continuity of ϕ, we may find a neighborhood V of x0 in X such
that ∀x ∈ V , ϕ(x) < t0/2. Thus, on the neighborhood V×]t0/2; +∞[ of (x0, t0), α
is identically 0, and certainly C∞.

Let us check that α is tempered. We only have to check growth conditions at
points (x, 0) ∈ ∂X+. We note that d((x, t), ∂X+) = t so that we have to bound
the Dkα(x, t) by powers of t. Since Dkα = 0 outside U+

ϕ , we assume (x, t) ∈ U+
ϕ .

The Dkα are polynomial expressions in t, the derivatives of h and the derivatives
of 1/ψ. The derivatives of h to a given order are bounded, hence it just remains
to bound Dl(1/ψ)(x), with (x, t) ∈ U+

ϕ , by a power of t. Since 1/ψ is tempered

Dl(1/ψ)(x) has a bound of the type C d(x, ∂U)−N . By  Lojasiewicz’s inequality
we have ϕ(x) ≤ C′d(x, ∂U)r and, since (x, t) ∈ U+

ϕ , we have t ≤ ϕ(x). Hence

Dl(1/ψ)(x) ≤ C′′t−N/r, for some C′′ > 0, which is the desired bound.
By definition α = 1 on U+

ψ/2 and α = 0 outside U+
ϕ . Hence we just have to find

a subanalytic continuous function ϕ′ such that ϕ′ ≤ ψ/2. Since 1/ψ is tempered,
there exist constants D,M such that ψ−1(x) ≤ Dd(x, ∂U)−M , and we may take
ϕ′(x) = 1

2Dd(x, ∂U)M . �
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Proposition 5.9. Let F be a C∞,t
X̂

-module and set G = i−1
X ΓX+F . Let U ⊂ X be

a subanalytic open subset.
Then the natural map Γ(X+;F )→ Γ(U ;G) is surjective. In particular, the sheaf

G is quasi-injective.

Proof. We consider s ∈ Γ(U ;G). As in the case of sheaves on manifolds we have,
for H ∈ Mod(CX̂sa

) and U ⊂ X , Γ(U ; i−1
X H) ≃ lim

−→V
Γ(V ;H) where V runs over

the subanalytic open subsets of X̂ containing U . Hence, by Lemma 5.6, we may
represent s by a section s̃ ∈ Γ(U+

ϕ ;F ), for some subanalytic continuous function ϕ

defined on U such that ϕ = 0 on the boundary of U .
We apply Lemma 5.8 to the function ϕ/2: U → R and obtain ϕ′ : U → R and

α ∈ Γ(X+; C∞,t
X̂

) such that 0 < ϕ′ < ϕ/2, α = 1 on U+
ϕ′ and α = 0 outside U+

ϕ/2.

We set ŝ = αs̃. Then ŝ ∈ Γ(U+
ϕ ;F ) extends by 0 to a section ŝ ∈ Γ(X+;F ) and

we have ŝ|U+

ϕ′
= s̃|U+

ϕ′
so that ŝ also represents s. This shows the surjectivity of

Γ(X+;F )→ Γ(U ;G). �

We have the following resolution of C∞,tX as an AX -module. Let IX be the ideal

of AX generated by Ωt,1X ⊂ A1
X . In local coordinates (x1, . . . , xn, t), IX consists

of the forms involving one of the dxi and we obtain the isomorphism AX/IX ≃

0 → A0
X

∂/∂t
−−−→ A0

X → 0, where the differential is given by f(x, t) 7→ ∂f
∂t (x, t). The

following result implies that the complex AX/IX is a resolution of C∞,tX .

Corollary 5.10. For any subanalytic open set U ⊂ X we have the exact sequence:

0→ Γ(U ; C∞,tX )→ Γ(U ;A0
X)

∂/∂t
−−−→ Γ(U ;A0

X)→ 0.

Proof. The less obvious point is the surjectivity. We have the restriction maps

Γ(U ×R; C∞,t
X̂

)
∂/∂t //

��

Γ(U ×R; C∞,t
X̂

)

��
Γ(U ;A0

X)
∂/∂t // Γ(U ;A0

X).

The vertical arrows are surjective by Proposition 5.9, and so is the top horizontal
arrow: we integrate with respect to t with starting points on X×{1}, which insures
that the resulting function is tempered. �

Corollary 5.11. For any subanalytic open set U ⊂ X, the sheaf C∞,tX is acyclic
with respect to the functor ΓU .

Proof. We have to prove that RiΓU (C∞,tX ) = 0 for i > 0. By Proposition 5.9 A0
X

is quasi-injective and we may use the resolution C∞,tX → A0
X

∂/∂t
−−−→ A0

X to compute

RiΓU (C∞,tX ). We are thus reduced to proving the surjectivity of the morphism
∂/∂t : ΓU (A0

X) → ΓU (A0
X). This follows from Corollary 5.10 since ΓU (A0

X)(V ) =
Γ(U ∩ V ;A0

X). �

Corollary 5.12. The sheaf of dg-algebras AX is quasi-isomorphic to CXsa
, i.e.

we have the exact sequence:

0→ CXsa
→ A0

X → A
1
X → · · · → A

n+1
X → 0.
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Proof. By Lemma 4.7, we have the exact sequence on X̂ :

(16) 0→ CX̂sa
→ Ωt,0

X̂
→ · · · → Ωt,n+1

X̂
→ 0.

By the previous corollary the sheaves Ωt,i
X̂

are ΓX+ -acyclic. The constant sheaf

CX̂sa
also is ΓX+ -acyclic because RΓX+(CX̂sa

) ≃ C
X+

sa

(recall that ρ∗ commutes

with RΓX+). Hence we still have an exact sequence when we apply ΓX+ to (16),
and applying the exact functor i−1

X gives the corollary. �

6. A-modules

For a real analytic manifold X , we denote by Mod(AX) the category of sheaves
of bounded below dg-AX-modules on Xsa. We have an obvious forgetful functor and
its composition with the localization:

(17) ForX : Mod(AX)→ C+(CXsa
), For′X : Mod(AX)→ D+(CXsa

).

We will usually write F instead of ForX(F ) or For′X(F ) when the context is clear.
We still write ForX , For′X for the compositions of these forgetful functors with the
exact functor Iτ : C(CXsa

)→ C(I(CX)).
In this section we define operations on Mod(AX) and check usual formulas in

this framework, as well as some compatibility with the corresponding operations in
C(CXsa

) or D(CXsa
) (hence also in C(I(CX)) or D(I(CX)), because Iτ commutes

with the standard operations).

6.1. Tensor product. For M,N ∈ Mod(AX), the tensor product M⊗AX
N ∈

Mod(AX) is defined as usual by taking the tensor product of the underlying sheaves
of graded modules over the underlying sheaf of graded algebras and defining the
differential by d(m ⊗ n) = dm ⊗ n + (−1)degmm ⊗ dn (for m homogeneous). We
have an exact sequence in C+(CXsa

):

(18) M⊗AX ⊗N
δ
−→M⊗N →M⊗AX

N → 0,

where δ(m⊗ a⊗ n) = (−1)deg adegmam⊗ n−m⊗ an, for homogeneous a,m, n.
For two real analytic manifolds X,Y and M ∈ Mod(AX), N ∈ Mod(AY ), we

denote by ⊠ the external tensor product in the category of A-modules:

M⊠N = AX×Y ⊗(AX⊠AY ) (M⊠N ).

6.2. Inverse image and direct image. Let f : X → Y be a morphism of real an-
alytic manifolds. Recall the morphism of dg-algebras f ♯ : f−1AY → AX introduced
in Definition 5.2.

Definition 6.1. For N ∈Mod(AY ) we define its inverse image in Mod(AX):

f∗N = AX ⊗f−1AY
f−1N .

By adjunction f ♯ gives a morphism AY → f∗AX . Hence, forM ∈Mod(AX), f∗M
has a natural structure of dg-AY -module, as well as f!!M, through the natural
morphism f∗AX ⊗ f!!M→ f!!(AX ⊗M)→ f!!M.

We have a natural morphism f−1N → f∗N in C(CXsa
) (with the notations

of Remark 17, it could be written more exactly f−1(ForY N ) → ForX f
∗N ). We

show in Proposition 6.3 that it is a quasi-isomorphism when f is smooth. We first
consider a particular case.
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Lemma 6.2. We set X = Rm+1, Y = Rm and we let f : X → Y be the projection.
We consider coordinates (y1, . . . , ym, u) on X. For N ∈Mod(A0

Y ) we have an exact
sequence in Mod(CXsa

):

0 −−→ f−1N −−→ A0
X ⊗f−1A0

Y
f−1N

d
−−−−→ A0

X ⊗f−1A0
Y
f−1N −−→ 0,

where d is defined by d(a⊗ n) = ∂a
∂u
⊗ n, for a ∈ A0

X , n ∈ N .

Proof. We have the exact sequence 0 → f−1A0
Y → A

0
X

d
−→ A0

X → 0, where d(a) =
∂a
∂u . The tensor product with f−1N gives the exactness of the sequence of the lemma

except at the first term. It just remains to check that ι : f−1N → A0
X⊗f−1A0

Y
f−1N ,

n 7→ 1⊗ n, is injective.
We consider a section n ∈ Γ(U ; f−1N ) such that ι(n) = 0. This means that

there exist a locally finite covering U =
⋃
i∈I Ui and sections, setting Vi = f(Ui),

ni, nij ∈ Γ(Vi;N ), aij ∈ Γ(Ui;A
0
X), bij ∈ Γ(Vi;A

0
Y ),

such that for each i ∈ I, n|Ui
= f∗ni, j runs over a finite set Ji, and we have the

identity in Γ(Ui;A0
X)⊗ Γ(Vi;N ):

(19) 1⊗ ni =
∑

j∈Ji

(aij(bij ◦ f)⊗ nij − aij ⊗ bijnij).

We may as well assume that the Ui are compact. We show in this case that ni = 0,
which will prove n = 0, hence the injectivity of ι.

By Proposition 5.9 we may represent the aij , bij by tempered C∞ functions

defined on X+, Y +. We choose continuous subanalytic functions ϕi : Ui → R,
ϕi > 0 on Ui, such that the identities (19) hold in Γ(U+

ϕi
; C∞,t
X̂

)⊗ Γ(Vi;N ).

We apply Lemma 5.8 to the function ϕi/2: Ui → R and obtain ϕ′i : Ui → R and

αi ∈ Γ(X+; C∞,t
X̂

) such that 0 < ϕ′i < ϕi/2, 0 ≤ αi ≤ 1, αi = 1 in U+
ϕ′i

and αi = 0

outside U+
ϕi/2

. Multiplying both sides of (19) by αi we obtain identities which now

hold on Γ(X+; C∞,t
X̂

)⊗ Γ(Vi;N ). These identities imply:

αi ⊗ ni = 0 in Γ(X+; C∞,t
X̂

)⊗Γ(Y +;C∞,t

Ŷ
) Γ(Vi;N ).

We note that αi has compact support and we set βi =
∫
αidu. We have βi ∈

Γ(Y +; C∞,t
Ŷ

) and the last identity gives βini = 0. Now Γ(Vi;N ) is a Γ(Vi;A0
Y )-

module and to conclude that ni = 0 it just remains to prove that βi|Vi
is invertible

in Γ(Vi;A0
Y ).

Since βi is a tempered C∞ function on Y + it is enough to check that β−1
i has

polynomial growth along the boundary of Wi = f(U+
ϕ′i

). We set Zi = X+ \U+
ϕ′i

and

for (x, t) ∈ X+, di(x, t) = d((x, t), ∂Zi). We obtain the bound, for (y, t) ∈Wi:

βi(y, t) ≥

∫

U+

ϕ′
i

∩({(y,t)}×R)

1 · du ≥ 2 max
u∈R

di(y, u, t)

The function mi(y, t) = maxu∈R di(y, u, t) is subanalytic since the max can be taken
for u running on a compact set. We have mi(y, t) > 0 for (y, t) ∈ Wi. Hence, by

 Lojasiewicz’s inequality we havemi(y, t) > C′d((y, t), ∂Wi)
−N ′ for some C′, N ′ ∈ R

and it follows that β−1
i has polynomial growth along ∂Wi. �
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Proposition 6.3. Let f : X → Y be a smooth morphism and N ∈ Mod(AY ).
(i) The morphism in C(CXsa

), f−1N → f∗N , is a quasi-isomorphism.
(ii) If N is locally free as an A0

Y -module, then f∗N is locally free as an A0
X -

module.
(iii) If N is flat over A0

Y and we have an exact sequence in Mod(AY ), 0 →
N ′′ → N ′ → N → 0, then the sequence 0→ f∗N ′′ → f∗N ′ → f∗N → 0 is exact.

Proof. The statements are local on X , so that, up to restriction to open subsets,
we may assume X = Y ×Rn and f is the projection. Then we factorize f as a
composition of projections with fiber dimension 1, so that we may even assume

X = Y ×R (and X̂ = Y ×R×R). We take coordinates (y1, . . . , ym, u, t) on X̂ (u
is the coordinate in the fiber of f).

With this decomposition of X we define the A0
X -module Avert = A0

X ⊕A
0
Xdu.

This is a sub-A0
X -algebra of AX (not a sub-dg-algebra); f−1AY is another sub-

algebra and the multiplication, Avert ⊗f−1A0
Y
f−1AY → AX , is an isomorphism

of A0
X -algebras. This shows that we have an isomorphism of A0

X -modules, for any
dg-AY -module N ′:

(20) Avert ⊗f−1A0
Y
f−1N ′ ∼−→ f∗N ′.

Since Avert is free over A0
X , this implies (ii). To check that the sequence in (iii)

is exact, we consider it as a sequence of A0
X -modules. Since N is flat over A0

Y ,
isomorphism (20) gives the exactness.

Now we prove (i). By (20) again, f∗N is identified with the total complex of the
double complex with two rows:

(21)

A0
X⊗f−1A0

Y
f−1N i−1

��

// A0
X⊗f−1A0

Y
f−1N i

di
v

��

d1,i

h // A0
X⊗f−1A0

Y
f−1N i+1

��
A0

X⊗f−1A0
Y
f−1N i−1 // A0

X⊗f−1A0
Y
f−1N i

d2,i

h // A0
X⊗f−1A0

Y
f−1N i+1

where div(a ⊗ n) = ∂a
∂u ⊗ n, d1,i

h (a ⊗ n) =
∑

k
∂a
∂yk
⊗ dyk · n + ∂a

∂t ⊗ dt · n and

d2,i
h = −d1,i

h . By Lemma 6.2 the ith column is a resolution of f−1N i. The induced
differential on the cohomology of the columns is easily seen to be the differential of
f−1N and (i) follows. �

Lemma 6.4. Any sheaf of A0
X-module is soft in the sense of Definition 4.1

Proof. Let U and Z be respectively open and closed subanalytic subsets of X .
Let F be an A0

X -module and s ∈ Γ(U ;FZ). We may assume s ∈ Γ(W ;F ) for
a subanalytic open set W with (U ∩ Z) ⊂ W ⊂ U . We choose two subanalytic
open sets W1,W2 such that (U ∩ Z) ⊂ W1 ⊂ W1 ⊂ W2 ⊂ W2 ⊂ W . Since A0

X is
quasi-injective we may find α ∈ Γ(X ;A0

X) such that α = 1 on W1 and α = 0 on

X \W2. Then αs ∈ Γ(W ;F ) extends by 0 on U and αs = s in Γ(U ;FZ). It follows
that Γ(U ;F )→ Γ(U ;FZ) is surjective, as required. �

Proposition 6.5. Let f : X → Y be a morphism of real analytic manifolds. For
any M ∈ Mod(AX), For(M) ∈ C+(CXsa

) is acyclic with respect to f∗ and f!!. In
particular we have isomorphisms in D+(CYsa

), For′(f∗(M)) ≃ Rf∗(For′(M)) and
For′(f!!(M)) ≃ Rf!!(For′(M)).
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Proof. This follows from Lemma 6.4 and Corollary 4.5. �

6.3. Projection formula.

Lemma 6.6. Let f : X → Y be a morphism of analytic manifolds,M ∈Mod(AX),
N ∈Mod(AY ). There exists a natural isomorphism in Mod(AY ):

N ⊗AY
f!!M

∼−→ f!!(f
∗N ⊗AX

M),

whose image in C+(Ysa) gives a commutative diagram:

N ⊗AY
f!!M

∼ // f!!(f∗N ⊗AX
M)

N ⊗ f!!M
∼ //

OO

f!!(f
−1N ⊗M),

OO

where the bottom arrow is the usual projection formula.

Proof. Using (18) and f∗N ⊗AX
M≃ f−1N ⊗f−1AY

M we have the commutative
diagram (extending the diagram of the lemma):

N⊗AY ⊗f!!M

a

��

// N⊗f!!M

b

��

// N⊗AY
f!!M

��

// 0

f!!(f
−1N⊗f−1AY ⊗M) // f!!(f−1N⊗M) // f!!(f−1N⊗

f−1AY
M) // 0

The top row of this diagram is exact by definition of the tensor product, as well
as the bottom row, before we take the image by f!!. But any complex of the type
P ⊗M is an A0

X -module, because M is; hence it is f!!-acyclic by Lemma 6.4 and
Corollary 4.5. It follows that the bottom row is exact. Now, the vertical arrows a
and b are isomorphisms in view of the classical projection formula. Hence so is the
morphism of the lemma. �

6.4. Base change. We consider a Cartesian square of real analytic manifolds

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y.

We have the usual base change formula in Mod(CY ′sa
) or C+(CY ′sa

), f−1g!! ≃ g
′
!!f
′−1

(and its derived version in D+(CY ′sa
), f−1Rg!! ≃ Rg

′
!!f
′−1).

Lemma 6.7. Let N a dg-AY ′-module. There exists a natural morphism

(22) f∗g!!N → g′!!f
′∗N

of dg-AX -modules, whose image in the category of complexes C+(Xsa) gives a com-
mutative diagram:

f∗g!!N // g′!!f
′∗N

f−1g!!N

OO

∼
g′!!f
′−1N ,

OO

where the bottom arrow is the usual base change isomorphism.
Moreover, if f is an immersion and g is smooth, then (22) is an isomorphism.
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Proof. The morphism is defined by the following composition:

f∗g!!N ≃ AX ⊗f−1AY
g′!!f
′−1N ≃ g′!!(g

′−1AX ⊗g′−1f−1AY
f ′−1N )

ϕ
−→ g′!!(AX′ ⊗f ′−1AY ′

f ′−1N ) = g′!!f
′∗N ,

where the first isomorphism uses the classical base change formula (for complexes),
and the second one the classical projection formula. Morphism ϕ is induced by g′♯.

Now we show that ϕ is an isomorphism when f is an immersion and g is smooth.
It is enough to show that

(23) g′−1AX ⊗g′−1f−1AY
f ′−1N ≃ AX′ ⊗f ′−1AY ′

f ′−1N .

This is a local statement onX ′ so that we may as well assume that f is an embedding
and X ′ = X × Z, Y ′ = Y × Z for some manifold Z. We may also assume that X
is given by equations yi = 0, i = 1 . . . , d in Y . Then AX is the quotient of f−1AY
by the ideal generated by yi, dyi, i = 1 . . . , d. The same holds for X ′ and we have
the presentations:

f−1(AY )2d
(y1,...,dyd)
−−−−−−−→ f−1(AY )→ AX → 0,

f ′−1(AY ′)
2d (y1,...,dyd)
−−−−−−−→ f ′−1(AY ′)→ AX′ → 0.

Since the tensor product is right exact, the images of these exact sequences by
g′−1(·) ⊗g′−1f−1AY

f ′−1N and (·) ⊗f ′−1AY ′
f ′−1N give the same presentations of

both sides of (23), which shows that they are isomorphic. �

6.5. Complex manifolds. Now we assume that X is a complex analytic manifold,
of dimension dcX over C; we denote by X the complex conjugate manifold and XR

the underlying real analytic manifold. We recall that t is the coordinate on X̂R

given by the projection τXR,2 : X̂R → R, and that we have the decomposition
d = d1 +d2 of the differential of AXR

(d2(ω) = ∂ω/∂t dt). We consider the complex
of “tempered holomorphic functions”, OtX ∈ Db(CXsa

), defined as the Dolbeault
complex with tempered coefficients:

(24) OtX = RHomρ!DX
(ρ!OX , C

∞,t
XR

) ≃ 0→ Ωt,0,0XR

∂̄
−→ Ωt,0,1XR

∂̄
−→ · · ·

∂̄
−→ Ω

t,0,dc
X

XR
,

where Ωt,i,jXR
denotes as usual the forms of type (i, j). The product of forms induces

a morphism OtX ⊗ O
t
X → O

t
X in Db(CXsa

). In degree 0, H0(OtX) is a subalgebra
of ρ∗OX .

Definition 6.8. We let Ωt,i,j
X̂R

= C∞,t
X̂R

τ∗XR,1
(Ωt,i,jXR

) be the sub-C∞,t
X̂R

-module of Ωt,i+j
X̂R

generated by the forms of type (i, j) coming from XR.

We define Ai,jXR
= i−1

XR
ΓX+

R

Ωt,i,j
X̂R

. This is a sub-A0
XR

-module of Ai+jXR
and we have

the decomposition AkXR
=

⊕
i+j=k A

i,j
XR
⊕

⊕
i+j=k−1 A

i,j
XR

dt. The operators ∂, ∂̄

on ΩtXR
induce a decomposition of the differential of AXR

, d = ∂ + ∂̄ + d2.

We let JX < AXR
be the differential ideal generated by A1,0

XR
and introduce the

dg-AXR
-module OX = AXR

/JX . As a quotient by a differential ideal, OX inherits

a structure of dg-algebra. We note the obvious inclusions ρ!OX ⊂ ρ!C
∞,t
X ⊂ A0

XR

and we define, for two complex analytic manifolds, X , Y :

O
(i)
X = OX ⊗ρ!OX

ρ!O
(i)
X , O

(p,q)
X×Y = OX×Y ⊗ρ!OX×Y

ρ!O
(p,q)
X×Y ,
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where O
(i)
X denotes the holomorphic i-forms on X and O

(p,q)
X×Y = OX×Y ⊗(OX⊠OY )

(O
(p)
X ⊠O

(q)
Y ).

Proposition 6.9. (i) We have an isomorphism of complexes between OX and

A0,0
XR
→

(
A0,1
XR
⊕A0,0

XR
dt

)
→

(
A0,2
XR
⊕A0,1

XR
dt

)
→ · · · → A

0,dc
X

XR
dt,

with differential ∂̄ + d2.

(ii) O
(dc

X)
X [−dcX ] is isomorphic to the differential ideal of AXR

:

A
dc

X ,0
XR

→
(
A
dc

X ,1
XR
⊕A

dc
X ,0
XR

dt
)
→ · · · → A

dc
X ,d

c
X

XR
dt.

Moreover we have a decomposition AXR
≃ O

(dc
X)

X [−dcX ]⊕MX in free A0
XR

-modules.

(iii) There exist a natural isomorphism OtX ≃ OX , in Db(C(XR)sa
), which com-

mutes with the products OtX ⊗ O
t
X → O

t
X and OX ⊗ OX → OX . We also have

O
t(p,q)
X×Y ≃ O

(p,q)
X×Y , in Db(C(XR×YR)sa

).

Proof. (i), (ii) The decomposition of AkXR
given in Definition 6.8 yields projections

AkXR
→ A0,k

XR
⊕ A0,k−1

XR
dt. The sum of these projections is a surjective morphism

from AXR
to the complex of the proposition and we see that its kernel is JX .

Assertion (ii) follows from (i).

(iii) We use the isomorphism OtX ≃ 0→ Ωt,0,0XR

∂̄
−→ · · ·

∂̄
−→ Ω

t,0,dc
X

XR
→ 0. The exact

sequences

0→ Ωt,0,jXR
→ A0,j

XR

α7→(∂α/∂t)dt
−−−−−−−−−→ A0,j

XR
dt→ 0,

combine into an isomorphism betweenOtX and the complex given in (i). This proves
the first isomorphism. The second one follows from the first and the definitions. �

For a morphism of complex analytic manifolds f : X → Y , we have an integration

morphism in the derived category Rf!O
(dc

X)
X [dcX ] → O

(dc
Y )

Y [dcY ] and its tempered

version Rf!!O
t(dc

X)
X [dcX ]→ O

t(dc
Y )

Y [dcY ]. By adjunction between Rf!! and f ! we obtain

O
t(dc

X)
X [dcX ]→ f !O

t(dc
Y )

Y [dcY ].

When f is a submersion we have f ! ≃ f−1[2(dcX − d
c
Y )] (note that the manifolds

are complex, hence oriented) and our last morphism becomes:

(25) O
t(dc

X)
X [−dcX ]→ f−1O

t(dc
Y )

Y [−dcY ].

Proposition 6.10. For a submersion of complex analytic manifolds f : X → Y ,

the embeddings, for Z = X,Y , O
(dc

Z)
Z [−dcZ ] ⊂ AZR

of Proposition 6.9 (ii) induce a
morphism of dg-AXR

-modules

(26) O
(dc

X)
X [−dcX ]→ f∗O

(dc
Y )

Y [−dcY ],

which represents (25) through the isomorphism of Proposition 6.9 (iii).

Proof. By Proposition 6.9 we have a decomposition AYR
≃ O

(dc
Y )

Y [−dcY ] ⊕ MY

in free A0
YR

-modules; hence the quotient AYR
/O

(dc
Y )

Y [−dcY ] is free over A0
YR

and

Proposition 6.3 implies that the morphism f∗O
(dc

Y )
Y [−dcY ] → f∗AYR

≃ AXR
is

injective. Hence we just have to check the inclusion of ideals of AXR
: O

(dc
X)

X [−dcX ] ⊂

f∗O
(dc

Y )
Y [−dcY ].
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This is a local problem onX and we may assumeX = Y ×Z. As anA0
XR

-module,

O
(dc

X)
X [−dcX ] decomposes into summands A

dc
X ,i
XR

and A
dc

X ,i
XR

dt. Now any form of type
(dcX , i) on X = Y ×Z is a sum of products of forms of types (dcY , j) and (dcZ , k), with

j + k = i. In particular O
(dc

X)
X [−dcX ] is in the image of (AXR

⊗ f−1O
(dc

Y )
Y [−dcY ])→

AXR
. �

Corollary 6.11. With the hypothesis of Proposition 6.10, the integration morphism
of Definition 5.3 induces a morphism of dg-AYR

-modules

(27) f!!O
(dc

X)
X [dcX ]→ O

(dc
Y )

Y [dcY ],

which represents the integration morphism Rf!!O
t(dc

X )
X [dcX ]→ O

t(dc
Y )

Y [dcY ].

Proof. Morphism (26), the projection formula and the integration morphism give:

f!!O
(dc

X)
X [dcX ]→ f!!f

∗
O

(dc
Y )

Y [2dcX − d
c
Y ]

≃ O
(dc

Y )
Y [dcY ]⊗AYR

f!!AXR
[2(dcX − d

c
Y )]

→ O
(dc

Y )
Y [dcY ].

We define (27) as the composition of these arrows. The integration morphism for
OtX is also defined by integration of forms using the Dolbeault complex. It is
nothing but the restriction of the integration morphism for AXR

to a subcomplex,
so that it coincides with (27). �

In section 10 we need the following composition of kernels. Let X,Y, Z be three
complex analytic manifolds and qij the projection from their product to the ith×jth

factors. The product of OY and the integration morphism give a convolution prod-

uct: Rq13!(q
−1
12 O

(0,dc
Y )

X×Y [dcY ] ⊗ q−1
23 O

(0,dc
Z)

Y×Z [dcZ ]) → O
(0,dc

Z)
X×Z [dcZ ]. We can also define

a tempered version of this convolution, and in fact we can even realize this tem-

pered convolution product at the level of complexes, using the above sheaf O
(0,dc

Y )
X×Y .

As in Proposition 6.10, we rather define its “adjoint” morphism as the following
composition:

q∗12O
(0,dc

Y )
X×Y [−dcY ]⊗A q

∗
23O

(0,dc
Z)

Y×Z [−dcZ ]→ O
(0,dc

Y ,d
c
Z)

X×Y×Z [−dcY − d
c
Z ]

→ q∗13O
(0,dc

Z)
X×Z [−dcZ ],

(28)

where the first morphism is induced by the product OY ⊗ OY ⊗ρ!OY
ρ!O

(dc
Y )

Y →

OY ⊗ρ!OY
ρ!O

(dc
Y )

Y and the second morphism is induced by morphism (26).

7. Microlocalization functor

In this section we recall the definition of the microlocalization functor µ in-
troduced in [9]. For a manifold X this is a functor, µX , from Db(I(CX)) to
Db(I(CT∗X)) given by a kernel LX ∈ Db(I(CX×T∗X)).

We define analogs of this kernel and of the microlocalization functor in the
framework of A-modules. We check that, in the case we are interested in, this
gives a resolution of µXF , and that it has a functorial behavior with respect to the
usual operations.

In fact, with the definition of [9], the construction of the external tensor product
is not so straightforward. For this reason we define another kernel for which the
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tensor product is easy and which coincides with the kernel of [9] outside the zero
section.

7.1. Microlocalization functor in the derived category. In [9] the authors
define a kernel associated to the following data: let X be a manifold, Z ⊂ X a
closed submanifold and σ a 1-form defined on Z, i.e. σ is a section of the bundle
Z ×X T ∗X → Z. To simplify the exposition, we make the following assumption
which will be satisfied in our case:

(29) ∀z ∈ Z, σz vanishes on TzZ.

Hence σ induces a section of Z ×X T ∗ZX → Z and we may define:

Pσ = {(x, v) ∈ TZX ; 〈v, σ(x)〉 ≥ 0}.

Hence Pσ is a subset of TZX , viewed itself as a subset of the normal deformation
of Z in X , X̃Z . We recall that X̃Z and the projection p : X̃Z → X are given in
local coordinates as follows. We choose coordinates (x1, . . . , xn) on X such that

Z is given by xi = 0, i = 1, . . . , d. This gives coordinates (xi, τ) on X̃Z and
p(xi, τ) = (τx1, . . . , τxd, xd+1, . . . , xn). The normal bundle TZX is embedded in

X̃Z as the submanifold {τ = 0} and we define Ω = {τ > 0}.

Pσ
� � // TZX

��

� � // X̃Z

p

��

Ω?
_oo

~~}}
}}

}}
}}

Z
� � // X

We will often restrict ourself outside the zero set of σ and we set Tσ = {z ∈ Z; σz
vanishes on TzX}.

Definition 7.1. Under hypothesis (29), the kernel associated to these data is the
object of Db(I(CX)) (recall that, for i : Z →֒ X , we write ωZ|X instead of i∗ωZ|X):

Lσ = Lσ(Z,X) = Rp!!(βX̃Z
(CPσ

)⊗CΩ)⊗ βX(ω⊗−1
Z|X ).

We recall that βX̃Z
(CPσ

) = “ lim
−→

”
W

CW , W running over the open neighbor-

hoods of Pσ in X̃Z . Since “ lim
−→

” commutes with ⊗ we obtain

Lσ = Rp!!(“ lim
−→

”
W

CW∩Ω)⊗ βX(ω⊗−1
Z|X ), W open in X̃Z , Pσ ⊂W.

We also notice that Rp!!(βX̃Z
(CPσ

) ⊗ CΩ) is supported on Z (i.e. its restriction

outside Z is 0). Hence taking the tensor product with βX(ω⊗−1
Z|X ) reduces locally to

a shift by the codimension of Z.
In Proposition 1.2.11 of [9] we also have a description of Lσ outside the zero set

of σ, Tσ:

(30) Rp!!(βX̃Z
(CPσ

)⊗CΩ)|X\Tσ
≃ Rp!!(βX̃Z

(CPσ
)⊗CΩ)|X\Tσ

≃ “ lim
−→

”
U

CU ,

where U runs over the open subsets of X \Tσ such that the cone of U along Z \Tσ
doesn’t intersect Pσ outside the zero section. In particular the complexes in (30)
are concentrated in degree 0:

(31) Rp!!(βX̃Z
(CPσ

)⊗CΩ)|X\Tσ
≃ p!!(βX̃Z

(CPσ
)⊗CΩ)|X\Tσ

.

When considering resolutions of Lσ by A-modules, it will be convenient to use the
following different formulation, which is equivalent outside the zero set of σ. First,
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using the embedding of categories Iτ : Mod(CXsa
) ≃ IR−c(CX)→ I(CX) we have

Lσ ≃ Iτ (Lsaσ ), where Lsaσ ∈ Db(CXsa
) is given by

Lsaσ = Rp!!(ρX̃Z !(CPσ
)⊗CΩ)⊗ ρX!(ω

⊗−1
Z|X )(32)

≃ Rp!!(RΓΩ(ρX̃Z !(CPσ
)))⊗ ρX!(ω

⊗−1
Z|X ),(33)

where the second isomorphism follows from (5) and CΩ ≃ RHom(CΩ,CX̃Z
).

Definition 7.2. For a real analytic manifold Y and T ⊂ Y a locally closed analytic
subset we introduce the notation KT = ρY !CT ⊗ lim

−→W
CY \W , where W runs over

the open neighborhoods of T in Y . We note that KT has support in the boundary
T \ T .

We let P 0
σ be the relative interior of Pσ, i.e. P 0

σ = {(x, v) ∈ TZX ; 〈v, σ(x)〉 > 0}
and we define L0

σ ∈ Db(CXsa
) by:

L0
σ = Rp!!(RΓΩKP 0

σ
)⊗ ρX!(ω

⊗−1
Z|X ).

Lemma 7.3. We let (X,Z, σ) be a kernel data satisfying hypothesis (29) and we
assume that σ doesn’t vanish.

(i) We have RΓΩKP 0
σ
≃ CΩ ⊗KP 0

σ
.

(ii) The natural morphism KP 0
σ
→ ρX̃Z !(CPσ

) induces an isomorphism L0
σ → L

sa
σ

in Db(CXsa
).

Proof. (i) By definition KP 0
σ
≃ lim
−→W,W 0

CW\W 0 , where W and W 0 run over the

open neighborhoods of Pσ and P 0
σ in X̃Z . By formula (6) we may commute the

limit with RΓΩ so that RΓΩKP 0
σ
≃ lim
−→W,W 0

RΓΩC
W\W

0 . Our situation is locally

isomorphic to X̃Z ≃ Rn, Ω ≃ Rn−1 ×R>0 and Pσ ≃ Rn−2 ×R≥0 × {0}. Hence,
choosing for example

W = {|xn| < ε, xn−1 > −ε}, W 0 = {|xn| < ϕ(x1, . . . , xn−1)},

for ε > 0 and subanalytic continuous functions ϕ on Rn−2 ×R>0, we may assume
that our W,W 0 satisfy RΓΩ(CW ) ≃ CW∩Ω (and the same with W 0 instead of W )
and this gives the desired isomorphism.

(ii) We define F = lim
−→W 0

CW 0 , where W 0 runs over the open neighborhoods of

P 0
σ in X̃Z . Hence we have an exact sequence 0→ KPσ

→ ρX̃Z !(CPσ
)→ F → 0 and

it is enough to show that Rp!!(RΓΩF ) = 0.
As in (i) we have RΓΩF ≃ lim

−→W 0
CW 0∩Ω. We deduce that Rp!!(RΓΩF ) ≃

lim
−→W 0,U

Rp∗CW 0∩Ω∩U , where W 0 runs on the same set as above and U runs over

the open subsets of X̃Z with compact closure. Since p∗ commutes with ρ∗ we are
reduced to a computation with sheaves on topological spaces.

For x ∈ X \ Z, x near Z, and U big enough, p−1(x) ∩W 0 ∩ Ω ∩ U is a union of
intervals of the line, all of them compact except at most one which is homeomorphic
to [0, 1[. When we take the limit over W 0 and U only the last one has a non-
zero contribution in the morphisms Cp−1(x)∩W 0∩Ω∩U → Cp−1(x)∩W ′0∩Ω∩U ′ . In the

same way, for x ∈ Z, since Pσ ⊂ TZX is locally homeomorphic to a closed half
plane, we may assume that p−1(x) ∩W 0 ∩ Ω ∩ U is homeomorphic to an half ball
{|x| < 1, x1 ≥ 0}.

Since RΓ(R; C[0,1[) = 0 and RΓ(Rn−1; C{|x|<1,x1≥0}) = 0, we deduce that our
direct image vanishes. �
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Now for any manifold X , the cotangent bundle T ∗X is endowed with a canonical
1-form, say ωX . We set X = X × T ∗X and Z = X ×X T ∗X ≃ T ∗X and consider
the section σX : X ×X T ∗X → T ∗X × T ∗(T ∗X) defined by σX = (−id, ωX), i.e. in
local coordinates

σX(x, x, ξ) = ((x;−ξ), ωX(x, ξ)) = ((x;−ξ), (x, ξ; ξ, 0)).

Hence hypothesis (29) is satisfied for the data (X,Z, σX).

Definition 7.4. With the above notations, we set LX = LσX
(Z,X) so that LX ∈

Db(I(CX×T∗X)). We denote by p1 : X × T ∗X → X , p2 : X × T ∗X → T ∗X the
projections. The microlocalization is the functor

µX : Db(I(CX))→ Db(I(CT∗X)), F 7→ LX ◦ F = Rp2!!(LX ⊗ p
−1
1 F ).

We note that σX doesn’t vanish outside the zero section of T ∗X so that we can
use L0

σX
(Z,X) instead of LX when we consider µXF |

.

T∗X .

7.2. Microlocalization functor for A-modules.

Definition 7.5. For a real analytic manifold Y and T ⊂ Y a locally closed subset
we introduce the notation BT = AY ⊗KT , where KT is given in Definition 7.2. Let
(X,Z, σ) be a kernel data satisfying hypothesis (29). We define LAσ ∈Mod(AX) by

LAσ = LAσ (Z,X) = p!!(ΓΩ(BP 0
σ

))⊗ ρX!(ω
⊗−1
Z|X ).

Remark 7.6. For U ⊂ X̃Z a subanalytic open subset, a section of ΓΩBiP 0
σ

on U is

given by the following data: open neighborhoods W of Pσ and W 0 of P 0
σ in X̃Z ,

and a section s ∈ Ai
X̃Z

(Ω∩W ∩U) such that s|Ω∩W 0∩U = 0. Actually the definition

would require that s be defined on a neighborhood of W and that (supp s)∩W 0 = ∅.
But, up to shrinking W and W 0, this amounts to the above statement.

Lemma 7.7. The complex LAσ consists of quasi-injective sheaves of CXsa
-vector

spaces. We have a natural isomorphism L0
σ ≃ L

A
σ in D+(CXsa

). Hence, if σ doesn’t
vanish, Lσ ≃ LAσ in D+(I(CX)).

Proof. We recall the definition L0
σ = Rp!!(RΓΩKP 0

σ
)⊗ ρX!(ω

⊗−1
Z|X ).

Since AX̃Z
is a quasi-injective resolution of C(X̃Z )sa

, we have BP 0
σ
≃ KP 0

σ
in

D+(CXsa
). The complex BP 0

σ
consists of A0-modules, hence soft sheaves. It follows

from Corollary 4.5 that RΓΩBP 0
σ
≃ ΓΩBP 0

σ
. This last complex also is formed by A0-

modules, hence p!!-acyclic sheaves, and we deduce the isomorphism of the lemma.
Let us now check that ΓΩBP 0

σ
consists of quasi-injective sheaves. Let U ⊂ X̃Z

be a subanalytic open subset; a section of ΓΩBiP 0
σ

on U is given by W , W 0, s ∈

Ai
X̃Z

(Ω∩W ∩U) as in Remark 7.6. The condition on s says that we may extend s

to a section s′ of Ai
X̃Z

on (Ω∩W ∩U)∪W 0, with s′|W 0 = 0. By Proposition 5.9 we

may extend s′ to X̃Z , and this gives the quasi-injectivity of ΓΩBiP 0
σ
. Since p!! sends

quasi-injective sheaves to quasi-injective sheaves, we obtain the first assertion.
The last assertion follows from Lemma 7.3. �

Now we can define the microlocalization functor for A-modules. We keep the
notations introduced before Definition 7.4: for a manifold X we have the kernel
data (X,Z, σX).
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Definition 7.8. With the above notations, we set LAX = LAσX
(Z,X) so that LAX ∈

Mod(AX×T∗X). The microlocalization is the functor

µAX : Mod(AX)→ Mod(AT∗X), F 7→ LAX ◦ F = p2!!(L
A
X ⊗AX

p∗1F ).

For F ∈ Mod(AX) we have a natural morphism in D+(I(C .

T ∗X)):

(34) µX(For′X(F ))→ For′T∗X(µAX(F )),

defined by the composition of morphisms in the derived category (we don’t write
the functors For) on

.

T ∗X :

(35) µXF ≃ Rp2!!(L
A
X ⊗ p

−1
1 F )→ Rp2!!(L

A
X ⊗AX

p∗1F ) ∽←− p2!!(L
A
X ⊗AX

p∗1F ),

where the first isomorphism is given by Lemma 7.7, the second morphism is given by
the morphisms p−1

1 F → p∗1F and ⊗ → ⊗AX
, and the third arrow is an isomorphism

by Proposition 6.5.

Lemma 7.9. Let (X,Z, σ) be a kernel data satisfying hypothesis (29) and consider
F ∈Mod(AX). We assume that F is locally free as an A0

X-module. Then:
(i) LAσ ⊗AX

F is a complex of quasi-injective sheaves on Xsa.
(ii) Let Tσ ⊂ Z be the zero set of σ. The natural morphism, in C+(CXsa\Tσ

),

LAσ ⊗ F → L
A
σ ⊗AX

F

is a quasi-isomorphism.

Proof. The proof is similar to the proof of Proposition 6.3. Both statements are
local onX . We choose coordinates (x1, . . . , xd, z1, . . . , zm) onX such that Z is given

by xi = 0, i = 1, . . . , d. This gives coordinates (x, z, τ) on X̃Z such that p(x, z, τ) =
(τx, z). On Ω we take the coordinates (x′, z, τ), where x′ = τx, so that p(x′, z, τ) =
(x′, z). With these coordinates we argue as in the proof of Proposition 6.3 to see
that p!!ΓΩ(BP 0

σ
)⊗AX

F is isomorphic to a complex

G = p!!(ΓΩ(B0
P 0

σ
)⊕ ΓΩ(B0

P 0
σ
)dτ) ⊗A0

X
F,

with a differential defined as in (21).
(i) Since F is locally free over A0

X and p!!ΓΩ(B0
Pσ

) is quasi-injective, by Lem-
ma 7.7, G also is quasi-injective.

(ii) We will see the exactness of the sequence:

(36) 0→ p!!(ΓΩ(KP 0
σ
))⊗A0

X → p!!ΓΩ(B0
P 0

σ
)

∂
∂τ−−→ p!!ΓΩ(B0

P 0
σ
)→ 0.

Thus G is quasi-isomorphic to p!!(ΓΩ(KP 0
σ

)) ⊗ F and this implies (ii) because we

already know that LAσ is quasi-isomorphic to L0
σ.

Now we prove (36). We have the exact sequence on Ω: 0 → KP 0
σ
⊗ p−1A0

X →

B0
P 0

σ

∂
∂τ−−→ B0

P 0
σ
→ 0. Since A0-modules are soft this gives (36) if we prove that

u : p!!(ΓΩ(KP 0
σ

))⊗A0
X → p!!ΓΩ(KP 0

σ
⊗ p−1A0

X)

is an isomorphism. Let s be a section of p!!(ΓΩ(KP 0
σ
))⊗A0

X over some open set U .

Up to shrinking U we may assume that s is of the form 1 ⊗ a where a ∈ A0
X(U)

and 1 ∈ CW\W 0(Ω ∩ p−1(U)), for some open neighborhoods W and W 0 of Pσ and

P 0
σ in X̃Z . In the same way a section s′ of p!!ΓΩ(KP 0

σ
⊗ p−1A0

X) over U is given by

1⊗ b with b ∈ Γ((W ′ \W ′0)∩Ω∩ p−1(U); p−1(A0
X)) for some other neighborhoods

of Pσ and P 0
σ in X̃Z .
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In the coordinates (x′, z, τ) on Ω we define iε : X → Ω, (x, z) 7→ (x, z, ε). Then

i−1
ε ((W ′ \W ′0)∩Ω∩ p−1(U)) is a neighborhood of Z in U for ε small enough. The

inverse to morphism u is then given by a = i∗ε(b). �

Proposition 7.10. We consider F ∈ Mod(AX) and we assume that it is locally
free as an A0

X-module. Then:
(i) µAX(F ) is a complex of quasi-injective sheaves on T ∗Xsa.
(ii) The natural morphism (34) in D+(I(C .

T ∗X)), µX(F ) → µAX(F ), is an iso-
morphism.

Proof. (i) Since p2!! sends quasi-injective sheaves to quasi-injective sheaves, it is
enough to prove that LAX ⊗AX

p∗1F is quasi-injective. By Proposition 6.3 p∗1F is
locally free over A0

X
and we conclude by Lemma 7.9 (i).

(ii) We have to prove that the second arrow in (35) is an isomorphism over
X \ (X × T ∗XX). By Proposition 6.3 again, p−1

1 F ∼−→ p∗1F in D+(I(CX)), and we
conclude by Lemma 7.9 (ii). �

8. Functorial behavior of the kernel

We will use the functorial properties of Lσ given in Propositions 1.3.1, 1.3.3
and 1.3.4 of [9], and recalled in Proposition 8.2 below. In fact we state these
properties on the site Xsa, using the kernel L0

σ ∈ Mod(CXsa
), and our formulas are

equivalent to those of [9] when σ doesn’t vanish, by Lemma 7.3. We give slightly
different proofs than in [9] so that we can translate them easily in the framework of
A-modules in Proposition 8.3. In this section (X1, Z1, σ1) and (X2, Z2, σ2) are two

sets of data as above, satisfying hypothesis (29). We set for short X̃i = ˜(Xi)Zi
.

8.1. Direct and inverse images. We assume to be given a morphism f : X1 →
X2 is a morphism such that f(Z1) ⊂ Z2 and σ1 = f∗σ2. The morphism f induces

f̃ : X̃1 → X̃2, decomposed as f̃ = h ◦ g in the following diagram, where the square
is Cartesian:

(37)

Ω1
� � // X̃1

g //

p1
$$JJ

JJJ
JJ

JJJ
J X1 ×X2

X̃2

q

��

h //

�

X̃2

p2

��

Ω2
? _oo

Pσ1

. �

>>||||||||
X1

f // X2 Pσ2

0 P

``BBBBBBBB

We have Ω1 = f̃−1Ω2, TZ1
X1 = f̃−1TZ2

X2, Pσ1
= f̃−1Pσ2

. We note thatX1×X2
X̃2

is in general not a manifold and may have components of different dimensions.
When f is clean with respect to Z2 and Z1 = f−1(Z2) (clean then means that
g′ : TZ1

X1 → X1 ×X2
TZ2

X2 is injective), g is a closed embedding. When f is
transversal to Z2 and Z1 = f−1(Z2), g is an isomorphism.

Lemma 8.1. Let f : X → Y be a morphism of real analytic manifolds, T ⊂ Y a
locally closed subset and Z = f−1T .

(i) There exists a natural isomorphism f−1KT ≃ KZ .
(ii) Let V ⊂ Y be an open subset and U = f−1(V ) and let G ∈ C+(CYsa

). We
assume that the restriction f |U : U → V is smooth. Then the integration of forms
induces a morphism of complexes:

(38) f!!ΓU (AX ⊗ f
−1G⊗ ω′X|Y )→ ΓV (AY ⊗G),
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whose image in Db(CXsa
) is the natural morphism Rf!!RΓU (f−1G ⊗ ωX|Y ) →

RΓVG.

Proof. (i) By definition KT = lim
−→W1,W2

CW2\W1
, where W1, W2 run over the open

neighborhoods of T , T in Y . For any compact M ⊂ X , the f−1(Wi) ∩M give
fundamental systems of neighborhoods of Z ∩ M and Z ∩ M in M . Since the
inductive limit commutes with f−1 we deduce the isomorphism.

(ii) We first reduce the statement to G = CY . Indeed, for F ∈ C+(CXsa
)

and F ′ ∈ C+(CYsa
) with a morphism f!!ΓU (F ) → ΓV F

′, we have the sequence of
morphisms

f!!ΓU (F ⊗ f−1G) ∼−→ f!!ΓU (ΓU (F )⊗ f−1G)

∼−→ ΓV (f!!(ΓU (F )⊗ f−1G))

→ ΓV (ΓV (F ′)⊗G)
∽←− ΓV (F ′ ⊗G),

where the first one and the last one are induced by F → ΓU (F ) and F ′ → ΓV (F ′)
(they are isomorphisms because F |U ≃ ΓU (F )|U and F ′|V ≃ ΓV (F ′)|V ), the second
one is morphism (10) and the third one is given by the projection formula and the
given morphism f!!ΓU (F )→ ΓV F

′.
Hence it is enough to define f!!ΓU (AX⊗ω

′
X|Y )→ ΓVAV . By definition a section

of f!!(ΓUAX⊗ω′X|Y ) overW ⊂ Y is represented by a section ω ∈ Γ(U∩f−1W ;AX⊗

ω′X|Y ) whose support has compact closure in X . Since f is smooth on U we may

define
∫
f
ω, and it is tempered on V , i.e. it gives an element of Γ(V ∩W ;AY ). This

gives morphism (38). �

Proposition 8.2. (i) There exists a natural morphism in Db(C(X2)sa
):

(39) Rf!!(L
0
σ1
⊗ ρX1!(ωZ1|Z2

))→ L0
σ2
.

(ii) We assume moreover that Z1 = f−1(Z2) and f is clean with respect to Z2.
Then there exists a natural morphism in Db(C(X1)sa

):

(40) f−1L0
σ2
→ L0

σ1
⊗ ρX1!(ωZ1|Z2

)⊗ ω−1
X1|X2

.

If f is transversal to Z2 it reduces to:

(41) f−1L0
σ2
→ L0

σ1
.

Proof. (i) We note that p−1
1 ωX1|X2

≃ ωX̃1|X̃2
. We have the morphisms:

Rf!!(Rp1!!RΓΩ1
(KP 0

σ1
)⊗ ωX1|X2

) ≃ Rp2!!Rf̃!!RΓΩ1
(KP 0

σ1
⊗ ωX̃1|X̃2

)

∼−→ Rp2!!RΓΩ2
Rf̃!!(f̃

−1KP 0
σ2
⊗ ωX̃1|X̃2

)

→ Rp2!!RΓΩ2
KP 0

σ2
,

where in the first line we use the projection formula for p1 and f p1 = p2 f̃ (we note
that ωX̃1|X̃2

enters the parenthesis because it is locally constant). In the second

line we use formula (10) and Lemma 8.1, (i). In the third line we use the projection

formula for f̃ and the integration morphism.
Now we take the tensor product with ω⊗−1

Z2|X2
and we obtain (39).



DG-METHODS FOR MICROLOCALIZATION 29

(ii) Since f is clean with respect to Z2 and Z1 = f−1Z2, the morphism g in
diagram (37) is an embedding. Hence g∗ = g!! and we have the adjunction morphism
id→ g!! g

−1. We deduce a morphism of functors

(42) f−1Rp2!! → Rp1!!f̃
−1

as the composition of the base change f−1Rp2!! → Rq!!h
−1 and the adjunction mor-

phism Rq!!h
−1 → Rq!!g!! g

−1h−1 = Rp1!!f̃
−1. Now we define (40) by the sequence

of morphisms:

f−1L0
σ2

= f−1(Rp2!!(RΓΩ2
KP 0

σ2
)⊗ ρX2!ω

⊗−1
Z2|X2

)

→ (Rp1!!f̃
−1(RΓΩ2

KP 0
σ2

))⊗ f−1ρX2!ω
⊗−1
Z2|X2

→ Rp1!!(RΓΩ1
KP 0

σ1
)⊗ f−1ρX2!ω

⊗−1
Z2|X2

= L0
σ1
⊗ ρX1!(ωZ1|X1

)⊗ f−1ρX2!ω
⊗−1
Z2|X2

,

where the second line is given by (42) and in the third line we use the morphism

f̃−1RΓΩ2
KP 0

σ2
→ RΓΩ1

KP 0
σ1

, obtained from the morphism of functor f̃−1RΓΩ2
→

RΓΩ1
f̃−1 and Lemma 8.1, (i).

If f is transversal to Z2 we have ωZ1|X1
≃ f−1ωZ2|X2

. �

Now we have the following analog of Proposition 8.2 for A-modules, with the
additional hypothesis that f is smooth, for the case of direct image.

Proposition 8.3. (i) Assume that f is smooth. Then there exists a natural mor-
phism of dg-AX2

-modules:

(43) f!!(L
A
σ1
⊗ ρX1!(ωZ1|Z2

))→ LAσ2
,

whose image in Db(C(X2)sa
) is morphism (39).

(ii) Assume that Z1 = f−1(Z2) and f is clean with respect to Z2. Then there
exists a natural morphism of dg-AX1

-modules:

(44) f∗LAσ2
→ LAσ1

⊗ ρX1!(ωZ1|Z2
)⊗ ω−1

X1|X2
,

whose image in Db(C(X1)sa
) is morphism (40). If f is transversal to Z2 it becomes:

(45) f∗LAσ2
→ LAσ1

.

Proof. The proof is similar to the proof of Proposition 8.2. We keep the same
notations and we just point out the changes.

(i) We note that f̃ is smooth on Ω1 and apply Lemma 8.1. This gives the
morphisms:

f!!(p1!!(ΓΩ1
BP 0

σ1
)⊗ ωX1|X2

) ≃ p2!!f̃!!ΓΩ1
(AX̃1

⊗ f̃−1KP 0
σ2
⊗ ω′

X̃1|X̃2
)

→ p2!!(ΓΩ2
BP 0

σ2
),

and the tensor product with ω⊗−1
Z2|X2

gives (43).

(ii) Morphism (42) has a non derived version f−1p2!! → p1!!f̃
−1. Taking the

tensor product AX1
⊗f−1AX2

· and using the projection formula we obtain:

(46) f∗p2!! → p1!!f̃
∗
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Now we define (44) by the sequence of morphisms:

f∗LAσ2
= f∗(p2!!(ΓΩ2

BP 0
σ2

)⊗ ρX2!(ω
⊗−1
Z2|X2

))

→ (p1!!f̃
∗(ΓΩ2

BP 0
σ2

))⊗ f−1ρX2!ω
⊗−1
Z2|X2

→ p1!!(ΓΩ1
BP 0

σ1
)⊗ f−1ρX2!ω

⊗−1
Z2|X2

= LAσ1
⊗ ρX1!(ωZ1|X1

)⊗ f−1ρX2!ω
⊗−1
Z2|X2

,

where the second line is given by (46) and the third line is the composition

f̃∗(ΓΩ2
BP 0

σ2
) = AX̃1

⊗f−1AX̃2
f−1ΓΩ2

(AX̃2
⊗KP 0

σ2
)

→ AX̃1
⊗f−1AX̃2

ΓΩ1
(f−1AX̃2

⊗KP 0
σ1

)→ ΓΩ1
BPσ1

of standard morphisms of sheaves and the isomorphism of Lemma 8.1, (i). �

8.2. External tensor product. The external tensor product is a consequence of
Proposition 1.3.8 of [9]. We give a different proof here, using the kernel L0

σ (hence
our morphism coincides with the one in [9] for a non-vanishing σ) and check that
it works for A-modules. We still consider (X1, Z1, σ1) and (X2, Z2, σ2) as in the
beginning of this section. We set X = X1 × X2, Z = Z1 × Z2, σ = σ1 + σ2.
Then (X,Z, σ) also is a kernel data satisfying (29). We keep the notations of

diagram (37) and let p : X̃Z → X be the projection. We also have a natural

embedding k : X̃Z → X̃1 × X̃2. We set p′ = p1 × p2 : X̃1 × X̃2 → X .

Proposition 8.4. There exists a morphism L0
σ1

⊠ L0
σ2
→ L0

σ in Db(C(X1×X2)sa
).

Proof. The kernel L0
σi

is the tensor product of Rpi!!(RΓΩi
KP 0

σi
) and ρXi!(ω

⊗−1
Zi|Xi

).

The external product for the second term is straightforward:

ρX1!(ω
⊗−1
Z1|X1

) ⊠ ρX2!(ω
⊗−1
Z2|X2

) ≃ ρX!(ω
⊗−1
Z|X )

and now we only take care of the first term. We have the sequence of morphisms:

(Rp1!!RΓΩ1
KP 0

σ1
) ⊠ (Rp2!!RΓΩ2

KP 0
σ2

)→ Rp′!!RΓΩ1×Ω2
(KP 0

σ1
⊠KP 0

σ2
)

→ Rp′!!k!!k
−1RΓΩ1×Ω2

(KP 0
σ1

⊠KP 0
σ2

)

→ Rp!!RΓΩ(k−1(KP 0
σ1

⊠KP 0
σ2

))

→ Rp!!RΓΩ(KP 0
σ
),

where the first three arrows are standard morphisms of sheaves and the last one is
defined as follows. We recall that KP 0

σi
≃ lim
−→Wi,W 0

i

C
Wi\W 0

i

, where Wi, W
0
i run

over the open neighborhoods of Pσi
, P 0

σi
in X̃i. For such Wi, W

0
i we have

(W1 \W 0
1 )× (W2 \W 0

2 ) = (W1 ×W2) \ ((W1 ×W2) ∩W 0) = W \W 0,

where W 0 = W 0
1 × X̃2 ∪ X̃1 ×W

0
2 and W = (W1 ×W2) ∪W 0.

Now W and W 0 are open neighborhoods of Pσ and P 0
σ in X̃1 × X̃2 (note that

Pσ ⊂ TZX and TZX can be viewed as a subset of X̃1× X̃2). This defines a natural
morphism KP 0

σ1
⊠KP 0

σ2
→ lim
−→W,W 0

CW\W 0 , where W and W 0 run over the open

neighborhoods of Pσ and P 0
σ in X̃1× X̃2. The inverse image by k gives the required

morphism k−1(KP 0
σ1

⊠KP 0
σ2

)→ KP 0
σ
. �
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Proposition 8.5. There exists a morphism LAσ1
⊠LAσ2

→ LAσ in Mod(AX1×X2
),

whose image in Db(C(X1×X2)sa
) is the morphism of Proposition 8.4.

Proof. The proof of the previous proposition adapts immediately, with the following
modifications in the sequence of morphisms:

(p1!!ΓΩ1
(AX̃1

⊗KP 0
σ1

)) ⊠ (p2!!ΓΩ2
(AX̃2

⊗KP 0
σ2

))

→ p′!!ΓΩ1×Ω2
(AX̃1×X̃2

⊗ (KP 0
σ1

⊠KP 0
σ2

))

→ p′!!k!!k
−1ΓΩ1×Ω2

(AX̃1×X̃2
⊗ (KP 0

σ1
⊠KP 0

σ2
))

→ p!!ΓΩ(AX̃Z
⊗ k−1(KP 0

σ1
⊠KP 0

σ2
))

→ p!!ΓΩ(AX̃Z
⊗KP 0

σ
).

�

9. Functorial properties of microlocalization

In this section f : X → Y is a morphism of real analytic manifolds. We recall
the functorial behavior of microlocalization with respect to inverse image, in case f
is an embedding, and to direct image. We check that the constructions make sense
for dg-A-modules (restricting to the case of a smooth map for the direct image).

We define the submanifold Z = X ×Y T ∗Y diagonally embedded in X × (X ×Y
T ∗Y ). We have the morphisms of kernel data

X×T ∗X X×(X×Y T ∗Y )
id×fdoo f×fπ // Y×T ∗Y

X×XT ∗X

⋃

Z

⋃

oo // Y×Y T ∗Y

⋃

T ∗X X ×Y T ∗Y
fdoo fπ // T ∗Y,

where the 1-form for the kernel corresponding to the middle column is

σY←X = (id× fd)
∗(σX) = (f × fπ)∗(σY ).

This equality follows from f∗d (ωX) = f∗π(ωY ). We note that Z = (id× fd)−1(X ×X
T ∗X) and Z ⊂ (f × fπ)−1(Y ×Y T ∗Y ), with equality if f is an embedding. This
implies that hypothesis (29) is satisfied for (X×(X×Y T ∗Y ), Z, σY←X). We denote
the corresponding kernel by LY←X = LσY←X

.

9.1. Microlocalization and inverse image. For the next two propositions we
assume that f : X → Y is an embedding. For G ∈ D+(I(CY )) we have a mor-
phism Rfd!!f

−1
π µY (G)→ µX(f−1G), defined in Theorem 2.4.4 of [9]. We recall its

construction below. The notations are introduced in the diagram:

(47)

X X
f

// Y

X×T ∗X

p2

��

p1

OO

X×(X×Y T ∗Y )
id×fdoo f×fπ //

p

OO

r

��

Y×T ∗Y

q2

��

q1

OO

T ∗X X ×Y T ∗Y
fdoo fπ // T ∗Y
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Proposition 9.1 ([9], Theorem 2.4.4). We have a natural morphism, for an em-
bedding f : X → Y and G ∈ D+(I(CY )):

(48) Rfd!!f
−1
π µY (G)→ µX(f−1G).

Proof. We first note the morphism of functors f−1
π Rq2!! → Rr!!(f × fπ)−1. It is

obtained by the following composition of adjunction morphisms, where we use the
fact that f , hence fπ and f × fπ, are embeddings, so that direct and proper direct
images coincide:

f−1
π Rq2!! → f−1

π Rq2!!(f × fπ)∗(f × fπ)−1

≃ f−1
π Rfπ∗Rr!!(f × fπ)−1 → Rr!!(f × fπ)−1.

(49)

We also note the morphisms of kernels:

(50) (f × fπ)−1LY → LY←X ⊗ ω
−1
X|Y R(id× fd)!!(LY←X ⊗ ω

−1
X|Y )→ LX .

The first one is morphism (40) of Proposition 8.2 (for Lσ instead of L0
σ), applied to

f × fπ: we note that f × fπ is clean with respect to Y ×Y T ∗Y and X ×Y T ∗Y =
(f × fπ)−1(Y ×Y T ∗Y ). The second one is morphism (39) (for Lσ instead of L0

σ),
applied to id× fd.

Now the morphism of the lemma is defined by the succession of morphisms:

Rfd!!f
−1
π µY (G) = Rfd!!f

−1
π Rq2!!(LY ⊗ q

−1
1 G)(51)

→ Rfd!!Rr!!((f × fπ)−1LY ⊗ p
−1f−1G)(52)

∽←− Rp2!!(R(id× fd)!!(f × fπ)−1LY ⊗ p
−1
1 f−1G)(53)

→ Rp2!!(LX ⊗ p
−1
1 f−1G),(54)

where in line (52) we used morphism (49) and the commutativity of inverse image
and tensor product, and in line (53) the identities fdr = p2(id×fd), p = p1(id×fd)
and the projection formula for (id× fd). The last morphism is the composition of
the morphisms in (50). �

Proposition 9.2. For an embedding f : X → Y and G ∈ Mod(AY ), we have a
morphism of AT∗X-modules:

(55) fd!!f
∗
πµ
A
Y (G)→ µAX(f∗G),

which makes a commutative diagram in D+(I(C .

T ∗X)) with morphism (48):

Rfd!!f
−1
π µY (G)

��

// µX(f−1G)

��
Rfd!!f

∗
πµ
A
Y (G) ∽←− fd!!f∗πµ

A
Y (G) // µAX(f∗G).

Proof. We follow the construction of morphism (48), replacing each morphism by
its analog for A-modules. We have the analogs of morphisms (49) and (50):

f∗πq2!! → f∗πq2!!(f × fπ)∗(f × fπ)∗

≃ f∗πfπ∗r!!(f × fπ)∗ → r!!(f × fπ)∗,
(56)

(f × fπ)∗LAY → LAY←X ⊗ ω
−1
X|Y , (id× fd)!!(L

A
Y←X ⊗ ω

−1
X|Y )→ LAX .(57)
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Morphism (56) is defined with the same adjunction properties as morphism (49).
The morphisms in line (57) are defined the same way as (50), using Proposition 8.3
instead of Proposition 8.2. We deduce the succession of morphisms:

fd!!f
∗
πµ
A
Y (G) = fd!!f

∗
πq2!!(L

A
Y ⊗A q

∗
1G)(58)

→ fd!!r!!((f × fπ)∗LAY ⊗A p
∗f∗G)(59)

∽←− p2!!((id× fd)!!(f × fπ)∗LAY ⊗A p
∗
1f
∗G)(60)

→ p2!!(L
A
X ⊗A p

∗
1f
∗G),(61)

where in line (59) we used morphism (56) and the commutativity of inverse image
and tensor product, and in line (60) the identities fdr = p2(id×fd), p = p1(id×fd)
and the projection formula for (id × fd) (Lemma 6.6). The last morphism is the
composition of the morphisms in (57).

The vertical arrows in the diagram are the compositions of g−1 → g∗ respectively
for g = fπ, g = f , and µZ → µAZ , respectively for Z = Y , Z = X . This last
morphism is defined only on

.

T ∗Z. The diagram commutes because it is obtained by
morphisms of functors. The isomorphism between the direct image and the derived
direct image by fd follows from the softness of A-modules (Proposition 6.5). �

9.2. Microlocalization and direct image. In Proposition 9.3 below we recall a
weak version of the direct image morphism, defined in Theorem 2.4.2 of [9]. This
theorem gives a morphism, for F ∈ Db(I(CX)), Rfπ!!f

−1
d µX(F ) → µY (f!!F ). We

consider the case where F = f−1G⊗ ωX|Y which is sufficient for our purpose, and
we give an easier proof in this case. This proof also works for the resolutions by
A-modules, assuming moreover that f is smooth (see Proposition 9.4). We use the
notations of diagram (47).

Proposition 9.3 (special case of [9], Theorem 2.4.2). There exists a natural mor-
phism, for f : X → Y and G ∈ D+(I(CY )):

(62) Rfπ!!f
−1
d µX(f−1G⊗ ωX|Y )→ µY (G).

Proof. We set F = f−1G⊗ ωX|Y and obtain the sequence of morphisms:

Rfπ!!f
−1
d µX(F )(63)

= Rfπ!!f
−1
d Rp2!!(LX ⊗ p

−1
1 F )(64)

∼−→ Rfπ!!Rr!!((id× fd)
−1LX ⊗ p

−1F )(65)

≃ Rq2!!R(f × fπ)!!((id× fd)
−1LX ⊗ p

−1ωX|Y ⊗ (f × fπ)−1q−1
1 G)(66)

∽←− Rq2!!(R(f × fπ)!!((id× fd)
−1LX ⊗ p

−1ωX|Y )⊗ q−1
1 G)(67)

→ Rq2!!(LY ⊗ q
−1
1 G),(68)

where in line (65) we used the base change formula f−1
d Rp2!!

∼−→ Rr!!(id × fd)
−1

and the identity p = p1(id × fd), in line (66) the identities fπr = q2(f × fπ) and
fp = q1(f × fπ), and in line (67) the projection formula for (f × fπ). The last line
is given by the composition of

(id× fd)
−1LX → LY←X and R(f × fπ)!!(LY←X ⊗ p

−1ωX|Y )→ LY ,

which are respectively given by (ii) and (i) of Proposition 8.2 (for the first morphism
we note that (id×fd) is transversal to X×XT ∗X and for the second one we note that
the restriction of p−1ωX|Y to X ×Y T

∗Y is isomorphic to ωX×Y T∗Y |Y×Y T∗Y ). �
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The following proposition gives a realization of morphism (62) by A-modules.
We restrict to the case where f is a submersion because we only have an integration
morphism in this case.

Proposition 9.4. There exists a natural morphism of AT∗Y -modules, for a sub-
mersion f : X → Y and for G ∈ Mod(AY ):

(69) fπ!!f
∗
dµ
A
X(f∗G⊗ ω′X|Y )→ µAY (G),

which makes a commutative diagram in D+(I(C .

T ∗Y )) with morphism (62):

Rfπ!!f
−1
d µX(f−1G⊗ ωX|Y ) //

��

µY (G)

��
Rfπ!!f

∗
dµ
A
X(f∗G⊗ ω′X|Y ) ∽←− fπ!!f

∗
dµ
A
X(f∗G⊗ ω′X|Y ) // µAY (G).

Proof. We follow the proof of Proposition 9.3, but now we consider morphisms of
A-modules. We set F = f∗G⊗ ω′X|Y and obtain the sequence of morphisms:

fπ!!f
∗
dµ
A
X(F )(70)

= fπ!!f
∗
dp2!!(L

A
X ⊗A p

∗
1F )(71)

→ fπ!!r!!((id× fd)
∗LAX ⊗ p

∗F )(72)

≃ q2!!(f × fπ)!!((id× fd)
∗LAX ⊗ p

−1ω′X|Y ⊗A (f × fπ)∗q∗1G)(73)

∽←− q2!!((f × fπ)!!((id× fd)
∗LAX ⊗ p

−1ω′X|Y )⊗A q
∗
1G)(74)

→ q2!!(L
A
Y ⊗A q

∗
1G),(75)

where in line (72) we used the base change formula f∗dp2!! → r!!(id × fd)
∗ and

the identity p = p1(id × fd), in line (73) the identities fπr = q2(f × fπ) and
fp = q1(f × fπ), and in line (74) the projection formula for (f × fπ). The last line
is given by the composition of

(id× fd)
∗LAX → LAY←X and (f × fπ)!!(L

A
Y←X ⊗ p

−1ω′X|Y )→ LAY ,

which are given by (ii) and (i) of Proposition 8.3.
The diagram is defined as in Proposition 9.2. �

9.3. External tensor product. We consider X,Y as above and F ∈ D+(I(CX)),
G ∈ D+(I(CY )). Proposition 2.1.14 of [9] implies the existence of a natural mor-
phism:

(76) µXF ⊠ µYG→ µX×Y (F ⊠G).

Proposition 9.5. For F ∈ Mod(AX) and G ∈ Mod(AY ) there exists a natural
morphism

µAXF⊠µAYG→ µAX×Y (F ⊠G).

Its restriction to
.

T ∗X ×
.

T ∗Y makes a commutative diagram with morphism (76)
in D+(I(C .

T ∗X×
.

T∗Y )):

µXF ⊠ µYG //

��

µX×Y (F ⊠G)

��
µAXF ⊠ µAYG

// µAX×Y (F ⊠G).
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Proof. The existence of the morphisms follows from the Künneth formula and
Proposition 8.5. It coincides with the already known construction outside the zero
section by Proposition 7.10. �

10. Composition of kernels

We recall the microlocal composition of kernels defined in [9], Theorem 2.5.1, and
we check that a similar construction also works for A-modules. This construction
is a composition of the operations recalled in section 9, and we just have to check
that the restrictive hypothesis assumed in the case of A-modules are satisfied.

We first recall some standard notations and definitions. We consider three ana-
lytic manifolds X , Y , Z and we let qij be the (i, j)-th projection from X×Y ×Z and
pij the (i, j)-th projection from T ∗X × T ∗Y × T ∗Z. We also denote by a : T ∗Y →
T ∗Y the antipodal map and we set pa12 = (id × a) ◦ p12. For F ∈ D+(I(CX×Y )),
G ∈ D+(I(CY ×Z)) and F ∈ D+(I(CT∗X×T∗Y )), G ∈ D+(I(CT∗Y×T∗Z)) we define:

(77) F ◦G = Rq13!!(q
−1
12 F ⊗ q

−1
23 G), F

a
◦G = Rp13!!(p

a−1
12 F⊗ p−1

23 G).

We set for short M = X × Y × Y × Z, N = X × Y × Z and let j : N →M be the
diagonal embedding. We define the maps:

k : T ∗N →֒ N ×M T ∗M, (x, y, z; ξ, η, ζ) 7→ (x, y, y, z; ξ,−η, η, ζ)

τ : T ∗N → N ×X×Z T
∗(X × Z), (x, y, z; ξ, η, ζ) 7→ (x, y, z; ξ, ζ)

p = jπ ◦ k

and obtain the following commutative diagram, with a Cartesian square:

(78)

T ∗N

τ

��

� � k //

p

((

p13

((

�

N ×M T ∗M

jd
��

� � jπ // T ∗M

N ×X×Z T ∗(X × Z) � �

q13d

//

q13π

��

T ∗N

T ∗(X × Z)

We note that F
a
◦ G ≃ Rp13!! p

−1(F ⊠ G). Theorem 2.5.1 of [9] gives a natural
morphism, the composition of kernels:

(79) µX×YK1
a
◦ µY×ZK2 → µX×Z(K1 ◦K2),

for K1 ∈ D+(I(CX×Y )), K2 ∈ D+(I(CY×Z)). Since the commutation of microlo-
calization and direct image has a weaker statement in the case of A-modules than in
the case of ind-sheaves of vector spaces, we also give a weaker statement than (79)
for the composition of kernels.

In fact, for ind-sheaves, morphism (80) below is equivalent to (79): indeed using
the adjunction between Rq13!! and q!13 we may apply (80) to K3 = K1 ◦ K2 and
recover (79). But for A-modules we don’t have this adjunction and the statement
of Proposition 10.2 is actually weaker than an A-module analog of (79).
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Proposition 10.1. For complexes K1 ∈ D+(I(CX×Y )), K2 ∈ D+(I(CY×Z)) and
K3 ∈ D+(I(CX×Z)), with a morphism q−1

12 K1⊗ q
−1
23 K2 → q−1

13 K3⊗ωY , there exists
a natural morphism

(80) µX×YK1
a
◦ µY×ZK2 → µX×ZK3.

Proof. By definition µX×YK1
a
◦ µY×ZK2 = Rp13!!p

−1(µX×YK1 ⊠ µY×ZK2). The
external tensor product (76) gives µX×YK1 ⊠ µY×ZK2 → µM (K1 ⊠K2) and the
base change formula gives Rp13!!p

−1 = Rq13π!!Rτ!!k
−1 j−1

π ≃ Rq13π!!q
−1
13dRjd!!j

−1
π .

We obtain the morphisms

µX×YK1
a
◦ µY×ZK2 → Rq13π!!q

−1
13dRjd!!j

−1
π (µM (K1 ⊠K2))

→ Rq13π!!q
−1
13d µN j

−1(K1 ⊠K2)

→ Rq13π!!q
−1
13d µN (q−1

13 K3 ⊗ ωY )

→ µX×ZK3,

where in the second line we have applied Proposition 9.1, in the third the hypothesis
and in the fourth Proposition 9.3. �

Now we give the A-module analog of the above result. For F ∈Mod(AT∗X×T∗Y )
and G ∈ Mod(AT∗Y×T∗Z) we set

F
aA
◦ G = p13!!(p

a∗
12F⊗AN

p∗23G) ≃ p13!!p
∗(F⊠G).

We note the morphisms in D+(I(CT∗X×T∗Z)):

(81) F
a
◦G→ Rp13!!(p

a∗
12F⊗AN

p∗23G) ∽←− F
aA
◦ G,

where the second arrow is an isomorphism by Proposition 6.5.

Proposition 10.2. For A-modules K1 ∈ Mod(AX×Y ), K2 ∈ Mod(AY×Z) and
K3 ∈ Mod(AX×Z) with a morphism q∗12K1 ⊗ q∗23K2 → q∗13K3 ⊗ ω′Y there exists a
natural morphism

(82) µAX×YK1
aA
◦ µAY×ZK2 → µAX×ZK3,

with the following property. Setting U =
.

T ∗X ×
.

T ∗Y , V =
.

T ∗Y ×
.

T ∗Z, the re-
strictions of morphisms (80) and (82) outside the zero section make a commutative
diagram in D+(I(C .

T ∗X×
.

T∗Z))):

(µX×YK1)U
a
◦ (µY×ZK2)V

//

��

µX×ZK3

��

µAX×YK1
aA
◦ µAY×ZK2

// µAX×ZK3.

Proof. The proof is similar to the proof of Proposition 10.1, replacing operations in
D+(I(C·)) by the same operations in Mod(A·). In particular Proposition 6.7 gives
the base change p13!!p

∗ = q13π!!τ!!k
∗ j∗π

∽←− q13π!!q
∗
13d jd!!j

∗
π, which is an isomorphism

because q13d is an embedding and jd is smooth. Then we use Propositions 9.2
and 9.4 instead of Propositions 9.1 and 9.3.

By Proposition 6.3 we have q∗12K1⊗q∗23K2 ≃ q
−1
12 K1⊗q

−1
23 K2 and q∗13K3 ≃ q

−1
13 K3

in D+(I(CX×Y×Z)). Hence the morphism in the hypothesis of the proposition
yields a morphism q−1

12 K1 ⊗ q−1
23 K2 → q−1

13 K3 ⊗ ωY in D+(I(CX×Y×Z)) and we
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may apply Proposition 10.1. The vertical arrows in the diagram are given by the
morphisms of functors µ→ µA and (81). �

We are in fact only interested in the following example. We assume now that
X,Y, Z are complex analytic manifolds. We use the A-module OX and its variants

introduced in Definition 6.8. We set K1 = O
(0,dc

Y )
X×Y [dcY ], which gives a resolution

of O
t(0,dc

Y )
X×Y [dcY ], K2 = O

(0,dc
Z)

Y×Z [dcZ ], K3 = O
(0,dc

Z)
X×Z [dcZ ]. With these notations mor-

phism (28) yields a morphism q∗12K1 ⊗ q∗23K2 → q∗13K3 ⊗ ω′Y and Proposition 10.2
gives the microlocal convolution:

(83) µAX×Y O
(0,dc

Y )
X×Y [dcY ]

aA
◦ µAY×ZO

(0,dc
Z)

Y×Z [dcZ ]→ µAX×ZO
(0,dc

Z)
X×Z [dcZ ].

This convolution product is associative, because the composition of kernels
aA
◦ is

associative, as well as the integration morphism, by Fubini.

11. Sheaves of morphisms

We will in fact use the morphisms of the previous section in a slightly more gen-
eral situation, namely for complexes of the type Hom(π−1F, µG), rather than µG.
For this we use the following proposition. Once again we recall the convolution for
sheaves and then build it for A-modules. To compare them we use the convolution
products for complexes F,G, F,G:

F
0
◦G = q13!!(q

−1
12 F ⊗ q

−1
23 G), F

a0
◦ G = p13!!(p

a−1
12 F⊗ p−1

23 G).

Proposition 11.1. We consider F ∈ C+(I(CX×Y )), G ∈ C+(I(CY×Z)), F ∈
C+(I(CT∗(X×Y ))) and G ∈ C+(I(CT∗(Y×Z))), there exists natural morphisms, re-

spectively in D+(I(CT∗(X×Z))) and C+(I(CT∗(X×Z))):

RHom(π−1
X×Y F,F)

a
◦ RHom(π−1

Y×ZG,G)→ RHom(π−1
X×Z(F ◦G),F

a
◦G),(84)

Hom(π−1
X×Y F,F)

a0
◦ Hom(π−1

Y×ZG,G)→ Hom(π−1
X×Z(F

0
◦G),F

a0
◦ G).(85)

For F ∈ C+(C(X×Y )sa
), G ∈ C+(C(Y×Z)sa

), F ∈ Mod(AT∗(X×Y )) and G ∈
Mod(AT∗(Y×Z)), we also have the natural morphism

(86) Hom(π−1
X×Y F,F)

aA
◦ Hom(π−1

Y×ZG,G)→ Hom(π−1
X×Z(F

0
◦G),F

aA
◦ G).

These morphisms fit into the commutative diagram:

(87)

RHom(π−1
X×Y F,F)

a
◦ RHom(π−1

Y×ZG,G) // RHom(π−1
X×Z(F ◦G),F

a
◦G)

��

Hom(π−1
X×Z(F

0
◦G),F

a
◦G)

Hom(π−1
X×Y F,F)

a0
◦ Hom(π−1

Y×ZG,G)

OO

��

// Hom(π−1
X×Z(F

0
◦G),F

a0
◦ G)

OO

��

Hom(π−1
X×Y F,F)

aA
◦ Hom(π−1

Y×ZG,G) // Hom(π−1
X×Z(F

0
◦G),F

aA
◦ G).
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Proof. We first build morphism (84), in the derived category. We keep the notations
of section 10, in particular diagram (78). To simplify the notations we suppress some
subscripts on π−1. Let us denote by LHS the left hand side of (84). We have

LHS = Rp13!!p
−1(RHom(π−1F,F) ⊠ RHom(π−1G,G))

≃ Rp13!!p
−1 RHom(π−1(F ⊠G),F ⊠ G).

We can enter the functor p−1 inside the RHom, and use the morphism of functors
Rp13!! RHom(·, ·)→ RHom(Rp13∗(·), Rp13!!(·)). Thus we obtain a morphism:

(88) LHS → RHom(Rp13∗p
−1π−1(F ⊠G),F

a
◦G).

We let σ : N ×X×Z T ∗(X × Z) → T ∗N be induced by the inclusion of the zero
section of Y and we let π′N : N ×X×Z T ∗(X × Z) → N be the projection. Then
πM ◦ p ◦ σ = j ◦ π′N . Moreover, since we deal with conic sheaves, we have the
isomorphism of functors Rτ∗ ≃ σ−1. We also have a morphism Rq13π!! → Rq13π∗.
We deduce the sequence of morphisms:

Rp13∗p
−1π−1

M ≃ Rq13π∗Rτ∗p
−1π−1

M

← Rq13π!!σ
−1p−1π−1

M

≃ Rq13π!!π
′−1
N j−1

≃ π−1
X×ZRq13!!j

−1,

(89)

where the last isomorphism is a base change. So we obtain π−1
X×ZRq13!!j

−1 →

Rp13∗p
−1π−1

M and composing this morphism with (88) we deduce (84).

Morphism (85) in the category of complexes is obtained in the same way. In
particular the analog of morphism (88) is obtained from the morphism of complexes
p13!!Hom(·, ·) → Hom(p13∗(·), p13!!(·)). Moreover, τ∗ is exact on conic sheaves, so
that τ∗ ≃ Rτ∗ ≃ σ−1 and we have a sequence of morphisms in the category of
complexes analog to (89) (note that the base change formula is true for complexes).

The top part of diagram (87) is given by the natural morphisms between functors
and their derived functors.

The difference between morphism (86) and morphism (85) only concerns the

right hand side of the Hom functors. Namely we replace the functor
a0
◦ by

aA
◦

and obtain the same proof. The bottom part of diagram (87) is then given by the
morphism of functors (81). �

12. E-modules

In this section X is a complex analytic manifold of complex dimension n = dcX
and ∆ denotes the diagonal of X ×X . We identify T ∗X and T ∗∆(X ×X) by the
first projection. We denote by EX the sheaf of microdifferential operators of finite
order. This is a sheaf on T ∗X and its restriction to

.

T ∗X was interpreted using
the tempered microlocalization in [1] (see also [11]), as follows. We let γ :

.

T ∗X →
P(X) be the projection to the complex projective bundle associated to T ∗X . Then

EX ≃ γ−1γ∗(E
R,f
X ), where ER,fX is the sheaf on T ∗X ≃ T ∗∆(X ×X):

ER,fX = T−µhom(C∆,O
(0,n)
X×X [n]).
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The product of ER,fX is defined in [1] by the convolution product for tempered
microlocalization. This can be defined also in the language of ind-sheaves, follow-
ing [9]. We first define E ′indX ∈ Db(I(CT∗(X×X))) by

E ′indX = RIHom(π−1C∆, µX×XO
t(0,n)
X×X [n]),

where O
t(0,n)
X×X , defined in (24) as an object of Db(C(X×X)sa

), is now considered in

Db(I(CX×X) using the functor Iτ . Thus E ′indX has support on T ∗X ≃ T ∗∆(X ×X)
but this doesn’t imply that it is the image of an ind-sheaf on T ∗X . We recall the
notations p1, p2 : T ∗(X × X) → T ∗X for the projections, a : T ∗X → T ∗X for the
antipodal map and we define the embedding

δ′ : T ∗X ≃ T ∗∆(X ×X)→ T ∗(X ×X), (x, ξ) 7→ (x, x, ξ,−ξ).

Since supp E ′indX = T ∗∆(X ×X) the morphisms of functors p1∗ → p1∗δ
′
∗δ
′−1 = δ′−1

and p2∗ → a−1δ′−1 induce isomorphisms:

(90) δ′−1E ′indX ≃ p1∗E
′ind
X ≃ a−1p2∗E

′ind
X .

We could write the same isomorphisms with pi!! instead of pi∗ or their derived
functors.

Definition 12.1. We let E indX ∈ Db(I(CT∗X)) be the ind-sheaf on T ∗X defined
by (90).

Since the functor α from ind-sheaves to sheaves commute with direct image (or

inverse image) we have ER,fX ≃ αT∗X(E indX ).
The complex E indX comes with a product in the sense of Definition 3.1, defined

as follows:

(i) Using (90) we see that E indX ⊗ E indX ≃ δ′−1(E ′indX

a
◦ E ′indX ).

(ii) We have C∆ ◦ C∆ = C∆ and morphism (84), with X = Y = Z, gives a

morphism E indX ⊗ E indX → δ′−1 RIHom(π−1C∆, µO
t(0,n)
X×X

a
◦ µO

t(0,n)
X×X [2n]).

(iii) The convolution product Rq13!!(q
−1
12 O

t(0,n)
X×X [n]⊗ q−1

23 O
t(0,n)
X×X [n])→ O

t(0,n)
X×X [n]

together with Proposition 10.1 gives a morphism µO
t(0,n)
X×X

a
◦ µO

t(0,n)
X×X [2n]→

µO
t(0,n)
X×X [n].

The composition of (i)–(iii) defines the product E indX ⊗ E indX → E indX . In the same
way Propositions 11.1 and 10.1, applied to X = Y and Z a point, give an action
of E indX on µOtX , in the sense of Definition 3.1. We deduce an action of E indX on
RIHom(π−1F, µOtX), for any F ∈ Db(I(CX)).

This product and this action are just morphisms in the derived category and
do not endow the complex E indX with a structure of algebra. However, when we go
back to the derived category of sheaves with the functor αT∗X , the product gives

a morphism ER,fX ⊗ ER,fX → ER,fX . But ER,fX is a sheaf (i.e. concentrated in degree

0) and this morphism really endows ER,fX with a structure of sheaf of algebras.

But this is not enough to define a structure of ER,fX -module on T−µhom(F,OX) ≃
αT∗X RIHom(π−1F, µOtX), which is in general not concentrated in degree.

To solve this problem we define a dg-algebra EAX on the site Xsa (and not merely
an object in the derived category) such that E indX ≃ Iτ (EAX ). We also define in
the same way a dg-module over EAX representing µOtX . In fact our definition is
exactly the previous one, but in the categories of A-modules instead of the derived
categories.
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Definition 12.2. We define a complex of sheaves on T ∗Xsa = T ∗∆(X ×X)sa

EAX = δ′−1Hom(π−1C∆, µ
A
X×XO

(0,n)
X×X [n]),

with a product defined as follows:

(i) as in the case of E indX , morphism (86) gives a morphism

EAX ⊗ E
A
X → δ′−1Hom(π−1C∆, µ

A
O

(0,n)
X×X

aA
◦ µAO

(0,n)
X×X [2n]),

(ii) the convolution product (28) together with Proposition 10.2 gives a mor-
phism

µAO
(0,n)
X×X

aA
◦ µAO

(0,n)
X×X [2n]→ µAO

(0,n)
X×X [n].

The composition of (i) and (ii) defines the product EAX ⊗ E
A
X → E

A
X .

In the same way, Propositions 11.1 and 10.2, applied to X = Y and Z a point,
give a morphism EAX ⊗ µ

A
XOX → µAXOX .

Proposition 12.3. The morphisms introduced in the previous definition give EAX
a structure of dg-algebra and give µAXOX a structure of dg-EAX -module.

Over
.

T ∗X, we have isomorphisms E indX ≃ Iτ (EAX ) and µOtX ≃ Iτ (µAXOX).
Through these isomorphisms the product of EAX and its action on µAXOX coincide
with the product of E indX and its action on µOtX defined above.

Proof. The complex EAX is a dg-algebra and µAXOX is a dg-EAX -module because the
product and the action are defined in categories of complexes, and not merely up
to homotopy.

Let us check that the product of EAX represents the product of E indX and that their
action on µAXOX and µOtX are the same. This is a consequence of diagram (87)
and Proposition 10.2; but in diagram (87) some vertical arrows go in the wrong
direction and the commutative diagram in Proposition 10.2 requires a restriction
outside the zero section. These problems are solved as follows.

In diagram (87) the vertical arrows are isomorphisms. Indeed, we consider the

cases F = µAXO
(0,n)
X×X [n] and G = F or G = µAXOX . Hence, by Proposition 7.10, F

and G consist of quasi-injective sheaves (on the site T ∗Xsa), and so are acyclic for
the functorsHom(H, ·), when H is constructible. In our cases the complexes F , G in
the diagram are C∆ or CX , so that the Hom sheaves are isomorphic to the RHom.
For the composition of kernels ◦ we also have to compute a direct image. Since we
deal with A-modules, Proposition 6.5 implies that direct images and derived direct
images coincide. This proves that the vertical arrows are isomorphisms.

This diagram can be extended to the right, using Proposition 10.2. We can
use the commutative diagram of Proposition 10.2 because of the following remark:
setting U =

.

T ∗X ×
.

T ∗X , we have, on
.

T ∗X × T ∗X , (E ′indX )U
∼−→ E ′indX . Then, for

the same reason as above, the right vertical arrows in this extended diagram are
isomorphisms. �

We still have to make the link between EAX and ER,fX . We note that ρ−1EAX is

quasi-isomorphic to ER,fX . In particular ρ−1EAX has its cohomology concentrated in
degree 0 and we have isomorphisms of sheaves:

ER,fX ≃ H0(ρ−1EAX ) ≃ H0(αIτ (EAX )).
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Moreover the structure of dg-algebra on EAX gives a structure of dg-algebra on
ρ−1EAX and a structure of algebra on H0(ρ−1EAX ). The above proposition implies

that this product induced on ER,fX coincides with the one defined previously.
We also have a structure of dg-EAX -module on µAXOX ; in particular it defines

an object Iτ (µAXOX) ∈ D(Iτ (EAX )). For any G ∈ D−(I(CT∗X)) the complex
RIHom(G, Iτ (µAXOX)) is thus also naturally defined as an object of D(Iτ (EAX )).
For G = π−1F , F ∈ D−(I(CX)), we deduce that

T−µhom(F,OX) = αRIHom(π−1F, Iτ (µAXOX)) ∈ D(ρ−1EAX ),

and, by construction, the corresponding action in D(CT∗X)

ρ−1EAX ⊗ T−µhom(F,OX)→ T−µhom(F,OX)

coincides with the action of ER,fX on T−µhom(F,OX) defined above. Thus we are
almost done, except that T−µhom(F,OX) is defined as an object of D(ρ−1EAX ) rather

than D(ER,fX ). But the dg-algebra ρ−1EAX is quasi-isomorphic to ER,fX and it just
remains to apply Corollary 3.3, as follows.

We have the quasi-isomorphisms of dg-algebras on
.

T ∗X

ρ−1EAX
φ≤0

←−− τ≤0ρ
−1EAX

φ0
−→ ER,fX ,

and the equivalence of categories φ∗0 ◦ φ≤0∗ : D(ρ−1EAX ) ∼−→ D(ER,fX ). We set E ′X =
βT∗X(ρ−1EAX ) so that we have an adjunction morphism E ′X → Iτ (EAX ). This mor-
phism induces a functor of restriction of scalars, and φ∗0◦φ≤0∗ induces an equivalence
of categories:

r : D(Iτ (EAX ))→ D(E ′X), Φ: D(E ′X) ∼−→ D(βT∗X(ER,fX )).

Hence we obtain an objectOµX = Φ(r(Iτ (µAXOX))) ∈ D(βT∗X(ER,fX ))), representing
µOtX and we can state the final result:

Theorem 12.4. The object OµX ∈ D(βT∗X(ER,fX ))) defined above, over
.

T ∗X, is
send to µXOtX in D(I(C .

T ∗X)) by the forgetful functor. It satisfies moreover: for
F ∈ D−(I(CX)) the complex

αT∗X RIHom(π−1F,OµX)

which is naturally defined in D(ER,fX ), over
.

T ∗X, is isomorphic in D(C .

T ∗X) to

T−µhom(F,OX) endowed with its action of ER,fX .
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