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DG-METHODS FOR MICROLOCALIZATION

STEPHANE GUILLERMOU

ABSTRACT. For a complex manifold X the ring of microdifferential operators
Ex acts on the microlocalization phom(F, Ox), for F in the derived category of
sheaves on X. Kashiwara, Schapira, Ivorra, Waschkies proved, as a byproduct
of their new microlocalization functor for ind-sheaves, ux, that phom(F, Ox)
can in fact be defined as an object of D(Ex): this follows from the fact that
px Ox is concentrated in one degree.

In this paper we prove that the tempered microlocalization T-phom(F, Ox ),
or ,uX(’)E(, also are objects of D(€x). Since we don’t know whether }LXOE(
is concentrated in one degree, we built resolutions, of £x and MXO§(7 such
that the action of £x is realized in the category of complexes (and not only
up to homotopy). To define these resolutions we introduce a version of the de
Rham algebra on the subanalytic site which is quasi-injective. We prove that
some standard operations in the derived category of sheaves can be lifted to
the (non-derived) category of dg-modules over this de Rham algebra. Then
we built the microlocalization in this framework, together with a convolution
product.

1. INTRODUCTION

For a complex analytic manifold the sheaf of microlocal differential operators on
its cotangent bundle was introduced by Sato, Kashiwara and Kawai using Sato’s
microlocalization functor. Let us recall briefly the definition, in the framework
of [i]. Let X be a manifold and let D?(Cx) be the bounded derived category of
sheaves of C-vector spaces on X. For objects F,G € D’(Cx), a generalization of
Sato’s microlocalization functor gives phom(F,G) € D?(Cr+x), and a convolution
product is defined in [E] for this functor phom. When X is a complex analytic
manifold of complex dimension dx, one version of the ring of microlocal operators
is defined by R = phom(Ca, Og?’xdﬁ))[dx], where A is the diagonal of X x X and

(’)g?’xdj‘() denotes the holomorphic forms of degree 0 on the first factor and degree

dx on the second factor. It has support on the conormal bundle of A, which may
be identified with T* X. The product of £® is given by the convolution product of
whom.

The convolution product also induces an action of E& on phom(F, Ox), for any
F € D’(Cx), i.e. a morphism in D*(Cr-x), ER @ phom(F, Ox) — phom(F, Ox),
satisfying commutative diagrams which express the properties of an action.

A natural question is then whether phom(F,Ox) has a natural construction
as an object of D?(ER). Tt was answered positively in [E] as a byproduct of the
construction of a microlocalization functor for ind-sheaves. The category of ind-
sheaves on X, I(Cx), is introduced and studied in [ﬂ] It comes with an internal
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2 STEPHANE GUILLERMOU

Hom functor, ZHom, and contains Mod(Cx) as a full subcategory; the embedding
of Mod(Cx) in I(Cx ) admits a left adjoint (which corresponds to taking the limit)
ax: I(Cx) — Mod(Cx) which is exact. In this framework the construction of [fJ
yields a new microlocalization functor ux : D*(I(Cx)) — D?(I(Cr-x)) such that

(1) phom(F,G) ~ ar«x RITHom(ux F, uxG).

In particular px applies to a single object of D(I(Cx)) and phom(F, G) takes the
form of a usual Hom functor between objects on T*X.

The convolution product is also defined in this context, and now it gives an action
of 5)1} on ux(Ox). Through isomorphism () this action on px(Ox) induces the
action on phom(F,Ox). Hence it is enough to define ux(Ox) as an object of
DY(ER) to have the answer for all phom(F,Ox). It turns out that, outside the
zero section of T*X, ux(Ox) is concentrated in degree —dx. Thus ux(Ox) =~
H=%x(Ox)[dx] and, since the action of E)I} gives an E)P}—module structure on
H=%% % (Ox), we see that ux(Ox) naturally belongs to D*(ER), as required.

However in many situations differential operators of finite order are more appro-
priate. In this paper we solve the same problem in the tempered situation, i.e. for
the sheaf S)P({’f of differential operators with bounded degree and for the tempered
version of phom(F, Ox). This tempered microlocalization T-uhom(F, Ox) is intro-
duced in ] and also has a reformulation in terms of ind-sheaves. Namely it makes
sense to consider the ind-sheaf of tempered C°°-functions and the corresponding
Dolbeault complex O% (it is actually a motivation for the theory of ind-sheaves).
Then

T-phom(F, Ox) ~ ar-x RTHom(ux F, ux O%).
We have as above a natural action of E)P({’f on px(O%). Unfortunately this last

complex is a priori not concentrated in one degree and we cannot conclude directly
that yx (O%) is an object of D?(ERT),

We will in fact find resolutions of 5§’f and px (O%) such that the action corre-
sponds to a dg-module structure over a dg-algebra. More precisely we will define
an ind-sheaf of dg-algebras £5 on T*X (outside the zero section) with cohomology
only in degree 0 and such that H°(£¢) = Eﬁ’f. We will also find a dg-£¢-module,
say M, such that M ~ px(O%) in D?(I(Cr+x)) and such that the morphism of
complexes 53? ® M — M given by the dg—é‘j‘(l—module structure coincides with the
action E87 @ pux (O%) — px(O%). Then, as recalled in section fl, extension and
restriction of scalars yield an object M’ € D?(ER7) which represents yx (O% ) with
its S)P({’f -action. So we conclude as in the non tempered case.

Now we explain how we construct 53‘(‘ and M. The main step in the definition of
Efg’f , as well as its action on phom(F, Ox), is the microlocal convolution product
(2) uXXxOEEOX’(ﬁ?) gMXxXoiggf)l(X)[dX] —’MXXXOE?QC;()’
where 6 denotes the composition of kernels. This is a morphism in the derived
category. It is obtained from the integration morphism for the Dolbeault complex
and the commutation of the functor pxxx with the convolution of sheaves. In
order to obtain a true dg-algebra at the end, and not a complex with a product
up to homotopy, we will represent the functor u by a functor between categories of
complexes, which satisfies enough functorial properties so that the convolution also
corresponds to a morphism of complexes.



DG-METHODS FOR MICROLOCALIZATION 3

Let us be more precise. The first step is the construction of injective resolu-
tions, with some functorial properties. For this we introduce a quasi-injective de
Rham algebra, A, below (quasi-injectivity is a property of ind-sheaves weaker than
injectivity but sufficient to derive the usual functors). We use the construction of
ind-sheaves from sheaves on the “subanalytic site” explained in [ﬂ] For a real an-
alytic manifold X, the subanalytic site, X;,, has for open subsets the subanalytic
open subsets of X and for coverings the locally finite coverings. On X, it makes
sense to consider the sheaf of tempered C*° functions, C;O’t.

We consider the embedding ix: X = X x {0} — X x R and define a sheaf of
i-forms on X4, Ay = i;(lFXXR>O(C;O’th({)). This gives a de Rham algebra Ax
and it yields a quasi-injective resolution of Cx_, . For a morphism of manifolds
f: X — Y we have an inverse image f*: f~' Ay — Ax. If f is smooth, with fibers
of dimension d, we also have an integration morphism | Ix JuAx ®orxy[d] — Ay,
which represents the integration morphism R fyorx|y[d] — Cy.

We denote by Mod(Ax) the category of sheaves of dg-.Ax-modules. We have
an obvious forgetful functor For’y : Mod(Ax) — D(Cx,,). We will prove that the
operations needed in the construction of (f) are defined in Mod(Ax) and commute
with For’y. For example, for a morphism of manifolds f: X — Y we have functors,
f*and fy, fi, of inverse and direct images of dg-A-modules. In some cases this gives
a way to represent the derived functors f~1 and Rf., Rfu. For example, since A% is
quasi-injective we can prove, for F' € Mod(Ax), Fory (fu(F)) ~ Rfu(For’y (F)). If
[ is smooth we also prove, for G € Mod(Ay ), For'y (f*G) ~ f~!(Fory (G)). When
X is a complex manifold, we also have a resolution, Qx, of O% by a dg-Ax-module
which is locally free over A% (it is deduced from the Dolbeault resolution).

Once we have these operations we define a microlocalization functor for dg-
A-modules. Let us recall that the functor pux is given by composition with a
kernel Lx € D*(C(xxr-x),,): for F € D’(Cx,,) we have ux(F) = Lx o F =
Rpon(Lx ® py'F). We define a corresponding dg-.A-module, L4}, which is quasi-

isomorphic to Lx outside the zero section of T* X, i.e. over X X T*X, and we set,
for a dg-Ax-module F:
P (F) = Ly o F = pan(LY @ piF).

This functor is defined on the categories of complexes, i.e. it is a functor from
Mod(Ax) to Mod(Ar-x). If F is locally free over A%, we show that pg(F)
is quasi-injective and represents px(F) over T*X: we have Forp. y(ug(F)) ~
px (For'y (F)). In particular, when X is a complex manifold we obtain the dg-
Ar-x-module 15 (Ox) which represents px(O%) and can be used to compute
RHom(- 11x (0% ).

With these tools in hand we define the sheaf £ mentioned above from p*, the
same way Efg’f was defined from p. The definition of the product involves a convo-
lution product for g, The kernel L4 has indeed the same functorial behavior as
Lx, not with respect to all operations, but at least those needed in the composition
of kernels. We end up with a dg-Ar-x-module 5;?, which is a ring object in the cat-
egory of dg-Ar-x-modules and which represents 5§’f . In the same way we obtain
a structure of £g-module on ug (0x), as desired. As said above this £¢-module
gives a Or- X(é‘g’f )-module by extension and restriction of scalars (here (3 is the

functor from sheaves to ind-sheaves which is left adjoint to a)). Our result is more
precisely stated in Theorem :
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Theorem 1.1. There exists O% € D(BT*X(E)%J))), defined over T*X, which
is send to uxO% in D(I(Ct-x)) by the forgetful functor and satisfies: for F €
D~ (I(Cx)) the complex

ar-x RIHom(r ' F, O%)

which is naturally defined in D(E?’f), over T*X, is isomorphic in D(Ct-x) to
T-uhom(F,Ox) endowed with its action of 5§’f.

Acknowledgements. The starting point of this paper is a discussion with Raphagl
Rouquier and Pierre Schapira. The author also thanks Luca Prelli for his comments,
especially about soft sheaves on the analytic site.

2. NOTATIONS

If X is a manifold or a site and R a sheaf of rings on X, we denote by Mod(R) the
category of sheaves of R-modules on X. The corresponding category of complexes is
C(R), and the derived category D(R); we use superscripts b, +, — for the categories
of complexes which are bounded, bounded from below, bounded from above. More
generally, if R is a sheaf of dg-algebras on X, Mod(R) is the category of sheaves
of dg-R-modules on X, D(R) its derived category (see section E) In particular,
if X is a real analytic manifold, this applies to the subanalytic site X, whose
definition is recalled in section E We denote by px or p the natural morphism of
sites X — X;,. We denote by Cx and Cx,, the constant sheaves with coeflicients
Con X and X,.

If X is a manifold we denote by I(Cx) the category of ind-sheaves of Cx-vector
spaces on X (see section [i), and D(I(Cx)) its derived category. This category
comes with a natural functor ax, or a: I{Cx) — Mod(Cx) which corresponds to
taking the limit. Its left adjoint is denoted fx, or .

The dimension of a (real) manifold X is denoted dx; if X is a complex manifold,
its complex dimension is d%.

For a morphism of manifolds f: X — YV, we let wxy = f'Cy be the relative
dualizing complex. Hence wx |y is an object of D!(Cx). If Y is a point we simply
write wx; then wx ~ orx[dx], where ory is the orientation sheaf of X. In fact,
for X connected, wx|y is always concentrated in one degree (since X and Y are
manifolds), say ¢, and we will use the notation w’X‘Y = Hin‘y[—i]; hence w’X‘Y is
a well-defined object of C*(Cx). For an embedding of manifolds iz: Z — X we
will often abuse notations and write wz|x for iz.wz|x-

For a manifold X, we let TX and T*X be the tangent and cotangent bundles.
For a submanifold Z C X we denote by Tz X and 77X the normal and conormal
bundle to Z. In particular T3y X ~ X is the zero section of 7"X and we set
T*X =T*X \T%X. We denote by X the normal deformation of Z in X (see for
example [[]). We recall that it contains 77X and comes with a map 7: Xz - R
such that 771(0) = Tz X and 77 (r) ~ X for r # 0. We also have another map
p: Xz — X such that p~'(2) = (T2 X). U{z} xR for z € Z and p~'(z) ~ R\ {0}
forz € X\ Z. Weset Q=1"1Rso).

For a morphism of manifolds f: X — Y, the derivative of f gives the morphisms:

T*X I X xy 7Y I 7Y
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For two manifolds X, Y, F € D¥(Cx), G € D¥(Cy), we set FXG = p; ' F®p; 'G,
where p; is the projection from X x Y to the i** factor. For three manifolds X, Y, Z,
and “kernels” K € DY (Cxxy), L € DT(Cyxz), we denote the “composition of
kernels” by KoL = Rpos; (pﬁlK@p;glL), where p;; is the projection from X xY x Z
to the i*" x j* factors. We use the same notations for the variants on subanalytic
sites or using ind-sheaves.

3. DG-ALGEBRAS

In this section we recall some facts about (sheaves of) dg-algebras and their
derived categories. We refer the reader to [E]

A dg-algebra A is a Z-graded algebra with a differential d 4 of degree +1. A dg-A-
module M is a graded A-module with a differential dj; such that, for homogeneous
elements a € A', m € M7, dy(a-m) =da(a) -m+ (=1)'a- dym.

We consider a site X and a sheaf of dg-algebras Ax on X. We denote by
Mod(Ax) the category of (left) dg-Ax-modules. We let Ax be the graded al-
gebra underlying Ay (i.e. forgetting the differential). A morphism f: M — N
in Mod(Ax) is said to be null homotopic if there exists an Ax-linear morphism
s: M — N[—1] such that f = sdy; + dys. The homotopy category, K(Ax), has
for objects those of Mod(Ax), and for sets of morphisms those of Mod(Ax) quo-
tiented by null homotopic morphisms. A morphism in Mod(Ax) (or K(Ax)) is a
quasi-isomorphism if it induces isomorphisms on the cohomology groups. Finally,
the derived category D(Ax) is the localization of K(Ax) by quasi-isomorphisms.

Derived functors can be defined in this setting, in particular the tensor product
. ®ﬁx - If ¢: Ax — Byx is a morphism of sheaves of dg-algebras, we obtain
the extension of scalars ¢*: D(Ax) — D(Bx), M + Bx ®%_ M, which is left
adjoint to the natural restriction of scalars ¢, : D(Bx) — D(Ax). By [} (Theorem
10.12.5.1), if ¢ induces an isomorphism H(A) = H(B), then these functors of
restriction and extension of scalars are mutually inverse equivalences of categories

Some dg-algebras considered in this paper will appear as ring objects in cate-
gories of complexes. We recall briefly what it means. We let C be a tensor category
with unit C (C will be D(Cy ), D(I(Cy)) or Mod(Ay) for some manifold Y and
the unit is C = Cy).

Definition 3.1. A ring in C is a triplet (A, m,e) where A€ C, m: AQ A — A and
g: € — A are morphisms in C such that the following diagrams commute:

ASC2% 494 CoA-2A AgA AcAdAeA™®4 AsA

e S S e

In the same way, for such a “ring” (A4, m,e), an action of A on M € C is a morphism,
a: A® M — M, compatible with m and e. The pairs (M, «) of this type form a
category, where the morphisms from (M, «) to (M’, o’) are the morphisms from M
to M’ commuting with the action.

If Ex is a sheaf of (usual) algebras on X, we may consider Ex as a ring object
in D(Cx) and we denote by Dg, (Cx) the category of “objects of D(Cx) with
FEx-action” as above.
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We consider again a sheaf Ax of dg-algebras on X. We assume that its coho-
mology sheaves are 0 except in degree 0 and we set Ex = H°(Ax). Hence, if we
forget the structures and view Ax, Ex as objects of D(Cx ), we have isomorphisms
Ax < 17<9Ax = Ex (where 7<g, 7>0 denote the truncation functors). We note
that 7<pAx = -+ — A)_(1 — kerdy — 0 is sub-dg-algebra of Ax (whereas 7>9Ax
has no obvious structure of dg-algebra). The multiplications of Ax and Ex induce
morphisms in D(Cx): Ax ® Ax — Ax, Ex ® Ex — Ex. These morphisms coin-
cide under the identification Ax ~ Ex. Hence Ax and Ex are isomorphic as ring
objects in D(Cx).

For M € D(Ax), the structure of Ax-module induces a morphism in D(Cx):
a: Ex @M ~ Ax @ M — M. Then « is an action of Ex on M. In this way we
obtain a forgetful functor Fa, : D(Ax) — Dg, (Cx).

Lemma 3.2. Let Ax be a sheaf of dg-algebras, with cohomology sheaves concen-
trated in degree 0 and Ex = H°(Ax). Let ¢: Ax — Bx be a morphism of sheaves
of dg-algebras such that ¢ induces an isomorphism H(A) = H(B). Then we have
isomorphisms of functors Fa, o ¢, ~ Fp, and Fp, 0 ¢* ~ Fa,.

Proof. The first isomorphism is obvious and the second one follows because ¢, and
¢* are inverse equivalences of categories. (I

Applying this lemma to the morphisms A x Gso T<0Ax #o, Ex, we obtain:

Corollary 3.3. With the hypothesis of the above lemma, we have the commutative
diagram:

D(AX) &)
¢S°¢<o*l DEX(CX)-
D(Ex)

In particular, for M € D, (Cx), if there exists N € D(Ax ) such that Fa, (N) ~
M then there exists N’ € D(Ex) such that Fg, (N') ~ M

4. IND-SHEAVES AND SUBANALYTIC SITE

We recall briefly some definitions and results of [ﬂ] about ind-sheaves. To define
the ind-sheaves we are interested in we will use the “subanalytic site” as in [ﬂ],
where it is introduced to deal with tempered C* functions. It is studied in more
details in [[L(].

4.1. Ind-sheaves. For a category C we denote by C” the category of functors from
C to the category of sets. It comes with the “Yoneda embedding”, h: C — C,
X — Homg¢ (-, X). The category C" admits small inductive limits but, in general,
even if C also admits such limits, the functor A may not commute with inductive
limits. We denote by “Hi>n” the inductive limit taken in the category C*.

An ind-object in C is an object of C" which is isomorphic to “lim” ¢ for some
functor ¢: I — C, with I a small filtrant category. We denote by Ind(C) the full
subcategory of C” of ind-objects.

We are interested in two cases. Let X be a real analytic manifold, Mod(Cx)
the category of sheaves of C-vector spaces on X, Modr—_.(Cx) the subcategory of
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R-constructible sheaves, Mod“(Cx) and Modg_.(Cx) their respective full subcat-
egories of objects with compact support. We define as in [ﬂ]

I(Cx) =Ind(Mod®(Cx)) and Ir_.(Cx)=Ind(Modg_.(Cx)).

There are natural exact embeddings I : Ir_.(Cx) — I(Cx) and tx: Mod(Cx) —
I(Cx), F — “lim” Fy, U running over relatively compact open sets. Then ¢x
sends Modr—.(Cx) into Ig_.(Cx).

The functor ¢x admits an exact left adjoint functor ax: I(Cx) — Mod(Cx),
“lim”.  _F;+—lim.___F;. Since tx is fully faithful, we have ax otx ~ id.

— i€l —iel

The functor ax admits an exact fully faithful left adjoint Sx: Mod(Cx) —
I(Cx). Since (x is fully faithful, we have ax o fx ~ id. For Z C X a closed
subset, we have

(3) Bx(Cz) ~ “lim” Cy, W C X open subset.
W, ZCW

We write «, (8 for ax, Bx when the context is clear. The machinery of Grothen-
dieck’s six operations also applies to this context. There are not enough injectives in
I(Cx), but enough “quasi-injectives” (see [l and [§]): F € I(Cx) is quasi-injective
if the functor Hom(-, F') is exact on Mod“(Cx). The quasi-injective objects are
sufficient to derive the usual functors. In particular, for a morphism of manifolds
f+ X — Y we have the functors:

f7' f': D'(I(Cy)) — D*(I(Cx)),
Rf., Rfn: D'(I(Cx)) — D*(I(Cy)),
RTHom: D’(I(Cx))”” x D*(I(Cx)) — D*(I(Cx)),
®: D’(I(Cx)) x D*(I(Cx)) — D*(I(Cx)),

and also RHom = a RZHom: D(I(Cx))°? x D*(I(Cx)) — D*(Cx).
It will be convenient for us to use the equivalence of categories given in [ﬂ]
between Ig_.(Cx) and sheaves on the subanalytic site, defined below.

4.2. Subanalytic site. In this paragraph X is a real analytic manifold. The open
sets of the site X, are the subanalytic open subsets of X. A family Uie ; Ui of such
open sets is a covering of U if and only if, for any compact subset K, there exists
a finite subfamily of J C I with K N{J,c,Us = K NU. We denote by Mod(Cx,,)
the category of sheaves of C-vector on Xg,.

We have a morphism of sites px: X — X, (where X also denotes the site
naturally associated to the topological space X). We just write p if there is no risk
of confusion. In particular we have adjoint functors p,: Mod(Cx) — Mod(Cx.,)
and p~': Mod(Cx,,) — Mod(Cx).

The functor p~! is exact and p, is left exact and fully faithful (hence p=!o p, =
id). We denote by p. the restriction of p. to Modr—.(Cx). Then p.. is exact
and, for F' € Modr—_.(Cx), we usually write F instead of p..F. The functor p..
induces an equivalence of categories (see [, Theorem 6.3.5):

A IR,C(Cx) — MOd(CXsa)

“th_[>¥1” Fi— h_iﬁ,lpc*(ﬂ)-
Through this equivalence, the functor p~! corresponds to o and it also admits an
exact left adjoint functor, corresponding to . When dealing with the analytic
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site we will use the notation pi: Mod(Cx) — Mod(Cy,,) for this functor. For
example (E) becomes pCyz ~ h_n)l Zew Cyy7, where W runs over the subanalytic
open subsets of X. We note the commutative diagrams:

MOd(Cx) MOdR,C(Cx) MOd(Cx)

o T

IR,C(C)() ~ MOd(sta) T> I(Cx) IR,C(C)() ~ MOd(sta) T> I(Cx)

T T

The functors appearing in these diagrams are exact and induce similar commutative
diagrams at the level of derived categories.

The functor Hom is defined on Mod(Cx,,) as on every site and we set, for
7 C X alocally closed subanalytic subset:

(4) Fz(F):HOm(p*Cz,F), FZ:F®p*Cz.

The functors p, and Hom commute, hence p, and I'z also commute. For subana-
lytic open subsets U,V C X we have 'y (F)(V)=F{UNV).

By analogy with ind-sheaves, a notion weaker than injective is introduced in [E]
F € Mod(Cy,,) is quasi-injective if Hom(-, F') is exact on p,Modg _.(Cx). In fact,
since we consider coefficients in a field, it is equivalent to ask that for any subanalytic
open subsets U C V with compact closure I'(V; F') — I'(U; F) is surjective. Quasi-
injective sheaves are sufficient to derive usual left exact functors. In particular we
obtain RHom, RI'z, and they commute with Rp,.. We note the following identity
(which has no equivalent on the classical site): for F € D% __(Cx), H € D*(Cx),
G € D*(Cx.,),

(5) RHom(Rp.F,G)® pH ~ RHom(Rp.F,G® pH) in DT (Cx._,).

We also have another related result (see [[L0], Proposition 1.1.3): for {F;}ier a
filtrant inductive system in Mod(Cx_,) and U C X an analytic open subset

For a morphism f: X — Y there are the usual direct and inverse image functors
on the analytic sites f., f~!, but also, as in the case of ind-sheaves, a notion of
proper direct image fi1, with a behavior slightly different from the behavior of f

on the classical site. The functor f~! and f., fu admit derived functors. We quote
in particular: for F € D*¥(Cx,,), G € D% __(Cy) (we identify G with p.G)

(7) fuF =lim f,(Fy), U C X relatively compact open subanalytic,

U
(8) fuF =lim f,(I'xF), K C X compact subanalytic,
K
(9) RfyRHom(f'G,F) =% RHom(G, RfyF),
(10) RfyRL 1y F = RT'yRfyF.

The derived functor Rfy: DT(Cx,,) — DT(Cy,,) admits a right adjoint f'. The
notation is the same as in the classical case because of the commutation relation
f'oRp. ~ Rp, o f'. Hence f'Cy,, ~ pxwx|y and we will usually write wx |y
for p.wx|y. The adjunction morphism between fi and f 'induces the integration
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morphism
(11) intf: Rf[!(wx‘y) — Cysa.

4.3. “Soft” sheaves. In this paragraph X is a real analytic manifold and X, is
the corresponding subanalytic site. Though we are not in a framework of sheaves
on a locally compact space, we may introduce a notion of soft sheaves on the
subanalytic site which are acyclic for the direct image functors.

Definition 4.1. A sheaf ' € Mod(Cx,,) is soft if for any closed subanalytic
subset Z C X and any open subanalytic subset U C X the natural morphism
I(U; F) — T'(U; Fy) is surjective.

We note the following isomorphism, as in the case of sheaves on a reasonable
topological space:
(12) INU; Fz) ~ lim W, F), W C X subanalytic open set.
UnZCcwcuU
From this description of sections it follows that quasi-injective sheaves are soft. We
also note that if F is soft and Z C X is a closed subanalytic subset then F is soft.
Before we prove that soft sheaves are acyclic for functors of direct image we need
a lemma on coverings.

Lemma 4.2. Let U = J;cn Ui be a locally finite covering by subanalytic open
subsets of X. There exist subanalytic open subsets of X, V; C U;, 1 € N, such that
U=UjenVi and (UNV;) CU;.

Proof. We choose an analytic distance d on X and we define V,, inductively as
follows. If V;, i < n, is built we set W,, = Up, \ (U;.,, Vi UU;~,, U;) and

Vo ={z € Uy,; d(z,W,) <d(z,0U,)}.

We note that W, is subanalytic because the covering is locally finite. Since d
is analytic the functions d(-,Z), Z C X subanalytic, are continuous subanalytic
functions (see [ for the notion of subanalytic function). It follows that Vj, is a
subanalytic open subset of X and V,, C U,.

By construction W,, C V,, and we deduce by induction that U = Ui<n Vi U
Ujsn Uj- Since the covering is locally finite this gives U = J,cn Vi -

It remains to prove that (U N 7”) C U,. If this is false there exists xg €
UNV, NU,. Since W, is closed in U, we have § = d(z¢, W,,) > 0, and the ball
B(z0,8/2) doesn’t meet V;,. In particular xo ¢ V;,, which is a contradiction. O

i>n

Proposition 4.3. Let0 — F' % F B, F" - 0 be an ezact sequence in Mod(Cx,,)
with F' soft. Then for any open subanalytic subset U C X the morphisms
L(U; F) = T(U; F") and LT (U; F) — limTg (U; F"),
K K
where K runs over the compact subanalytic subsets of X, are surjective.

Proof. We first consider a section s € I'(U; F”). We may find a locally finite
covering U = | J;cn Ui and s; € I'(Uy; F) such that a(s;) = s|y,. By Lemma B
there exists a subcovering U = ;. Vi with (UNV;) C U;.

We set Z,, = U?:()Vi and prove by induction on n that there exists a section
3, € T(U; Fz,) such that 3(3,) = 8|z, and 8,|z,_, = Sn—1.
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This is clear for n = 0 and we assume it is proved for n. We set t, =
(8 — sn+1)|anm. Then ((t,) = 0 so that ¢, belongs to F(U;anmm) and

by hypothesis we may extend it to ¢t € I'(U; F’). Now we define 5,1, € I'(U; Fz,. ,)
by 3541z, = 5, and g"“'ﬁ = 8p+1 + a(t). The §, glue together into a section
5 € I(U; F) such that 5(5) = s, which proves the surjectivity of the first morphism.

Now we consider a compact K and s € T'i (U; F”'). We choose an open subana-
lytic subset V such that K C V and K’ =V is compact. We set Z = X \ V. We
just have seen that we may find § € T'(U; F)) such that 3(3) = s. Hence 3(3|z) =0
so that 8|z € I'(U; F}) and we may extend 3|z to ¢ € T'(U; F'). Then § =5 — a(t)
satisfies supp § C K’ and 3(8) = s. O

Corollary 4.4. If0 — F — F — F” — 0 is an exact sequence in Mod(Cx,,)
with F' and F soft, then F" also is soft.

Proof. For Z C X a subanalytic closed subset we have the exact sequence 0 —
Fl, — Fz — F}] — 0 and F/,, Fyz still are soft. Hence Proposition @ implies that,
for any subanalytic open subset U C X, the morphisms I'(U; F') — I'(U; F") and
I'(U; Fz) — I'(U; F}) are surjective. Now it follows from the definition that F" is
soft. O

Corollary 4.5. Let f: X — Y be a morphism of analytic manifolds, U C X
an open subanalytic subset. Then soft sheaves in Mod(Cx,,) are acyclic for the
functors T(U;-), lim Tk (U;-), K running over the compact subsets of X, Ty, f«
and fn.

Proof. For the first two functors this follows from Proposition @ and Corollary Q
by usual homological algebra arguments. This implies the result for the other
functors. U

4.4. Tempered functions. Here we recall the definition of tempered C* func-
tions. We also state a tempered de Rham lemma on the subanalytic site, which is
actually a reformulation of results of [E] In this paragraph, X is a real analytic
manifold.

Definition 4.6. A C* function f defined on an open set U has “polynomial growth
at p € X7 if there exist a compact neighborhood K of p and C; N > 0 such that
Ve € KNU, |f(z)] < Cd(z, K \ U)~¥, for a distance d defined through some
coordinate system around p.

We say that f is tempered if all its derivatives have polynomial growth at any
point. In [ﬂ] it is proved, using results of Lojasiewicz, that these functions define a
subsheaf C}’(o’t of p.C¥ on Xg,.

We denote by Qt)’: the sheaf on X, of forms of degree ¢ with tempered coefficients.
We obtain as usual a sheaf of dg-algebras on X, the “tempered de Rham algebra”
Q&:OHQ§OH~~'HQ§"HO.

Lemma 4.7. The tempered de Rham algebra is a resolution of the constant sheaf
on the subanalytic site, i.e. we have an exact sequence on X4 :

t,0 t,n
0—-Cx,, —Qy = —Qy —0.



DG-METHODS FOR MICROLOCALIZATION 11

Proof. In other words we have to prove that the morphism Cx,, — Q% in D*(Cx,,)
is an isomorphism. For this it is enough to see that, for any F' € D% __(Cx) we
have

(13) RHom(p. F, Cx.,) ~ RHom(p. F, Q% ).
Indeed for any G € D*(Cx,,), H*(G) is the sheaf associated to the presheaf
U — R*(U;G) = H* RHom(p,Cy, G); hence (1) applied to F = Cy gives the
result.

Now we prove (E) Actually this is Proposition 4.6 of [H], except that it is not
stated in this language, and that it is given for tempered distributions instead of

tempered C* functions. We let C% be the sheaf of real analytic functions and Dy

the sheaf of linear differential operators with coefficients in C{. Using a Koszul

resolution of C% we have the standard isomorphism RHom,,p, (pC%,CE") ~ Q.

In [[f] a functor RTHx (F) is defined (now denoted T'Hom(F, Dby )) and Proposi-
tion 4.6 reads:

RHom(F, Cx) ~ RHomp, (C%,T Hom(F, Dbx)).

To replace distributions by C°° functions, we have an analog of T Hom(F, Dby )
for C* functions, introduced in [d] and fi]. By [{], Theorem 10.5, we have the
comparison isomorphism

RHomp, (C, T Hom(F,CY)) ~ RHomp, (C%,T Hom(F, Dbx)).

Actually, in [[] X is a complex manifold and the result is stated for the sheaf of
anti-holomorphic functions instead of C%, but the proof also works in our case. Fol-
lowing [ﬂ], Proposition 7.2.6 or [E}, Proposition 3.3.5, we may express the functor
T Hom using the analytic site: T'Hom(F,C¥) =~ p~! RHom(p. F,C¥").
Putting these isomorphisms together we obtain ([L3):
RHom(p. F, Q%) ~ RHom(p.. F, RHom,, p, (mC%,CE"))
~ RHom,,py (pC%, RHom(p. F,C¥"))
~ RHomp, (C%,T Hom(F, Dbx))
~ RHom(F, Cyx),

where we have used adjunction morphisms between ®, Hom and pi, p~*. O

The integration of forms also makes sense in the tempered case: welet f: X — Y
be a submersion with fibers of dimension d, V' C Y a constructible open subset and
we consider a form w € T'(f~1(V); Q}”d ® orx|y) such that the closure (in X) of

supp w is compact. Then f jwe (Vv; Qi,z) We deduce the morphism of complexes

(14) [ b o) - 04
f
Its image in D?(Cy,,) coincides with the morphism int; of ([L]).

5. RESOLUTION

In this section we consider real analytic manifolds and sheaves on their associated
subanalytic sites.
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Definition 5.1. For a real manifold X we introduce the notations, X =X x R,
ix: X — X,z (2,0) and X* = X x Rsg. We consider the tempered de Rham
algebra on the site X,

t t,0 t,n+1
Q)?fOHQXH~~HQ)? — 0,

and we define a sheaf of anti-commutative dg-algebras on Xg,: Ax = i;(1FX+ (Q’}()
We denote by 7x,1: X — X and TX2: X — R the projections, and by t the
coordinate on R. This gives a canonical element dt € AY. The decomposition

X = X x R induces a decomposition of the differential d = d; + dy in anti-
commuting differentials, where we set dz(w) = (Jw/0t)dt.

The algebra Ax comes with natural morphisms related to inverse image and
direct image by a smooth map. Let f: X — Y be a morphism of manifolds. It
induces f = f x id and fT in the following diagram, whose squares are Cartesian:

oo o e

e
We note that X+ = f~1(Y'*) and this gives a morphism of functors f~'Ty+ —
I'x+f~!'. Thus we obtain a morphism of dg-algebras:

F Ty Q%) — Fxtfﬁl(Q%) — Dx+(Q%).

Definition 5.2. We denote by f*: f~' Ay — Ax the image of the above morphism
by the restriction functor i;(l. It is a morphism of dg-algebras.

Now we assume that f is smooth. Hence f is also smooth and we have the
integration morphism ([[4) f]?: fg!(Q’}( Ruwiy) — Qf? We apply the functor i3 T'y+
to this morphism. We note the base change isomorphism f; ui}l ~ i;lf 1 and the
morphism fyl'x+ — I'y+ fu. They give the sequence of morphisms:

fu(Ax ® Wy y) = fuix' Tx+ (5 @ wh o) ~ i ful x+ Q% © W)
— i;lfy+ﬁ!(ﬂ’}( ® UJ;A(

(15) . t
|?) — ’LY Fy+Q{/ = Ay

Definition 5.3. For a smooth map f: X — Y, we call morphism (@) the integra-
tion morphism and denote it ff: mAx ® wlx\y) — Ay.

The main result of this section is the following theorem. It is proved in the
remaining part of the section: the quasi-injectivity of the A% is proved in Propo-
sition .9 and the fact that Ax is a resolution is Corollary .

Theorem 5.4. Let X be a real analytic manifold. The sheaf of dg-algebras Ax is
a quasi-injective resolution of Cx,, .

Remark 5.5. By this theorem we have fy(Ax ® wg(ly) ~ Rfu(wx|y). Hence
the morphism [ f of Definition @ induces a morphism in the derived category
Rfiwwxy — Cy,,. It coincides with the usual integration morphism int; of )
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because this holds for the de Rham complex (morphism ([14) applied to f), and we
have the commutative diagram:

~

Rfuwxy Rf!!(i}lRFX+W;2‘{/) —>i§1RFY+RJ?!!wg‘§/

int g lintf

Cy ~ iy'RTy+Cy .

sa

For the proof of the theorem we need some lemmas on tempered functions. We
refer to [ for results on subanalytic sets. We recall that a function is subanalytic
if its graph is a subanalytic set. We introduce the following notation, for U C X
an open subset, and ¢: U — R a positive continuous function on U:

Uy ={(x,t) e X; z €U, |t| <p(z)}, UF=U,NX".

Lemma 5.6. Let U C X be a subanalytic open subset and V C X bea subanalytic
open neighborhood of U in X. Then there exists a subanalytic continuous function
@ defined on U such that ¢ = 0 on the boundary of U and U, C V.

Proof. Weset V! =V N (U xR), Z= X\ V' and let ¢ be the distance function to
Z: ¢(z) = d(z, Z). By [[], Remark 3.11, this is a subanalytic function on X and
its restriction to U satisfies the required property. (I

The following result is similar to a division property for flat C°° functions, which
can be found for example in [LJ], Lemma V.2.4.

Lemma 5.7. Let U C X be a subanalytic open subset and ¢: U — R a subanalytic
continuous function on U, such that o = 0 on the boundary of U and ¢ > 0 on U.
Then there exists a C* function v¥: U — R such that

(i) V2 € U, 0 <¢(x) < p(z),

(ii) ¥ and 1/v¢ are tempered.

Proof. We first note that it is enough to find a v such that v is tempered, 0 < ¢ < ¢
and 1/¢ has polynomial growth along OU. We may also work locally: assuming
the result is true on local charts, we choose
e locally finite coverings of X by subanalytic open subsets, (U;), (V;), together
with a partition of unity u;: X — R such that U; C Vi, 0 < g, Sopi = 1,
i =1 on U; and p; = 0 on a neighborhood of X \ V;,
e C™ functions 9;: U NV; — R such that 0 < ¢; < p on UNV;, 1; is
tempered and 1/1; has polynomial growth along 9(U N'V;)
and we set ¢ = Y. ;7). Then 1) satisfies the conclusion of the lemma. Indeed,
each p;1; is defined and tempered on U, and so is ¥ since the sum is locally finite,
and, for x € OU, i such that € U;, 1/¢ < 1/4; has polynomial growth at x.

Hence we assume X = R"™ and U is bounded. By [@], Lemma IV.3.3, there
exist constants Cy, k € N™, such that, for any compact K C R™ and any ¢ > 0,
there exists a C*° function « on R” such that

0<a<l, alz) =0if d(z, K) > ¢, alz)=1ifz € K,
Vk e N, |D*a| < Cpe ¥,
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(The function « is the convolution of the characteristic function of {z;d(z, K) <
£/2} with a suitable test function.)

We set K; = {z € U;27"! < d(x,0U) < 27} and we let ; be the function
associated to K = K; and ¢ = 272 by the above result. In particular a; = 1 on
K;, suppa; C S;, where we set S; = K; 1 UK; U K;;1, and |[D*q;| < C’,’CQik, for
some C}, € R. This implies: Vz € U, |D*a;(z)| < C{d(z,0U)~*, for some other
constants C} € R.

Lojasiewicz’s inequality gives, for z € U, cd(z,0U)" < ¢(z) < dd(z,dU)" , for
some constants ¢, , ¢, > 0 (see [[{], Theorem 6.4). We set \; = min{p(z);z € S;}.
We note that for z,2’ € S;, we have 1/8 < d(x,0U)/d(z',0U) < 8. Hence, for
x € S, we have Cd(z,dU)" < \; < C'd(z,dU)", for some C,C" > 0. Since
supp o; C S;, we also have Vi, \ja; < .

We note that an x € U belongs to at most three sets S; and we define ¢ =
(1/3) 3=, Aicvj. The above inequalities give, for z € U, 0 < ¢(x) < ¢(x) and

|D*y ()| < Cf €' d(x,0U)" ~*, <3C7'd(z,0U)",

1
¥(x)
so that ¢ and 1/1 are tempered. O
Lemma 5.8. Let U C X and ¢: U — R be as in Lemma . There ex-

ist another subanalytic continuous function ¢': U — R and a tempered fuction
a€ F(X*;C;{o’t) such that Vo € U, 0 < ¢'(z) < ¢(x) and

1 for (z,t) € U;r,,

V(z,t) € XT 0<a(,t) <1, O‘(z’t){o for (x,t) ¢ US
’ (2

Proof. We choose a C* function 1: U —]0, +00[ satisfying the conclusion of Lem-
ma .7 and another C> function h: R — R such that V& € R, 0 < h(t) < 1,
h(t) =1 for t <1/2 and h(t) =0 for t > 1. We define our function o on X* by

h-ts) ifaecU
0 ifegU.

We first see that « is C*°. This is clear except at points (zg, tp) with xg € OU. For
such a point, by continuity of ¢, we may find a neighborhood V of xy in X such
that Vo € V', p(z) < tp/2. Thus, on the neighborhood V' x]to/2; +00] of (o, t0),
is identically 0, and certainly C*.

Let us check that « is tempered. We only have to check growth conditions at
points (x,0) € X+. We note that d((x,t),0X 1) = ¢ so that we have to bound
the D¥a(x,t) by powers of t. Since D¥a = 0 outside U}, we assume (z,t) € U}.
The D*a are polynomial expressions in ¢, the derivatives of h and the derivatives
of 1/1. The derivatives of h to a given order are bounded, hence it just remains
to bound D!(1/¢)(x), with (z,t) € U}, by a power of t. Since 1/¢ is tempered
DY(1/4)(z) has a bound of the type Cd(z,0U)~". By Lojasiewicz’s inequality
we have ¢(x) < C'd(z,0U)" and, since (z,t) € U, we have t < ¢(z). Hence
DY (1/4)(z) < C"t=N/", for some C” > 0, which is the desired bound.

By definition a = 1 on UJ/Q and a = 0 outside U;;. Hence we just have to find
a subanalytic continuous function ¢’ such that ¢’ < /2. Since 1/t is tempered,
there exist constants D, M such that ¢~!(z) < Dd(z,0U)~™, and we may take
¢ (z) = 55d(z,0U)M. O
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Proposition 5.9. Let F be a C;{O’t-module and set G = i;(1FX+F. Let U C X be
a subanalytic open subset.

Then the natural map T(X+; F) — T(U; G) is surjective. In particular, the sheaf
G is quasi-injective.

Proof. We consider s € T'(U; G). As in the case of sheaves on manifolds we have,
for H € Mod(Cg_)and U C X, T'(Usiy'H) ~ lim , T(V; H) where V runs over
the subanalytic open subsets of X containing U. Hence, by Lemma @, we may
represent s by a section § € F(U;r ; F), for some subanalytic continuous function ¢
defined on U such that ¢ = 0 on the boundary of U.

We apply Lemma f.§ to the function ¢/2: U — R and obtain ¢': U — R and
a € F(X*‘;C)O}O’t) such that 0 < ¢’ < ¢/2, @ =1 on U;r, and o = 0 outside U;F/Q.
We set § = as. Then § € T(UJ; F) extends by 0 to a section § € I'(X™; F) and
we have §| Ut = 5| u+ so that 5 also represents s. This shows the surjectivity of

N(XT;F) - T(U;G). O

We have the following resolution of C;’(O’t as an Ax-module. Let Ix be the ideal
of Ax generated by Qt)’(l C AL. In local coordinates (z1,...,2n,t), Ix consists
of the forms involving one of the dz; and we obtain the isomorphism Ax /Ix ~
0— A% oro, A% — 0, where the differential is given by f(z,t) — 2L (z,t). The

following result implies that the complex Ax /Ix is a resolution of C;O’t.

Corollary 5.10. For any subanalytic open set U C X we have the exact sequence:

0 — D(U;C") — T(U; A4%) 2225 (U A%) — 0.

Proof. The less obvious point is the surjectivity. We have the restriction maps

(U x Rye3) — 22

J

L(U; A%)

DU x R;C2")
X

J

/0
/ot T(U; AL).

The vertical arrows are surjective by Proposition @, and so is the top horizontal
arrow: we integrate with respect to ¢t with starting points on X x {1}, which insures
that the resulting function is tempered. (|

Corollary 5.11. For any subanalytic open set U C X, the sheaf C;O’t is acyclic
with respect to the functor I'y.

Proof. We have to prove that R'Ty(C3X’") = 0 for i > 0. By Proposition b.9 A%

is quasi-injective and we may use the resolution C)O(O’t — A% oo, A% to compute
RiFU(C)O(O’t). We are thus reduced to proving the surjectivity of the morphism
0/0t: Ty (AS) — Ty (AY). This follows from Corollary since Ty (A% (V) =
rUnv;A%). O

Corollary 5.12. The sheaf of dg-algebras Ax is quasi-isomorphic to Cx__, i.e.

we have the exact sequence:

OHCXSGHA&*)A&H"'HA;?JHO.

sa’?
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Proof. By Lemma Q, we have the exact sequence on X:
(16) 0—>C)2m—>Qt)i(O—>---—>Q§A’("+1—>O.

By the previous corollary the sheaves Qb are T x+-acyclic. The constant sheaf
Cx.. alsois I'y+-acyclic because RI'y+(Cg ) =~ CX*;, (recall that p, commutes
with RT' x+). Hence we still have an exact sequence when we apply I'x+ to (E),
and applying the exact functor z';(l gives the corollary. (I

6. A-MODULES

For a real analytic manifold X, we denote by Mod(Ax) the category of sheaves
of bounded below dg-A x-modules on X,,. We have an obvious forgetful functor and
its composition with the localization:

(17) Fory : Mod(Ax) — C*(Cx.,), Fory : Mod(Ax) — DT (Cx,,).

We will usually write F' instead of Forx (F') or For'y (F) when the context is clear.
We still write Forx, For’X for the compositions of these forgetful functors with the
exact functor I,: C(Cx,, ) — C(I(Cx)).

In this section we define operations on Mod(Ax) and check usual formulas in
this framework, as well as some compatibility with the corresponding operations in
C(Cx,,) or D(Cx,,) (hence also in C(I(Cx)) or D(I(Cx)), because I, commutes
with the standard operations).

6.1. Tensor product. For M, N € Mod(Ax), the tensor product M @4, N €
Mod(Ax) is defined as usual by taking the tensor product of the underlying sheaves
of graded modules over the underlying sheaf of graded algebras and defining the
differential by d(m @ n) = dm ® n + (—1)48™m ® dn (for m homogeneous). We
have an exact sequence in CT(Cx_,):

(18) M@AX@NLM@)N*)M@AXNHO,

where d(m®@a®@n) = (—1)deg“degmam ®n —m ® an, for homogeneous a, m, n.
For two real analytic manifolds X,Y and M € Mod(Ax), N' € Mod(Ay), we
denote by K the external tensor product in the category of A-modules:

MEN = Axxy @axRAy) (MEN).

6.2. Inverse image and direct image. Let f: X — Y be a morphism of real an-

alytic manifolds. Recall the morphism of dg-algebras f#: f~1 Ay — Ax introduced

in Definition p.2

Definition 6.1. For ' € Mod(Ay) we define its inverse image in Mod(Ax):
"N = Ax Qf-14y fil./\/‘.

By adjunction f* gives a morphism Ay — f.Ax. Hence, for M € Mod(Ax), f«M
has a natural structure of dg-Ay-module, as well as fyM, through the natural

morphism fiAdx ® fuM — fu(Ax @ M) — fuM.

We have a natural morphism f~'N — f*N in C(Cx,,) (with the notations
of Remark [L7, it could be written more exactly f~!(Fory N') — Forx f*N). We
show in Proposition @ that it is a quasi-isomorphism when f is smooth. We first
consider a particular case.
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Lemma 6.2. We set X = R™t1, Y = R™ and we let f: X — Y be the projection.
We consider coordinates (y1,. .., Ym,u) on X. For N € Mod(AY) we have an exact
sequence in Mod(Cx,,):

0—>f_1N—>Ag( ®f71A0 f_lNL)A(;( ®f—1A(§J/ f_lN—>0,
where d is defined by d(a @ n) = ga®n forae A%, neN.

Proof. We have the exact sequence 0 — f~1A4) — A% 4, A% — 0, where d(a) =
g_Z' The tensor product with f~!A gives the exactness of the sequence of the lemma
except at the first term. It just remains to check that ¢z f=IN — A% ®p-1.40 N,
n — 1 ®n, is injective.

We consider a section n € T'(U; f~'A) such that «(n) = 0. This means that

there exist a locally finite covering U = |J;; U; and sections, setting V; = f(U;),

Mgy Nij S F(‘/;,N), ;5 S F(Ui;Ag(), bij S F(‘/;,A%)/),

such that for each i € I, n|y, = f*n;, j runs over a finite set J;, and we have the
identity in T'(U;; AY) @ T(Vi; N):

(19) 1®n; = Z(aij(bij o f) ®@ni; — aij @ bijngg).
JjE€Ji

We may as well assume that the U, are compact. We show in this case that n; = 0,
which will prove n = 0, hence the injectivity of ¢.

By Proposition we may represent the a;;, b;; by tempered C* functions
defined on X+, Y*. We choose continuous subanalytic functions ¢;: U; — R,
@i > 0 on Uj, such that the identities ([[J) hold in F(U;;C;{O’t) @ T'(Vi;N).

We apply Lemma f.§ to the function ¢;/2: U; — R and obtain ¢.: U; — R and
a; € D(XT;05) suchthat0< 0i <¢i/2,0<a; <10, =1inUJ and a; = 0
outside U+ 0i/2" Multiplying both sides of . ) by a; we obtain 1dent1t1es which now

hold on F(X*, e Y@ T(Vi; N). These identities imply:
a; ®n; =0  in F(X+;c;(°’t) Bp(y+:coety T(Vis V).
Y

We note that «; has compact support and we set §; = f a;du. We have §; €
F(Y*;C;O’t) and the last identity gives 3in; = 0. Now I'(V;;N) is a T'(Vi; AY)-
module and to conclude that n; = 0 it just remains to prove that g;|y, is invertible
in D(V;; AY).

Since 3; is a tempered C* function on YT it is enough to check that 571 has
polynomial growth along the boundary of W; = f (U;,) We set Z; = X\ U+_ and

for (z,t) € X, d;(z,t) = d((z,t),0Z;). We obtain the bound, for (y,t) € W;:

Gi(y,t) > / 1-du > 2maxd;(y,u,t)
UL, n({(y)} xR) ueR

The function m;(y,t) = max,ecr d;(y, u, t) is subanalytic since the max can be taken
for u running on a compact set. We have m;(y,t) > 0 for (y,t) € W;. Hence, by
Lojasiewicz’s inequality we have m;(y,t) > Cd((y,t), 0W;)~N' for some ¢/, N’ € R
and it follows that 3, ! has polynomial growth along OW;. O
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Proposition 6.3. Let f: X — Y be a smooth morphism and N € Mod(Ay ).

(i) The morphism in C(Cx,,), [N — f*N, is a quasi-isomorphism.

(ii) If N is locally free as an AY-module, then f*N is locally free as an A%-
module.

(i) If N is flat over A% and we have an evact sequence in Mod(Ay), 0 —
N" = N' — N — 0, then the sequence 0 — f*N" — f*N' — f*N — 0 is exact.

Proof. The statements are local on X, so that, up to restriction to open subsets,
we may assume X = Y X R™ and f is the projection. Then we factorize f as a
composition of projections with fiber dimension 1, so that we may even assume
X=Y xR (and X =Y x R x R). We take coordinates (y1,. .., Ym,u t) on X (u
is the coordinate in the fiber of f).

With this decomposition of X we define the A% -module A,ery = A% & AS du.
This is a sub-A%-algebra of Ax (not a sub-dg-algebra); f~1.Ay is another sub-
algebra and the multiplication, A,er+ ® Fo1AD f'Ay — Ax, is an isomorphism
of A%-algebras. This shows that we have an isomorphism of A%-modules, for any
dg-Ay-module N:

(20) Avert @145 [N PN,

Since A,er¢ is free over .Ag(, this implies (ii). To check that the sequence in (iii)
is exact, we consider it as a sequence of A%-modules. Since N is flat over A},
isomorphism (R0) gives the exactness.

Now we prove (i). By @) again, f*N is identified with the total complex of the
double complex with two rows:

: . dyt :
A&®fflAgf71N171 . Ag((gf,lAg/ffl_/\/l _r_ A&®f71A%fle1+1

. l o

A(§(®f71,49,f71/\/i71 . A0X®f*1A(§/f71Ni ﬁh A%@fﬁlA%’/flei+l

where d (a ® n) = %@n, d,lf(a@n):Zk%®dyk~n+%®dt.nand

di’i = fd,ll’i. By Lemma [.2] the i** column is a resolution of f~'A?*. The induced
differential on the cohomology of the columns is easily seen to be the differential of
f7IN and (i) follows. O

Lemma 6.4. Any sheaf of A% -module is soft in the sense of Definition @

Proof. Let U and Z be respectively open and closed subanalytic subsets of X.
Let F be an A%-module and s € T'(U; Fz). We may assume s € I'(W; F) for
a subanalytic open set W with (UNZ) C W C U. We choose two subanalytic
open sets Wy, W such that (UNZ) c Wy ¢ W, € Wy € W C W. Since A% s
quasi-injective we may find o € I'(X;A%) such that a = 1 on W; and o = 0 on
X\ Wa. Then as € T(W; F) extends by 0 on U and as = s in I'(U; Fz). It follows
that T'(U; F') — T'(U; Fz) is surjective, as required. O

Proposition 6.5. Let f: X — Y be a morphism of real analytic manifolds. For
any M € Mod(Ax), For(M) € C*(Cyx,,) is acyclic with respect to f. and fu. In
particular we have isomorphisms in DT (Cy.,), For'(f.(M)) ~ Rf.(For'(M)) and
For'(fu(M)) ~ Rfy(For'(M)).
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Proof. This follows from Lemma @ and Corollary @ (]
6.3. Projection formula.

Lemma 6.6. Let f: X — Y be a morphism of analytic manifolds, M € Mod(Ax),
N € Mod(Ay). There exists a natural isomorphism in Mod(Ay):

N®Ay f!!M = f!!(f*N®Ax M)a

whose image in CT(Yy,) gives a commutative diagram:

N ®@ay M —— fu(f*N @ax M)

I |

N @ fuM — f!!(f71N® M),
where the bottom arrow is the usual projection formula.

Proof. Using ([l§) and f*N ®.4x M =~ f~'N ®;-14, M we have the commutative
diagram (extending the diagram of the lemma):

NRAy @ fuM NQfuM N®ay fIM — 0

f(fTIN®F T Ay QM) —— fu(fTINOM) —— fif(f71N®f*1AyM) —0

The top row of this diagram is exact by definition of the tensor product, as well
as the bottom row, before we take the image by fi. But any complex of the type
P ® M is an AY-module, because M is; hence it is fy-acyclic by Lemma @ and
Corollary @ It follows that the bottom row is exact. Now, the vertical arrows a
and b are isomorphisms in view of the classical projection formula. Hence so is the
morphism of the lemma. (Il

6.4. Base change. We consider a Cartesian square of real analytic manifolds

x sy

ool
f
X —Y.
We have the usual base change formula in Mod(Cy: ) or C*(Cy ), f~'gn ~ gi, f'~*
(and its derived version in D¥(Cy: ), f~'Rgn ~ Rg|,f'~ ).
Lemma 6.7. Let N a dg-Ay:-module. There exists a natural morphism
(22) frguN — g f"N

of dg-Ax -modules, whose image in the category of complezes CT(Xs,) gives a com-
mutative diagram:

g N —— g f*N

I f

FYgN —— g\ "N,

where the bottom arrow is the usual base change isomorphism.
Moreover, if f is an immersion and g is smooth, then (@) is an isomorphism.
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Proof. The morphism is defined by the following composition:

PPN = Ax ®@piay gnf N = gii(g ™ Ax @grporay TN
L gh(Axs @y, [N = SN

where the first isomorphism uses the classical base change formula (for complexes),
and the second one the classical projection formula. Morphism ¢ is induced by ¢'*.

Now we show that ¢ is an isomorphism when f is an immersion and g is smooth.
It is enough to show that

(23) g/_lAX ®g’*1f*1Ay fl_lN ~ AX/ ®fl71AY’ fl_lN.

This is a local statement on X’ so that we may as well assume that f is an embedding
and X' = X x Z,Y' =Y x Z for some manifold Z. We may also assume that X
is given by equations y; =0,i=1...,d in Y. Then Ax is the quotient of f~1 Ay
by the ideal generated by y;,dy;, i = 1...,d. The same holds for X’ and we have
the presentations:

dya)

fH(Ay)* Lndva), Y Ay) — Ax — 0,

Since the tensor product is right exact, the images of these exact sequences by
97H) ®g—1p-1ay [N and (1) @14, f/7IN give the same presentations of
both sides of (@), which shows that they are isomorphic. O

6.5. Complex manifolds. Now we assume that X is a complex analytic manifold,
of dimension d§ over C; we denote by X the complex conjugate manifold and Xg
the underlying real analytic manifold. We recall that ¢ is the coordinate on )A(R
given by the projection 7xg 2: )A(R — R, and that we have the decomposition
d = dy +ds of the differential of Axy (d2(w) = Ow/0tdt). We consider the complex
of “tempered holomorphic functions”, 0% € D’(Cx,,), defined as the Dolbeault
complex with tempered coefficients:

2

(24) Ok =RHom,p (nOx.C5Y) =~ 080 %040 %0 % Qe

where QfXZR] denotes as usual the forms of type (i, j). The product of forms induces
a morphism 0% ® 0% — O% in D’(Cx,,). In degree 0, H°(OY%) is a subalgebra
Of P Ox.

Definition 6.8. We let Q27 = ¢>'7% | (24%7) be the sub-C2>"-module of Q%17
XR XR R R XR XR
generated by the forms of type (z, j) coming from Xg.

We define Aé’({,\ = i};l" Xt Q%;J . Tbi§ isa sub—A&R-mgdule of Az;li and we have
the decomposition A% = D jor AV, © Dy jop 1 AY,dt. The operators 0, 0
on QtXR induce a decomposition of the differential of Axg, d =9+ 9 + da.

We let Jx < Axg be the differential ideal generated by Aﬁ(’g and introduce the
dg-Axp-module Ox = Axy/Jx. As a quotient by a differential ideal, Ox inherits
a structure of dg-algebra. We note the obvious inclusions pOx C ng)O(O’t - A(;(R
and we define, for two complex analytic manifolds, X, Y

OF = 0x @0y MOY, O = Oxxy @possy MOTH,
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where (’)g? denotes the holomorphic i-forms on X and (’)g?’xqz, = Oxxy ®0xROy)

(O =)
Proposition 6.9. (i) We have an isomorphism of complexes between Ox and
0,0 0,1 0,0 0,2 0,1 0,dS
Aye = (A, @ AL dt) — (AyD & Ay dt) — - — A X dt,
with differential 0+ ds.
(ii) @E?X)[fdg(] is isomorphic to the differential ideal of Axy, :

d%,0 ds 1 d%,0 d% ,d5%
AT = (AR @ A dt) — - — ARt

Moreover we have a decomposition Axg ~ (O)g?g‘) [—d%]® Mx in free Ag(R -modules.
(iii) There exist a natural isomorphism O% ~ Qx, in D*(C(xy)..), which com-

mutes with the products O% @ O% — O% and Ox ® Ox — Ox. We also have

t(p, ) .
O)?;l%/) = @gl(?;]%/’ m Db(C(XRXYR)sa>'

Proof. (i), (ii) The decomposition of A’)C(R given in Definition @ yields projections
A’&R — Agg’; @ Aggf;ldt. The sum of these projections is a surjective morphism
from Axg to the complex of the proposition and we see that its kernel is Jx.
Assertion (ii) follows from (i).

. . , 0 0 (~t,0,dS
(ili) We use the isomorphism 0% ~ 0 — Q%>% % ... 5 Q2 0. The exact
R R
sequences
t,0,5 0,j a—(0a/ot)dt 0,7
0— Qg —» Ayl ————— AxLdt — 0,

combine into an isomorphism between 0% and the complex given in (i). This proves
the first isomorphism. The second one follows from the first and the definitions. [

For a morphism of complex analytic manifolds f: X — Y, we have an integration
morphism in the derived category R f;Og?g()[dg(] — (’)§,d s/)[clf/] and its tempered
version ng!(’);gd‘c") [d%] — Oi,(d;) [d$]. By adjunction between R fy and f' we obtain
O] — oY (ds ).

When f is a submersion we have f' ~ f~1[2(d% — d$ )] (note that the manifolds
are complex, hence oriented) and our last morphism becomes:

(25) O™ [ds] — F1 0¥ [=d3 ).

Proposition 6.10. For a submersion of complex analytic manifolds f: X — Y,
the embeddings, for Z = X,Y, (O)(ZdZ)[—dCZ] C Agzy of Proposition [6.3 (ii) induce a
morphism of dg-Axg -modules

d5 c s (dy c
(26) O[] — O [~ )
which represents (@) through the isomorphism of Proposition (iii).
Proof. By Proposition @ we have a decomposition Ay, ~ (O)gfg”)[fd@] @ My
in free AY, -modules; hence the quotient Ay / @gfl‘”)[—df/] is free over AJ. and
Proposition [.3 implies that the morphism f*(@gf%)[—d;] — ffAys ~ Axg is
injective. Hence we just have to check the inclusion of ideals of Axx: @g?j‘ ) [—d%] C
O [dg ).
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This is a local problem on X and we may assume X =Y xZ. Asan A&R-module,
(O)E?g() [—d%] decomposes into summands Aglé:z and Agl?;’zdt. Now any form of type
(d%,i))on X =Y xZisa sum of products of forms of types (d5-, j) and (CdCZ, k), with
j+k =1i. In particular @g?X)[—dg(] is in the image of (Axy ® f_l@g/dY)[—df/]) —
Axp .- O

Corollary 6.11. With the hypothesis of Proposition|6.1(, the integration morphism
of Definition induces a morphism of dg-Ayg -modules

(27) PO 5] — OF[dg ],
which represents the integration morphism Rf”(9§§d3<)[d§(] — Oi,(d;)[d%].
Proof. Morphism (@), the projection formula and the integration morphism give:
FOSF ] = fuf O 2ds - d5]
= OV [d5] @ Ay, fuhxnl2(d — 5]
- 0y [d5)

We define (@) as the composition of these arrows. The integration morphism for
O is also defined by integration of forms using the Dolbeault complex. It is

nothing but the restriction of the integration morphism for Ax, to a subcomplex,
so that it coincides with (7). O

In section E we need the following composition of kernels. Let X, Y, Z be three
complex analytic manifolds and ¢;; the projection from their product to the i*" x jt*
factors. The product of Oy and the integration morphism give a convolution prod-
uct: Rq13g(qf21(’)g?f;‘;)[d§/] ® q2731(9$’xd;2)[dcz]) — Og?’xd%) [d%]. We can also define
a tempered version of this convolution, and in fact we can even realize this tem-
pered convolution product at the level of complexes, using the above sheaf @g?’f;’j).
As in Proposition , we rather define its “adjoint” morphism as the following
composition:

* 0,d$ c * 0,d¢, c 0,ds,,d, c c
Q12©g(><)‘;)[_dY] XA q23©§/><§)[_d2] - (O)g(x)‘;xg)[_dY - dZ]

)

(28)
— q13 XxZ [—d%],

where the first morphism is induced by the product Oy ® Oy ®,,0 p[0§/d ¥
Oy ®p0y p!Ogﬁi ¥) and the second morphism is induced by morphism (@)

7. MICROLOCALIZATION FUNCTOR

In this section we recall the definition of the microlocalization functor p in-
troduced in [f. For a manifold X this is a functor, ux, from D’(I(Cx)) to
DY(I(Cr+x)) given by a kernel Lx € D*(I(Cxx1+x)).

We define analogs of this kernel and of the microlocalization functor in the
framework of A-modules. We check that, in the case we are interested in, this
gives a resolution of ux F', and that it has a functorial behavior with respect to the
usual operations.

In fact, with the definition of [E}, the construction of the external tensor product
is not so straightforward. For this reason we define another kernel for which the
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tensor product is easy and which coincides with the kernel of [E] outside the zero
section.

7.1. Microlocalization functor in the derived category. In [E] the authors
define a kernel associated to the following data: let X be a manifold, Z C X a
closed submanifold and ¢ a 1-form defined on Z, i.e. ¢ is a section of the bundle
Z xx T*X — Z. To simplify the exposition, we make the following assumption
which will be satisfied in our case:

(29) Vz € Z, o, vanishes on T, Z.
Hence o induces a section of Z x x T; X — Z and we may define:
P, ={(z,v) € TzX; (v,0(x)) > 0}.

Hence P, is a subset of Tz X, Vie\yed itself as a subset of thg normal deformation
of Z in X, Xz. We recall that Xz and the projection p: Xz — X are given in

local coordinates as follows. We choose coordinates (z1,...,2,) on X such that
Z is given by x; = 0, ¢ = 1,...,d. This gives coordinates (x;,7) on Xz and
p(xi,7) = (Tx1,...,7Td, Ta41, .-, &n). The normal bundle Tz X is embedded in
Xz as the submanifold {7 = 0} and we define Q = {7 > 0}.
P,C T, XC X, o0
R
7——=X

We will often restrict ourself outside the zero set of o and we set T, = {z € Z; o,
vanishes on T, X }.

Definition 7.1. Under hypothesis @), the kernel associated to these data is the
object of D’(I(Cx)) (recall that, for i: Z < X, we write wz|x instead of i.wz|x):

Lo=Lr(Z,X)= Rp!!(ﬁf(z (Cp,)® Cﬁ) ® ﬁX(W%}l)-

We recall that B¢, (Cp,) = “lim”  Cgr, W running over the open neighbor-

hoods of P, in Xz. Since “li_n}l” commutes with ® we obtain
L, = Rp!g(“%l” Cwng) ® ﬂx(wg‘;{l), W open in Xz, P, C W.

We also notice that Rpn(Gx,(Cp,) ® Cq) is supported on Z (i.e. its restriction
outside Z is 0). Hence taking the tensor product with Gx (w%}l) reduces locally to
a shift by the codimension of Z.

In Proposition 1.2.11 of [E] we also have a description of £, outside the zero set
of o, Ty:
(30)  Rpu(Bx,(Cr,) ® Cg)lx\r, = Bpu(Bx,(Cp,) ® Co)lx\1, = “lim” Cy,

U

where U runs over the open subsets of X \ T}, such that the cone of U along Z \ T,
doesn’t intersect P, outside the zero section. In particular the complexes in (B0))
are concentrated in degree 0:

(31) Rpu(Bx,(Cp,) ® Cq)lx\1, = p1(Bx,(Cp,) ® Cq)lx\1,-
When considering resolutions of £, by A-modules, it will be convenient to use the
following different formulation, which is equivalent outside the zero set of o. First,
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using the embedding of categories I,: Mod(Cx.,) ~ Ir_.(Cx) — I(Cx) we have
L, ~T1,(L£3%), where £5* € D*(Cx,,) is given by

(32) L5 = Rpu(px,(Cp,) ® Cg) ® px1(wyx)
(33) ~ Rpu(RTa(px,(Cr,))) ® px1(wiix),
where the second isomorphism follows from (fJ) and Cg ~ RHom(Cgq, C %)

Definition 7.2. For a real analytic manifold Y and T' C Y a locally closed analytic
subset we introduce the notation K1 = py1C7 ® h_H)lW Cy\W, where W runs over
the open neighborhoods of 7" in Y. We note that K has support in the boundary
T\T.

We let P be the relative interior of P,, i.e. PY = {(x,v) € TzX; (v,0(z)) > 0}
and we define £2 € D*(Cx,,) by:

ﬁg = Rp!!(RFQKpg) ® pX!(w?‘;{l).

Lemma 7.3. We let (X, Z,0) be a kernel data satisfying hypothesis (RY) and we
assume that o doesn’t vanish.

(i) We have RTUqKpo ~ Cq @ Kpo.

(it) The natural morphism Kpo — p3_(Cp,) induces an isomorphism L) — L5
mn Db(CXm).
Proof. (i) By definition Kpo =~ 1i_1)1r1W7W0 CW\W’ where W and W9 run over the
open neighborhoods of P, and P? in X,. By formula (E) we may commute the

limit with RI'g so that R['aK po = hi}nvuwo RFQCW\WO. Our situation is locally

isomorphic to Xz ~ R, Q ~ R"™! x Rsg and P, ~ R"2 x Rx¢ x {0}. Hence,
choosing for example

W = {|zn| <&, xpn_1 > —¢}, WO = {|z,| < p(z1,...,201)},

for € > 0 and subanalytic continuous functions ¢ on R"~2 x R+(, we may assume
that our W, W satisfy RI'o(Cyr) ~ Cyng (and the same with W0 instead of W)
and this gives the desired isomorphism.

(ii) We define F' = lim_, Cyyg, where WY runs over the open neighborhoods of

PYin X,. Hence we have an exact sequence 0 — Kp, — px,1(Cp,) — F — 0 and
it is enough to show that Rpy(RTqF) = 0.
As in (i) we have RI'oF ~ lim  Cymg. We deduce that Rpu(RIol) =~

hl)nWU,U Rp.Cyrongnu:

the open subsets of X, with compact closure. Since p, commutes with p, we are
reduced to a computation with sheaves on topological spaces.

For z € X \ Z, z near Z, and U big enough, p~ () NW9NQNU is a union of
intervals of the line, all of them compact except at most one which is homeomorphic
to [0,1[. When we take the limit over W° and U only the last one has a non-
zero contribution in the morphisms Cpfl(z)nﬁnﬁrw — Cpfl(z)nmmﬁrw“ In the
same way, for z € Z, since P, C Tz X is locally homeomorphic to a closed half
plane, we may assume that p~'(z) N W9 N QN U is homeomorphic to an half ball
{]z| < 1,21 > 0}.

Since RI'(R;Cpg,1;) = 0 and RT(R"1L; C{lzl<1,2:>0}) = 0, we deduce that our
direct image vanishes. (I

where W9 runs on the same set as above and U runs over
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Now for any manifold X, the cotangent bundle T* X is endowed with a canonical
1-form, say wx. Weset X = X xT*X and 3 = X xx T*X ~ T*X and consider
the section ox : X xx T*X — T*X x T*(T*X) defined by ocx = (—id,wx), i.e. in
local coordinates

Hence hypothesis (R9) is satisfied for the data (X,3,0x).

Definition 7.4. With the above notations, we set Lx = L, (3, %) so that Lx €
DY(I(Cxx7+x)). We denote by p1: X x T*X — X, pa: X x T*X — T*X the
projections. The microlocalization is the functor

px: DY(I(Cx)) — D*(I(Cr-x)),  Fr— LxoF = Rpon(Lx ®p;'F).

We note that ox doesn’t vanish outside the zero section of T*X so that we can
use L] (3, X) instead of Ly when we consider px F|7-x.

7.2. Microlocalization functor for A-modules.

Definition 7.5. For a real analytic manifold Y and 7" C Y a locally closed subset
we introduce the notation By = Ay ® K7, where K is given in Definition @ Let
(X, Z,0) be a kernel data satisfying hypothesis (BY). We define £A € Mod(Ax) by

L3 = £3(Z,X) = pu(Ca(Bpe)) @ pxi(wg -

Remark 7.6. For U C X a subanalytic open subset, a section of FQBjDO on U is

given by the following data: open neighborhoods W of P, and W of P? in X,
and a section s € A}Z (QNW NU) such that s|gawony = 0. Actually the definition

would require that s be defined on a neighborhood of W and that (supp s)ﬁm = (.
But, up to shrinking W and W0, this amounts to the above statement.

Lemma 7.7. The complex E“;‘ consists of quasi-injective sheaves of Cx,, -vector

spaces. We have a natural isomorphism L9 ~ L2 in DT (Cx.,). Hence, if o doesn’t
vanish, L, ~ L2 in DT(I(Cx)).

Proof. We recall the definition £) = Rpy(RToKpo) ® px!(w%}l).

Since Af(z is a quasi-injective resolution of C( Ry)ear WE have Bpo ~ Kpo in
D*(Cx.,,). The complex Bpo consists of .A°-modules, hence soft sheaves. It follows
from Corollary @ that RI'oBpo >~ I'gBpo. This last complex also is formed by A°-
modules, hence py-acyclic sheaves, and we deduce the isomorphism of the lemma.

Let us now check that I'gB PO consists of quasi-injective sheaves. Let U C X z
be a subanalytic open subset; a section of FQBjjo on U is given by W, W9, s €
Aij{z (QNW NU) as in Remark [[.d. The condition on s says that we may extend s
to a section s’ of A%Z on (QNWNU)UW?O, with s'|yyo = 0. By Proposition .9 we
may extend s’ to X, and this gives the quasi-injectivity of FQBﬁw. Since py sends
quasi-injective sheaves to quasi-injective sheaves, we obtain the first assertion.

The last assertion follows from Lemma E O

Now we can define the microlocalization functor for A-modules. We keep the
notations introduced before Definition @: for a manifold X we have the kernel
data (X,3,0x).
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Definition 7.8. With the above notations, we set L§ = L2 (3, X) so that L{ €
Mod(Ax x7+x). The microlocalization is the functor

s Mod(Ax) — Mod(Ag-x),  F s L{ o F = poy(L4 @, piF).
For F' € Mod(Ax) we have a natural morphism in D¥(I(Ct»x)):
(34) px (For’y (F)) — Forr. x (uxt (F)),

defined by the composition of morphisms in the derived category (we don’t write
the functors For) on T*X:

(35)  puxF ~ Rpon(LY @ py ' F) — Rpon(LY @4, PiF) < pan(LY @4, piF),
where the first isomorphism is given by Lemma @, the second morphism is given by

the morphisms pl_lF — piF and ® — ®4,, and the third arrow is an isomorphism
by Proposition @

Lemma 7.9. Let (X, Z,0) be a kernel data satisfying hypothesis (R9) and consider
F € Mod(Ax). We assume that F is locally free as an A% -module. Then:

(i) E“;‘ ®ax F is a complex of quasi-injective sheaves on Xgq.

(ii) Let T, C Z be the zero set of 0. The natural morphism, in C*(Cx, \r1,),

A A
LIQF — L@, F
1S a quasi-isomorphism.

Proof. The proof is similar to the proof of Proposition @ Both statements are
local on X. We choose coordinates (x1, ..., 24, 21, . .., 2m) on X such that Z is given
by 2; = 0,i=1,...,d. This gives coordinates (z, z, 7) on X such that p(z, z,7) =
(T, z). On Q we take the coordinates (2, z, 7), where &’ = 7z, so that p(2/, z,7) =
(2',z). With these coordinates we argue as in the proof of Proposition E to see
that pul'g (Bpg) ® 4y F is isomorphic to a complex

G = pu(Ca(Bpo) ® Ta(Bpo)dr) @4 F,

with a differential defined as in (P1]).

(i) Since F' is locally free over A% and pylo(B ) is quasi-injective, by Lem-
ma @, G also is quasi-injective.

(il) We will see the exactness of the sequence:

i
(36) 0 — pu(Ta(Kpo)) @ Ay — pul'a(Bpo) == pula(Bpo) — 0.

Thus G is quasi-isomorphic to pn(I'o(Kpo)) ® F and this implies (ii) because we
already know that £A is quasi-isomorphic to £9.
Now we prove () We have the exact sequence on Q: 0 — Kpo @ ptAY —
Ie)
o7

BOPO = BOPO — 0. Since A% modules are soft this gives () if we prove that

w: pu(Ta(Kpo)) © A — pula(Kpe @ p~ ' A%)

is an isomorphism. Let s be a section of py(Fo(Kpo)) ® A% over some open set U.

Up to shrinking U we may assume that s is of the form 1 ® a where a € A% (U)
and 1 € CW\W(Q Np~Y(U)), for some open neighborhoods W and W9 of P, and
PY in X ;. In the same way a section s’ of pyI'q (Kpo ®@p~tA%) over U is given by
1®bwith b € T(W \WPO)NQNp~1(U);p~1(A%)) for some other neighborhoods
of P, and P? in Xy
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In the coordinates (2/,z,7) on Q we define i.: X — Q, (z,2) — (x,2,¢). Then
i (W\W0)NnQNp~1(U)) is a neighborhood of Z in U for € small enough. The
inverse to morphism u is then given by a = i%(b). O

Proposition 7.10. We consider F' € Mod(Ax) and we assume that it is locally
free as an A% -module. Then:

(i) i (F) is a complex of quasi-injective sheaves on T* X, .

(ii) The natural morphism (B4) in DY (I(Ci-x)), px(F) — pi(F), is an iso-
morphism.

Proof. (i) Since pan sends quasi-injective sheaves to quasi-injective sheaves, it is
enough to prove that L§ ®A, PIF is quasi-injective. By Proposition @ piF is
locally free over A% and we conclude by Lemma [.9 (i)

(ii) We have to prove that the second arrow in (B5) is an isomorphism over
X\ (X x T4 X). By Proposition .9 again, p;'F = ptF in D*(I(Cx)), and we
conclude by Lemma [.g (ii). O

8. FUNCTORIAL BEHAVIOR OF THE KERNEL

We will use the functorial properties of £, given in Propositions 1.3.1, 1.3.3
and 1.3.4 of [fJ], and recalled in Proposition B.q below. In fact we state these
properties on the site Xy, using the kernel £ € Mod(Cx,, ), and our formulas are
equivalent to those of [f]] when o doesn’t vanish, by Lemma @ We give slightly
different proofs than in [fJ] so that we can translate them easily in the framework of
A-modules in Proposition B.3 . In this section (X1, Z1,01) and (X2, Za, 02) are two
sets of data as above, satisfying hypothesis (R9). We set for short X; = (X;) 7,

8.1. Direct and inverse images. We assume to be given a morphism f: X; —
X3 is a morphism such that f(Z1) C Z5 and 01 = f*03. The morphism f induces
f X1 — X,, decomposed as f = h o g in the following diagram, where the square
is Cartesian:

9] (%X1$X1 XX2X2$X2QQ2

N EE N

X1 —>X2 P,

We have Q; = f—lﬂz, Ty, X1 = [Ty, Xo, Py, = f~'P,,. We note that X; x x, X»
is in general not a manifold and may have components of different dimensions.
When f is clean with respect to Zy and Z; = f~1(Z3) (clean then means that
9Tz, X1 — X1 xXx, Tz, X is injective), g is a closed embedding. When f is
transversal to Zo and Z; = f~1(Z3), g is an isomorphism.

Lemma 8.1. Let f: X — Y be a morphism of real analytic manifolds, T CY a
locally closed subset and Z = f~1T.

(i) There exists a natural isomorphism f~1Kp ~ K.

(ii) Let V. C Y be an open subset and U = f~1(V) and let G € CT(Cy,,). We
assume that the restriction f|y: U — V is smooth. Then the integration of forms
induces a morphism of complezes:

(38) fuTu(Ax ® TG @wyy) = Ty (Ay ® G),
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whose image in D*(Cx,,) is the natural morphism RfuRTy(f7'G ® wx|y) —
RT'yG.

Proof. (i) By definition K = h—H>1W1,W2 CWz\Wl’ where W1, Wy run over the open
neighborhoods of 7, T in Y. For any compact M C X, the f~'(W;) N M give
fundamental systems of neighborhoods of Z N M and Z N M in M. Since the
inductive limit commutes with f~! we deduce the isomorphism.

(i) We first reduce the statement to G = Cy. Indeed, for F' € C*(Cx,,)
and F' € C*(Cy,,) with a morphism fyl'y(F) — T'vF’, we have the sequence of
morphisms

f!!FU(F & f_lG) = f!!FU(FU(F) ® f_lG)

=Ty (fuCu(F)® f71G))

— Fv(Fv(F/) ® G)

< Ty (F' ®G),
where the first one and the last one are induced by F' — 'y (F) and F' — T'y (F')
(they are isomorphisms because F|y ~ I'y (F)|y and F'|y ~ T'v(F')|v), the second
one is morphism (E) and the third one is given by the projection formula and the
given morphism ful'y(F) — Ty F'.

Hence it is enough to define fyT'y (Ax ®w3(|y) — I'v Ay. By definition a section
of fu(Tu Ax ®wy|y-) over W C Y is represented by a section w € DUNf~'W; Ax®
w’X‘Y) whose support has compact closure in X. Since f is smooth on U we may
define ff w, and it is tempered on V', i.e. it gives an element of I'(V NW; Ay ). This
gives morphism (Bg). O

Proposition 8.2. (i) There exists a natural morphism in D*(C x,)_,)-

(39) Rfu(Ly, ® pxi1(wz,2,)) — Lo,

(ii) We assume moreover that Z; = f~Y(Z2) and f is clean with respect to Zs.
Then there exists a natural morphism in D*(C(x,)..):

(40) f71‘622 - ‘621 & le!(wZ1|Z2) ® w)_(ile

If f is transversal to Zy it reduces to:

(41) fed — Ll

Proof. (i) We note that pj 'wx, |x, ~ Wx,|%,- We have the morphisms:

Rfu(RpiRTo, (Kpo ) @ wx,|x,) ~ RponRfuRg, (Kpo ®wg, x,)
= RpQ!!RFQ2Rf~!!(f~71Kpg2 & lel)zZ)
— RpanRTo, Kpo ,

where in the first line we use the projection formula for p; and fp1 = ps f (we note
that w %, | %, enters the parenthesis because it is locally constant). In the second
line we use formula ([L() and Lemma 8.1, (i). In the third line we use the projection
formula for f and the integration morphism.

Now we take the tensor product with w?;pl(z and we obtain (B9).
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(i) Since f is clean with respect to Zo and Z; = f~1Z,, the morphism g in
diagram (@) is an embedding. Hence g. = gn and we have the adjunction morphism
id — gn g~ '. We deduce a morphism of functors

(42) f~ Rpan — Rpinf~?

as the composition of the base change f _1~Rp2” — Rquh~! and the adjunction mor-
phism Rguh~' — Rqugn g~ 'h~' = Rpinf~'. Now we define @) by the sequence
of morphisms:

fed = fﬁl(Rpgg!(RFQZKsz) ® PXQ!W?ZT)I(Z)
— (Rpunf (RTa, Kpy ) @ [~ pxawy i,
— Rpiu(RTa,Kpo ) ® [~ sk,
=L ® px 1wz, x,) ® f_lpxz!w?;\)l(z’

where the second line is given by @) and in the third line we use the morphism
f~'RIq, KP£2 — RFQlegl, obtained from the morphism of functor f~!RIq, —

RTq, f~! and Lemma , (i).
If f is transversal to Za we have wz,|x, ~ f'wz,|x,- O

Now we have the following analog of Proposition @ for A-modules, with the
additional hypothesis that f is smooth, for the case of direct image.

Proposition 8.3. (i) Assume that f is smooth. Then there exists a natural mor-
phism of dg-Ax,-modules:

(43) (L3 © pxy(wz,z,)) — L3,

whose image in D*(C(x,),,) is morphism (B9).
(ii) Assume that Z; = f_l(Zg) and f is clean with respect to Zs. Then there
exists a natural morphism of dg-Ax,-modules:

(44) FPLy, = L3 © pxi(wz,2,) @ Wil x,»

whose image in D*(C(x,).,) is morphism {d). 17 f is transversal to Z it becomes:

(45) f*ﬁj,t — £j,41 )
Proof. The proof is similar to the proof of Proposition @ We keep the same
notations and we just point out the changes.

(i) We note that f is smooth on € and apply Lemma E This gives the
morphisms:

f!!(pu!(FQlBPgl) R Wx,|x,) panfula, (Az, ® fﬁlKsz ® w}(l‘;{z)
— pan(Ta, Bro ),

and the tensor product with W?Q_pl(g gives ([J).

(ii) Morphism (@) has a non derived version f~'pan — pinf~'. Taking the

tensor product Ax, ®s-1 Ay, - and using the projection formula we obtain:

(46) fpan — punf*
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Now we define (fi4) by the sequence of morphisms:
e = f (p21(Ta, Bpo ) @ PX2!(W§;|)1(2))
= (punf" (T, Bpo ) © fﬁlpxz!wg;pl(z
— pun(la, Bpo ) © fﬁlpxz!w?;plﬁ
= Efl ® le!(wZ1|X1) ® f_lpxﬂw?;\)l(y

where the second line is given by @) and the third line is the composition

F*(Ca,Bry,) = Ag, @145, £ Ta,(Ag, © Kpy))
— Az, Df-14g, Fg)l(f_lAj(z ® Kpgl) —T'a,Bp,,
of standard morphisms of sheaves and the isomorphism of Lemma , (i). O

8.2. External tensor product. The external tensor product is a consequence of
Proposition 1.3.8 of [J]. We give a different proof here, using the kernel £ (hence
our morphism coincides with the one in [ for a non-vanishing o) and check that
it works for A-modules. We still consider (X7, Z1,01) and (Xa, Z2,02) as in the
beginning of this section. We set X = X7 X Xo, Z = Z1 X Zs, 0 = 01 + 09.
Then (X, Z,0) also is a kernel data satisfying (@) We keep the notations of
diagram (@) and let p: Xz — X be the projection. We also have a natural
embedding k: X, — X1 x Xo. Weset p/ =p1 X po: X1 x Xo — X.

Proposition 8.4. There exists a morphism L5 KLY — LY in D*(C(x, xx,)..)-
Proof. The kernel £ is the tensor product of Rpg(RLq, K pgi) and pXi!(w?iT}Q).
The external product for the second term is straightforward:
pxit(W ) B pxar(Wi ) = pxi (W3 x)
and now we only take care of the first term. We have the sequence of morphisms:
(RpunRTq, Kpy ) W (RpanRT0, Kpo ) — RpiyRTq, xq, (Kpo M Kpo )
— Rpykuk ™ RTq, xq, (Kpy K Kpo )
- Rp!!RFQ(Ifl(Kpg1 X Kps )
— RpnRTo(Kpo),
where the first three arrows are standard morphisms of sheaves and the last one is

defined as follows. We recall that K P = h—H>1Wi,Wi“ CWi\WE” where W;, W? run

over the open neighborhoods of P, Pgi in Xi. For such W, WiO we have
(WI\WD) x (W2 \ W) = (Wi x W) \ (W1 x W2) NWO) =W \ WO,
where WO =W x Xo UX; x WY and W = (W x Wa) UW?,

Now W and W9 are open neighborhoods of P, and Pg in Xl X Xg (note that
P, C TzX and Tz X can be viewed as a subset of X; x X5). This defines a natural

morphism K PY. X K Py, — 11_11}1W7W0 CW\W? where W and W° run over the open

neighborhoods of P, and P? in X1 x X5. The inverse image by k gives the required
morphism k:_l(Kpgl X KP£2) — Kpo. O
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Proposition 8.5. There ezists a morphism L3 RL2 — L2 in Mod(Ax, xx,),

whose image in D*(C(x, x x,)..) i the morphism of Proposition [8.4.

Proof. The proof of the previous proposition adapts immediately, with the following
modifications in the sequence of morphisms:

(pla, (Ag, ® Kpo ) W (panlo, (Ag, ® Kpy )
= Pl xas (A, xx, ® (Kpo K Kpo )
— phkuk ™' To, xa, (Ag, y x, ® (Kpo, X Kpo ))
— pla(Ag, @k (Kpo R Kpy ))
— pula(Ag, ® Kpo).

9. FUNCTORIAL PROPERTIES OF MICROLOCALIZATION

In this section f: X — Y is a morphism of real analytic manifolds. We recall
the functorial behavior of microlocalization with respect to inverse image, in case f
is an embedding, and to direct image. We check that the constructions make sense
for dg-A-modules (restricting to the case of a smooth map for the direct image).

We define the submanifold Z = X xy T*Y diagonally embedded in X x (X Xy
T*Y). We have the morphisms of kernel data

id e
XxT*X ~—— I Xy TY) — T Ly iy
u u u
XxxT*X 7z Y xyT*Y
T X Ja X xy T*Y I T*Y,

where the 1-form for the kernel corresponding to the middle column is

oy—x = (id x fa)*(ox) = (f x f=)"(oy)-
This equality follows from f}(wx) = f}(wy). We note that Z = (id x fq) "' (X x x
T*X)and Z C (f x fr)"YH(Y xy T*Y), with equality if f is an embedding. This
implies that hypothesis () is satisfied for (X x (X xy T*Y), Z, 0y x ). We denote
the corresponding kernel by Ly x = L5y -

9.1. Microlocalization and inverse image. For the next two propositions we
assume that f: X — Y is an embedding. For G € DT(I(Cy)) we have a mor-
phism R fanf 'y (G) — px(f~'G), defined in Theorem 2.4.4 of [[f]. We recall its
construction below. The notations are introduced in the diagram:

X X - Y
PlT PT Tlh
id K
(47) XxT*X ~— 29 o (XxyTY) — L Ly ey

le T\L llh
fd f7r

T*X X xyT*Y Y
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Proposition 9.1 ([E], Theorem 2.4.4). We have a natural morphism, for an em-
bedding f: X — Y and G € DT(I(Cy)):

(48) Rfanfy iy (G) — px (f7'G).

Proof. We first note the morphism of functors f-'Rqgon — Rri(f x fo)~ L. Tt is
obtained by the following composition of adjunction morphisms, where we use the
fact that f, hence fr and f X f,, are embeddings, so that direct and proper direct
images coincide:

fi Raan — [ Raan(f % fa)(f X fr) 7
~ [ R Reu(f X fr) ™' = Rea(f X fr) 71
We also note the morphisms of kernels:

(50)  (f xJx) 'Ly = Lycx ®@wyjy  R(id x fa)u(Ly—x @ wy)y) — Lx.

(49)

The first one is morphism ([i0]) of Proposition B.3 (for £, instead of £9), applied to
f X fr: we note that f x fr is clean with respect to Y xy T*Y and X xy T*Y =
(f X f=) Y xy T*Y). The second one is morphism (Bg) (for £, instead of £9),
applied to id x fg.

Now the morphism of the lemma is defined by the succession of morphisms:

(51) Rfafy vy (G) = Rfanfy ' Rean(Ly ® ¢ 'G)

(52) — RfanRru((f % f=) 'Ly @ p™ 7'G)

(53) < Rpan(R(id X fa)u(f % fx) 'Ly @ p ' f71G)

(54) — Rpan(Lx @ py ' f71G),

where in line (f2) we used morphism () and the commutativity of inverse image
and tensor product, and in line (5J) the identities fyr = po(id x fq), p = p1(id x fa)

and the projection formula for (id x f;). The last morphism is the composition of
the morphisms in (E0). O

Proposition 9.2. For an embedding f: X — Y and G € Mod(Ay), we have a
morphism of Ap«x-modules:

(55) Janfzp (@) = iy (F°G),
which makes a commutative diagram in DT (I(Cj-x)) with morphism ([4g):
Rfanfrtpy (G) px(f71G)

| |

Rfanfru(G) < fanfrpnd(G) pR (f*G).

Proof. We follow the construction of morphism (@), replacing each morphism by
its analog for A-modules. We have the analogs of morphisms (i) and (5():

Frgan = fraan(f X fx)s(f X fa)*
~ frfrern(f X fr) = ru(f X fr)",
(BT (fx ) Lf = P x@wyly,  (dx fan(If_x ®@wily) — L.

(56)
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Morphism @) is defined with the same adjunction properties as morphism (f9).
The morphisms in line (57) are defined the same way as (5(), using Proposition
instead of Proposition B.4. We deduce the succession of morphisms:

(58) fanfiud(G) = fanfigon(L$ ®@.4 ¢1G)

(59) — farn((f % f2)" Ly @ap" [*G)

(60) < pon((id x fa)u(f X fx)*Ly @4 pif*G)
(61) — pan(L% ®apifG),

where in line (59) we used morphism (5) and the commutativity of inverse image
and tensor product, and in line (B() the identities fyr = pa(id x f4), p = p1(id x f4)
and the projection formula for (id x fy) (Lemma p.g). The last morphism is the
composition of the morphisms in (7).

The vertical arrows in the diagram are the compositions of g7 — g* respectively
for g = fr, 9 = f, and puz — ué, respectively for Z =Y, Z = X. This last
morphism is defined only on T*Z. The diagram commutes because it is obtained by
morphisms of functors. The isomorphism between the direct image and the derived
direct image by f4 follows from the softness of .A-modules (Proposition @) O

1

9.2. Microlocalization and direct image. In Proposition @ below we recall a
weak version of the direct image morphism, defined in Theorem 2.4.2 of [[J]. This
theorem gives a morphism, for F' € D*(I(Cx)), Rfxufy 'ux(F) — py (fuF). We
consider the case where F = f~'G ® wx|y which is sufficient for our purpose, and
we give an easier proof in this case. This proof also works for the resolutions by
A-modules, assuming moreover that f is smooth (see Proposition @) We use the
notations of diagram (7).

Proposition 9.3 (special case of [[f, Theorem 2.4.2). There exists a natural mor-
phism, for f: X — Y and G € DT(I(Cy)):

(62) Rfanfi ' nx(f G @wx)y) — puy (G).

Proof. Weset F = f71G® wx|y and obtain the sequence of morphisms:

63)  Rfxunfy'nx(F)

64 = Rfanfy 'Rpon(Lx @ py ' F)

65 =% RfanRry((id x fq) 'Lx @ p'F)

66 ~ RganR(f % fr)u((id x fo)'Lx @ p~lwx)y @ (f x fz) " 'q7 'G)
67 < Raon(R(f % fo)u((d x fa)'Lx ®p_1wX|Y) ®q¢ Q)

68) — Rgan(Ly ® 41 'G),

)
)
)
)

~ o~ o~ o~ o~ o~

where in line (@) we used the base change formula f;lRpgu = Rry(id x fy) 71
and the identity p = py(id X f4), in line (6@) the identities frr = g2(f x fr) and
fp=q(f x fr), and in line (B7) the projection formula for (f X fr). The last line
is given by the composition of

(id x fo)'Lx = Ly—x and R(fx fr)u(Ly—x ®p 'wxy) — Ly,

which are respectively given by (i) and (i) of Proposition .9 (for the first morphism
we note that (idx fy) is transversal to X x x T* X and for the second one we note that
the restriction of p’lwx‘y to X xy T*Y is isomorphic to wx x, 7+y|yxyr-y). O



34 STEPHANE GUILLERMOU

The following proposition gives a realization of morphism (fJ) by .A-modules.
We restrict to the case where f is a submersion because we only have an integration
morphism in this case.

Proposition 9.4. There exists a natural morphism of Ap«y-modules, for a sub-
mersion f: X — Y and for G € Mod(Ay):

(69) Frnfapx (£ G @ wyyy) = 13 (G),
which makes a commutative diagram in D (I(Cip-y)) with morphism (pJ):
Rfenfy 'ux(f1G @ wxpy) py (G)

|

Rfmfing (f*G @wly)y) < fanfing (f G @wy)y) ——— i (G).

Proof. We follow the proof of Proposition , but now we consider morphisms of
A-modules. We set F' = f*G ® w’X‘Y and obtain the sequence of morphisms:

(70) frn Fip (F)

(71) = feufipon(Ly ®apiF)

(72) — fenrn((id x fa)* L% @ p*F)

(73) ~ gon(f x fo)u((id x fa)* Ly @ p~ 'y ®a (f X fr)*¢iG)
(74) < gn((f % fe)u((id x fa)* Ly @ p~'wiy) ©®4 i G)

(75) — gan(L3 ®4 ¢} G),

where in line (@) we used the base change formula fjpon — ru(id x fq)* and
the identity p = pi(id x fg), in line (FJ) the identities frr = g2(f X fr) and
fo=aq(f x fz), and in line (@) the projection formula for (f x fr). The last line
is given by the composition of

(id x fa)'Lx — Ly_x and (f x fa)u(L3_x @p 'wiy) — L3,

which are given by (ii) and (i) of Proposition [8.3.
The diagram is defined as in Proposition p.2. O

9.3. External tensor product. We consider X,Y as above and F' € DT (I(Cx)),
G € D*(I(Cy)). Proposition 2.1.14 of [[] implies the existence of a natural mor-
phism:
(76) Mxe/LyG—)/LXXy(F&G)
Proposition 9.5. For F € Mod(Ax) and G € Mod(Ay) there exists a natural
morphism

‘ PR FRUFE — iy (FRG).
Its restriction to T* X x T*Y makes a commutative diagram with morphism @)

[LxF & [LyG E— ‘LLXXy(F & G)

L |

PR F R G —— 3 (F R G).
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Proof. The existence of the morphisms follows from the Kiinneth formula and
Proposition @ It coincides with the already known construction outside the zero

section by Proposition . (I

10. COMPOSITION OF KERNELS

We recall the microlocal composition of kernels defined in [ff], Theorem 2.5.1, and
we check that a similar construction also works for A-modules. This construction
is a composition of the operations recalled in section E, and we just have to check
that the restrictive hypothesis assumed in the case of A-modules are satisfied.

We first recall some standard notations and definitions. We consider three ana-
lytic manifolds X, Y, Z and we let g;; be the (¢, j)-th projection from X xY x Z and
pi; the (i, 7)-th projection from T*X x T*Y x T*Z. We also denote by a: T*Y —
T*Y the antipodal map and we set pd, = (id X a) o p12. For F € DT(I(Cx«xy)),
G e D (I(Cyxz)) and § € DT (I(Cr+xx7+y)), & € DT (I(Cr+yxr-7)) We define:

(77) FoG = Rqian(giy F ® 435 G), F66 = Rpian(pls 1§ © pyy ®).

We set for short M = X XY XY X Z, N=X xY x Z and let j: N — M be the
diagonal embedding. We define the maps:

k: T*N — N XM T*Ma (1”?}72;5’77»() = (‘r)yayaz;ga _77’7774)
T:T"N = N xxxz T"(X x Z), (2,y,2:6,1,0) = (2,¥,2§,()
p:jﬂ‘ok’

and obtain the following commutative diagram, with a Cartesian square:

p

T*NC k N x T*MC—I" _pepg

(78) lT - jdt

P13 NxxxzT*"(XxZ)———— s T*N

q13d
lihsw

T*(X x Z)

We note that § 0B ~ Rpianp~1(F ® &). Theorem 2.5.1 of [E] gives a natural
morphism, the composition of kernels:

(79) xxy K10 py xzKa — pxxz(K1 o Ka),

for K1 € DY (I(Cxxy)), K2 € DT(I(Cyxz)). Since the commutation of microlo-
calization and direct image has a weaker statement in the case of A-modules than in
the case of ind-sheaves of vector spaces, we also give a weaker statement than @)
for the composition of kernels.

In fact, for ind-sheaves, morphism () below is equivalent to @) indeed using
the adjunction between Rgian and ¢}; we may apply () to K3 = K7 o Ky and
recover ([9). But for A-modules we don’t have this adjunction and the statement
of Proposition is actually weaker than an A-module analog of (E)
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Proposition 10.1. For complezes K1 € DT(I(Cxxy)), K2 € DY(I(Cyxz)) and
K3 € DY(I(Cxxz)), with a morphism q5' K1 ® ¢o3 Ko — qi3' K3 @wy, there exists
a natural morphism

(80) pxxy K16 py <z Ko — pix xzKs.

Proof. By definition pxxy K1 gMYXZKQ = Rpianp (uxxy K1 W py«zKs). The
external tensor product (E) gives uxxy K1 X puywz Ko — pp (K X Ky) and the
base change formula gives Rpisup™' = Rais=uRmuk™' jr' ~ Rqismnqisy Rjanjy "
We obtain the morphisms
pxxy K16 py <z Ko — RQ13w!!qu,1cl Rjang (par (K1 B K»))

— Raizangiay pv j~ (K1 K Ky)

— Rquarndyay in (g5 K3 ®@ wy)

— pxxzKs,

where in the second line we have applied Proposition @, in the third the hypothesis
and in the fourth Proposition p.d. g

Now we give the A-module analog of the above result. For § € Mod(Ar+x x1+y)
and & € Mod(Ar+y x1+z) we set
aA ax * *
T 0 & = pian(pisd @ay P538) = praup”™ (FHS).

We note the morphisms in DY (I(Crx xx1+2)):

A
(81) FS® — Rpisu(pi3% @y 5:6) © § S 6,
where the second arrow is an isomorphism by Proposition @

Proposition 10.2. For A-modules K1 € Mod(Axxy), K2 € Mod(Ayxz) and
K3 € Mod(Axxz) with a morphism g3 K1 ® ¢33 Ko — ¢i5K3 @ wi, there exists a
natural morphism

aA
(82) //)L}XYKl © N)JL"XZKQ - MJ)L}XZK?H
with the following property. Setting U = T*X x T*Y, V = T*Y x T*Z, the re-

strictions of morphisms (BQ) and (RA) outside the zero section make a commutative
diagram in DT (I(Cqw x w7+ 7))

(xxy K1)u 6 (py xzKa)y —= iixxzK3

| |

aA A
Mv)%xYKl © :uéxZKQ MXXZK3'

Proof. The proof is similar to the proof of Proposition , replacing operations in
D*(I(C.)) by the same operations in Mod(.A.). In particular Proposition [6.7 gives
the base change pi3up™ = qi3-nmk™ jx < q137114]54 Janjn, Which is an isomorphism
because ¢i34 is an embedding and jgz is smooth. Then we use Propositions E
and @ instead of Propositions @ and .

By Proposition p.d we have ¢f, K1 ® ¢33 Ko ~ 013 K1®453' Ko and ¢i3 K3 ~ ¢73' K3
in DY(I(Cxxyxz)). Hence the morphism in the hypothesis of the proposition
yields a morphism ¢! K1 ® q2_31K2 — q1_31K3 ®@wy in DY (I(Cxxyxz)) and we
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may apply Proposition [10.]]. The vertical arrows in the diagram are given by the
morphisms of functors p — p# and (@) O

We are in fact only interested in the following example. We assume now that
X, Y, Z are complex analytic manifolds. We use the A-module Ox and its variants

introduced in Definition @ We set K; = @g?’xd%) [d$ ], which gives a resolution
of Oégox’d;)[df/], K, = @g?’xd%)[d%], K; = @g?’xd%) [d%]. With these notations mor-
phism (@) yields a morphism ¢{, K1 ® ¢33K2 — ¢j3K3 ® wy and Proposition
gives the microlocal convolution:

0,d$ ) g0 1 @A 0,d%) 1 e 0,d%) 1 e
(83) 1Ry O [d5] S 1t ;02 [dy) — 1 20552 [d5)-

. . . .. . aA .
This convolution product is associative, because the composition of kernels o is
associative, as well as the integration morphism, by Fubini.

11. SHEAVES OF MORPHISMS

We will in fact use the morphisms of the previous section in a slightly more gen-
eral situation, namely for complexes of the type Hom(7 ! F, uG), rather than uG.
For this we use the following proposition. Once again we recall the convolution for
sheaves and then build it for A-modules. To compare them we use the convolution
products for complexes F, G, §, &:

0 _ _ a0 a— _
FoG= Q13!!(q121F & QleG)7 So6= p13!!(p12 13: ®p2316)-

Proposition 11.1. We consider F € CT(I(Cxxy)), G € CT(I(Cyxz)), § €
CT(I(Cr+(xxv))) and & € CT(I(Cr+(yxz))), there exists natural morphisms, re-
spectively in DT (I(Cr+(xxz))) and CT(I(Cr+(xx2z))):

(84) RHom(rylyF,§) 6 RHom(ny Lk ,G,8) — RHom(ry} ,(FoG),§0®),
(85) Hom(myy F, ) © Hom(ry L ,G, &) — Hom(ry} ,(F 5 G),§ ¢ ®).

For F € CT(C(xxy)..); G € CH(C(yxz)..), § € Mod(Ar+(xxy)) and & €
Mod(Az+(yx z)), we also have the natural morphism

_ aA _ _ 0 aA
(86)  Hom(myy F,T) 6 Hom(my L ,G, &) — Hom(ry ,(FoG),F o &).
These morphisms fit into the commutative diagram.:

RHom(ryky F,§) 6 RHom(ryL ,G, &) — RHom(ry} ,(F o G),§ 6 &)

Hom(TrXxZ( 8G)a306)
(87) ?
Hom(rxky F.§) © Hom(ry) ,G, ®) Hom(ry, ,(F 8 G),§ € ®)
1 aA 1 1 0 aA
Hom(7y, F,§) © Hom(ny, ,G, &) — Hom(ry, ,(FoG),T o &)
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Proof. We first build morphism (@), in the derived category. We keep the notations
of section E, in particular diagram (@) To simplify the notations we suppress some
subscripts on 7~ 1. Let us denote by LHS the left hand side of (§4). We have

LHS = Rpiznp~ ' (RHom (7' F, §) X RHom (7' G, &))
~ Rpisnp ' RHom(r H(F X G),F X &).

We can enter the functor p~! inside the RHom, and use the morphism of functors

Rpisn RHom(+,-) — RHom(Rpi13.(-), Rp13u(-)). Thus we obtain a morphism:
(88) LHS — RHom(Rpi3.p~'n (FRG),5 0 ®).

We let 0: N Xxxz T*(X x Z) — T*N be induced by the inclusion of the zero
section of Y and we let 7y : N Xxxz T*(X x Z) — N be the projection. Then
T opoo = jomy. Moreover, since we deal with conic sheaves, we have the
isomorphism of functors R7, ~ o~ !'. We also have a morphism Rgi3x11 — Rq137+.
We deduce the sequence of morphisms:

Rp13.p~ 'y ~ Rquspu RTup™ 'y}

1 1

— Rquzono'pimy,

(89) _
~ RQ137r!!7T/N1j71

o -1 1
= 7T)(><ZR‘113!!.7 ,

where the last isomorphism is a base change. So we obtain w;(lszqlgujfl —

Rp13.p~'ny} and composing this morphism with (Bg) we deduce (84).

Morphism (@) in the category of complexes is obtained in the same way. In
particular the analog of morphism @) is obtained from the morphism of complexes
p1an Hom(+,-) — Hom(p1s«(+), p1su(-)). Moreover, 7, is exact on conic sheaves, so
that 7, ~ RT, ~ o~ ! and we have a sequence of morphisms in the category of
complexes analog to (BY) (note that the base change formula is true for complexes).

The top part of diagram @) is given by the natural morphisms between functors
and their derived functors.

The difference between morphism (B6) and morphism (BF) only concerns the

right hand side of the Hom functors. Namely we replace the functor 5 by g

and obtain the same proof. The bottom part of diagram @) is then given by the
morphism of functors (@) ]

12. £-MODULES

In this section X is a complex analytic manifold of complex dimension n = d%
and A denotes the diagonal of X x X. We identify T*X and TX(X x X) by the
first projection. We denote by £x the sheaf of microdifferential operators of finite
order. This is a sheaf on T*X and its restriction to 17X was interpreted using
the tempered microlocalization in [[[] (see also [LT]), as follows. We let v: T*X —
P(X) be the projection to the complex projective bundle associated to T*X. Then
Ex ~ 7’17*(5§’f), where Efg’f is the sheaf on T*X ~ TX(X x X):

ERS — T yhom(Ca, Og?’xn))( [n]).
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The product of Sﬁ’f is defined in [l] by the convolution product for tempered

microlocalization. This can be defined also in the language of ind-sheaves, follow-
ing [{]. We first define £4"¢ € D*(I(Cr-(xxx))) by

Eggnd RIHom(r~ CA,MXXX(O%OX;?[ D,

where (’);&7)}2, defined in (@) as an object of Db(C(XXx)m), is now considered in
DY(I(Cxxx) using the functor I,. Thus £%"¢ has support on T*X ~ T (X x X)
but this doesn’t imply that it is the image of an ind-sheaf on T*X. We recall the
notations py,pe: T*(X x X) — T*X for the projections, a: T*X — T*X for the
antipodal map and we define the embedding

§:T*X ~TE(X x X) = TH(X x X), (2, — (z,2,& —&).

Since supp £%¢ = TX (X x X) the morphisms of functors pi. — p1.6,6' =t = §'~1
and pox — a 16’ ! induce isomorphisms:

(90) 6/—153?“1 ~ pl*gggnd ~a p Elznd.

We could write the same isomorphisms with p;n instead of p;. or their derived
functors.

Definition 12.1. We let £i?¢ € D*(I(Cz-x)) be the ind-sheaf on T*X defined
by (B0).
Since the functor « from ind-sheaves to sheaves commute with direct image (or
inverse image) we have £/ ~ qp. x ().
The complex £2¢ comes with a product in the sense of Definition B.1, defined
as follows:
(i) Using (p0) we see that £ @ £ipd ~ §'=1(Eind 5 ghind),
(ii) We have Ca 0 Ca = Ca and morphism (B4), with X = Y = Z, gives a
morphism €94 ® £ — §'~1 RTHom(r~!Cax, ,uOégox}) 5 MOXxX[ nl).
(iii) The convolution product Rqizn(qys Oégoxg()[ |® q231(9§0;;()[ 1) — Oégoxv;() [n]

together with Proposition gives a morphism uOégoxg? 5 uOt(O ")[ 2n] —

HOXR [n.
The composition of (i)—(iii) defines the product £i#¢ ® £ird — £ird. In the same
way Propositions and , applied to X =Y and Z a point, give an action
of £ on pO%, in the sense of Definition B.]. We deduce an action of £¢ on
RIHom(r~LF, nO%), for any F € D*(I(Cx)).

This product and this action are just morphisms in the derived category and
do not endow the complex ¢ with a structure of algebra. However, when we go
back to the derived category of sheaves with the functor ap«x, the product gives
a morphism 5§,f ® 5§,f — Ei’f. But 5§,f is a sheaf (i.e. concentrated in degree
0) and this morphism really endows E)P({’f with a structure of sheaf of algebras.
But this is not enough to define a structure of Ei’f—module on Tphom(F,Ox) ~
ar~x RITHom(r~1F, uO%;), which is in general not concentrated in degree.

To solve this problem we define a dg-algebra &£ 3? on the site X, (and not merely
an object in the derived category) such that £¢ ~ I.(€¢). We also define in
the same way a dg-module over £% representing pO%. In fact our definition is
exactly the previous one, but in the categories of A-modules instead of the derived
categories.
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Definition 12.2. We define a complex of sheaves on T* X, = TA(X X X)sq
&4 = 7 Hom(r~' Ca, it x O X [n),

with a product defined as follows:

(i) as in the case of £{¢, morphism (Bf) gives a morphism

_ _ n) aA n
£4 @ EF — 8 Hom(n ' Ca, pt O 6 A0 [2n]),

(ii) the convolution product (R§) together with Proposition gives a mor-
phism

A0 8 iAoy 2n] — pHOR T Il

The composition of (i) and (ii) defines the product E @ &L — &%
In the same Way, Propositions - and ‘, applied to X =Y and Z a point,
give a morphism £¢ ®u Ox — % 40x.

Proposition 12.3. The morphisms introduced in the previous definition give 5;?
a structure of dg-algebra and give u}%@x a structure of dg-Ex-module.

Over T*X, we have isomorphisms EP4 ~ I[.(E4) and pO% ~ I (p40x).
Through these isomorphisms the product of 53‘} and its action on H}‘}@X coincide
with the product of Emd and its action on pO% defined above.

Proof. The complex £% is a dg-algebra and p4Qx is a dg-E¢-module because the
product and the action are defined in categories of complexes, and not merely up
to homotopy.

Let us check that the product of SA represents the product of £{¢ and that their
action on p¢Qx and puO% are the same. This is a consequence of diagram @
and Proposition [L0.3; but in diagram (B7) some vertical arrows go in the wrong
direction and the commutatlve diagram in Proposition requires a restriction
outside the zero section. These problems are solved as follows.

In diagram (B7) the vertical arrows are isomorphisms. Indeed, we consider the
cases § = MX@E?X";( [n] and & = § or & = u£0x. Hence, by Proposition .10, §
and & cousist of quasi-injective sheaves (on the site T* X, ), and so are acyclic for
the functors Hom(H, -), when H is constructible. In our cases the complexes F', G in
the diagram are Ca or Cx, so that the Hom sheaves are isomorphic to the RHom.
For the composition of kernels o we also have to compute a direct image. Since we
deal with A-modules, Proposition @ implies that direct images and derived direct
images coincide. This proves that the vertical arrows are isomorphisms.

This diagram can be extended to the right, using Proposition . We can
use the commutative diagram of Proposition because of the following remark:
setting U = T*X x T*X, we have, on T*X x T*X, (5}?“1)[] = 5}?“1. Then, for
the same reason as above, the right vertical arrows in this extended diagram are
isomorphisms. (I

We still have to make the link between £¢ and Si’f . We note that p~1&¢ is

quasi-isomorphic to 5§’f . In particular p’lé';? has its cohomology concentrated in
degree 0 and we have isomorphisms of sheaves:

EXT ~ HO(p7'€%) ~ H (ol (£%)).
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Moreover the structure of dg-algebra on 53‘(‘ gives a structure of dg-algebra on
p1€4 and a structure of algebra on H%(p~'£¢). The above proposition implies
that this product induced on S)P({’f coincides with the one defined previously.

We also have a structure of dg-E¢-module on p5Qx; in particular it defines
an object I (u30x) € D(I.(£4)). For any G € D™ (I(Cr-x)) the complex
RZIHom(G, I, (14 Qx)) is thus also naturally defined as an object of D(I,(£%)).
For G=7"'F, F € D~(I(Cx)), we deduce that

Tphom(F,0x) = a RTHom(n ' F, I (u140x)) € D(p Q).
and, by construction, the corresponding action in D(Cr- x)
pLEL © Tphom(F, Ox) — T-phom(F, Ox)

coincides with the action of 5§’f on T-phom(F,Ox) defined above. Thus we are
almost done, except that T-uhom(F, Ox) is defined as an object of D(p™'€¢) rather
than D(Ef({’f). But the dg-algebra p_lé';? is quasi-isomorphic to 5§’f and it just
remains to apply Corollary @, as follows. )

We have the quasi-isomorphisms of dg-algebras on T*X

pES S rplef 20 ERY,
and the equivalence of categories ¢ o d<p.: D(p™1EL) = D(E?’f). We set & =
Br-x(p1EL) so that we have an adjunction morphism &% — I,(£4). This mor-
phism induces a functor of restriction of scalars, and ¢§o¢p<o. induces an equivalence
of categories:

r: D(L(E4)) - D(E%),  ®: D(Ex) = D(Br-x (ERY)).

Hence we obtain an object O% = & (r(I, (14 0x))) € D(Br- x (Ex1))), representing
pO% and we can state the final result:

Theorem 12.4. The object O € D(BT*X(S)I;’JC))) defined above, over T*X, 18
send to uxO% in D(I(Ci+x)) by the forgetful functor. It satisfies moreover: for
F € D~ (I(Cx)) the complex

ar-x RTHom(r ' F, o)

which is naturally defined in D(Ef}’f), over T*X, is isomorphic in D(Ci-x) to
T-uhom(F,Ox) endowed with its action of Eﬁ’f.
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