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BROWNIAN MOTION CONDITIONED TO STAY IN A

CONE

RODOLPHE GARBIT

Abstract. A result of R. Durrett, D. Iglehart and D. Miller states that
Brownian meander is Brownian motion conditioned to stay positive for
a unit of time, in the sense that it is the weak limit, as x goes to 0,
of Brownian motion started at x > 0 and conditioned to stay positive
for a unit of time. We extend this limit theorem to the case of multi-
dimensional Brownian motion conditioned to stay in a smooth convex
cone. Properties of the limit process are obtained and applications to
random walks are given.

1. Introduction

The purpose of this paper is to prove the existence of a process which is,
in some sense, multidimensional Brownian motion started at the vertex of
a smooth convex cone and conditioned to stay in it for a unit of time.

Let C∞ be the space of continuous functions w : [0,+∞) → R
d, d ≥

1, endowed with the topology of uniform convergence on compact subsets
induced by the distance

d(w,w′) =
∑

n>0

2−n( max
t∈[0,n]

‖w(t) − w′(t)‖ ∧ 1) ,

and let F be the corresponding Borel σ-algebra. We shall use C∞ as a
concise notation for (C∞,F). If (µn), µ are probability measures on C∞, the
sequence (µn) is said to converge weakly to µ if

∫
f dµn →

∫
f dµ

for all bounded and continuous function f : C∞ → R. Weak convergence
will be denoted by the symbol ⇒.

Let {Xt, t ≥ 0} be the canonical process on C∞ for which Xt(w) = w(t)
for any w ∈ C∞. Consider an open cone C with vertex at the origin 0 and
let τC = inf{t > 0 : Xt /∈ C} be the first exit time of the canonical process

from C. For any x ∈ C we define the law W̃ C
x,1 of the Brownian motion

started at x and conditioned to stay in C for a unit of time by the formula

W̃ C
x,1(∗) = Wx(∗ | τC > 1) ,
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2 R. GARBIT

where Wx is the distribution on C∞ of the standard d-dimensional Brownian
motion started at x.

Our main result is the following theorem which states that the Brownian
motion started at x and conditioned to stay in C for unit of time converges
in law to a limit process as x ∈ C tends to 0, when C is a nice cone.
The precise definition of a nice cone is given in Section 5; for example, any
circular or ellipsoidal cone is nice.

Theorem 1.1. Suppose C is a nice cone. As x ∈ C goes to 0, the law W̃ C
x,1

converges weakly on C∞ to a limit W̃ C
0,1.

For any t ∈ (0, 1], the entrance law W̃ C
0,1(Xt ∈ dy) has the density e(t, y)

(w.r.t. Lebesgue measure) given by the formula (23).

Theorem 1.1 is the multidimensional analog of Durrett, Iglehart and
Miller result ([5], Theorem 2.1) in which they consider Brownian motion
conditioned to stay positive for a unit of time and identify the limit as
the Brownian meander. In the case of two-dimensional Brownian motion,
Theorem 1.1 is due to Shimura ([8], Theorem 2).

For geometric reasons, the extension of Shimura’s result to higher di-
mensions is not straightforward. Shimura calculates the finite-dimensional
distributions and proves tightness. In order to prove the convergence of the
finite-dimensional distributions, he obtains first a formula for the transitions
of a two-dimensional Ornstein-Uhlenbeck process killed on the boundary of
C and then derives by scaling the expression of the finite-dimensional dis-
tributions. Our proof rather uses directly an explicit formula for the heat
kernel of a cone given by Bañuelos and Smits in [1]. But the main difference

is to be found in the proof of tightness of the laws W̃ C
x,1 as x ∈ C → 0. We

use a principle already present in Shimura’s article: If W̃ C
x,1 converges weakly

as x tends to any point x0 ∈ ∂C \ {0}, then the tightness as x ∈ C → 0

follows. For a two-dimensional cone, proving weak convergence of W̃ C
x,1 as

x → x0 ∈ ∂C \ {0} is quite easy because ∂C is locally linear at x0, so the
proof is nearly the same as in the one-dimensional case. But in higher di-
mensions the geometry of the boundary of a cone is not so simple and we
are led to a quite more general problem: Given an open set U and a point

x0 ∈ ∂U , does the law W̃ U
x,1 of Brownian motion started at x ∈ U and con-

ditioned to stay in U for unit of time converge weakly as x ∈ U → x0? The
major part of this paper is in fact concerned with the study of this question.

In Section 2, we consider the general problem of Brownian motion condi-
tioned to stay in an open set U and give some useful properties of the con-

ditioned laws W̃ U
x,1, such as the Markov property and a form of continuity

with respect to the variable x. In Section 3, we recall Durret-Iglehart-Miller
result on Brownian motion conditioned to stay positive which extends imme-
diately to the case of Brownian motion conditioned to stay in a half-plane.
From the half-space case, we then derive in Section 4 a convergence theorem
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for W̃ U
x,1 as x → x0 ∈ ∂U when U is nice at x0. This new result is based

on the ball estimate (Lemma 4.6) which constitute the heart of this paper.
Finally, in Section 5 we present a complete proof of Theorem 1.1, and we
give some properties of the limit process, such as the distribution of its first
exit time from the cone after time 1.

Our interest in such a limit theorem is related to random walks. Indeed,
Bolthausen proved in [3] that a one-dimensional square integrable centered
random walk conditioned to stay positive until time n converges to a Brow-
nian meander, that is, a Brownian motion conditioned to stay positive for
a unit of time. By analogy, the limit process given in Theorem 1.1 is very
likely to be the limit in law of a multidimensional random walk conditioned
to stay in a cone. Under the assumption that such a functional Central Limit
Theorem holds, we derive in Section 5.3 information on the tail probability
of the first exit time of the random walk from a cone. The functional CLT
in itself will be the subject of a forthcoming article.

Unusual notations. If µ is a probability measure on a space (X,A), we will
denote by µ(f) the expectation of a measurable function with respect to µ.
For a set A ∈ A and a measurable function f , the notation µ(A; f) stands
for µ(11A × f), where 11A is the characteristic function of the set A. For
consistency, µ(A;B) will often be prefered to µ(A ∩ B).

2. Basic facts about the conditioned laws

2.1. Markov property. Let U be an open subset of R
d and let τU be the

first exit time from U . For any x ∈ U and t > 0, we set

W̃ U
x,t(∗) = Wx(∗ | τU > t) =

Wx(∗; τU > t)

Wx(τU > t)
.

For convenience, we will also use the notation W̃ U
x,t := Wx for any t ≤ 0 and

x ∈ R
d.

Let Ft be the σ-algebra generated by the random variables {Xs, s ≤ t}
and let Ft+ = ∩s>tFs. The shift operator θt on C∞ is defined by θt(w)(s) =
w(t + s).

The laws W̃ U inherit a Markov property from Brownian motion:

Proposition 2.1 (Markov property). Let x ∈ U and t > 0. For all s ≥ 0,
A ∈ Fs+ and B ∈ F ,

W̃ U
x,t

(
A; θ−1

s B
)

= W̃ U
x,t

(
A; W̃ U

X(s),t−s(B)
)

.

Proof. Suppose first that s ∈ [0, t). By the Markov property of Brownian
motion, we get

Wx

(
A; θ−1

s B; τU > t
)

= Wx

(
A; τU > s;WX(s)(B; τU > t − s)

)

= Wx

(
A; τU > s; W̃ U

X(s),t−s(B)WX(s)(τU > t − s)
)

.
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Moreover, W̃ U
X(s),t−s(B) is Fs-measurable, and the Markov property also

gives

Wx

(
A; W̃ U

X(s),t−s(B); τU > t
)

= Wx

(
A; W̃ U

X(s),t−s(B); τU > s;WX(s)(τU > t − s)
)

.

Thus we have

Wx

(
A; θ−1

s B; τU > t
)

= Wx

(
A; W̃ U

X(s),t−s(B); τU > t
)

,

and the result follows.
Now suppose s ≥ t. Since {τU > t} is Fs-measurable, the Markov prop-

erty gives

Wx

(
A; θ−1

s B; τU > t
)

= Wx

(
A;WX(s)(B); τU > t

)
,

which is the desired result. �

We shall also need the related strong Markov property; the proof is quite
similar and is omitted here.

Proposition 2.2 (Strong Markov property). Let x ∈ U and t > 0. For
any optional time τ , any A ∈ Fτ+ and any positive measurable function
f(s,w) : [0,+∞) × C∞ → R, we have

W̃ U
x,t (A; τ < t; f(τ, θτ )) = W̃ U

x,t

(
A; τ < t; W̃ U

X(τ),t−τ (f(s, ·))|s=τ

)
.

2.2. Continuity. Let U be an open subset of R
d. We will say that U

is co-regular if Wx(τU > 0) = 0 for every x ∈ ∂U ; that is, a Brownian
motion started at any point of the boundary of U visits instantaneously the
complement of U . For such a set, τU and τU are almost surely equal.

Proposition 2.3. Suppose U is co-regular. For every bounded continuous

function f on C∞, the mapping (x, t) 7→ W̃ U
x,t(f) is continuous on U ×

(0,+∞).

Proof. Since Wx(τU > t) > 0 for any (x, t) ∈ U×(0,+∞), it suffices to prove
that the mapping (x, t) 7→ Wx(f ; τU > t) is continuous on U × (0,+∞).
Suppose xn → x ∈ U and tn → t > 0, and set

φn(w) = f(xn − x + w) 11{τU >tn}(xn − x + w)

and
φ(w) = f(w) 11{τU >t}(w) .

Since Wxn(f ; τU > tn) = Wx(φn) and Wx(f ; τU > t) = Wx(φ), it is enough
to show that φn(w) → φ(w) for Wx-almost every w.

Set Ω = {X0 = x; τU = τU 6= t} and choose a path w ∈ Ω and a sequence
(wn) that converges to w on C∞.

If τU (w) > t, then there exists ǫ > 0 such that w(s) ∈ U for all s ∈ [0, t+ǫ].
Since U is open and wn → w uniformly on [0, t + ǫ], for n large enough we
have wn(s) ∈ U for all s ∈ [0, t+ǫ] and we have tn < t+ǫ, thus τU(wn) > tn.
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On the other hand, if τU (w) = τU (w) < t, then there exists s < t such

that w(s) 6∈ U . If n is sufficiently large, then wn(s) 6∈ U and s < tn, so that
τU(wn) < tn. Hence, in each case,

11{τU >tn}(wn) → 11{τU >t}(w) .

Together with Wx(Ω) = 1, this proves that φn(w) → φ(w) for Wx-almost
every w. �

2.3. Finite-dimensional distributions. Let U ⊂ R
d be a co-regular open

set and x0 a boundary point of U . Thanks to the Markov property and
the continuity, it is now easy to find a sufficient condition for the weak

convergence of the finite-dimensional distributions of W̃ U
x,1, as x tends to x0,

that only involves the first transitions.

Proposition 2.4. Suppose that for any t ∈ (0, 1), the first transition law

W̃ U
x,1(Xt ∈ dy) converges weakly as x → x0 to a probability measure for

which ∂U is a null set. Then, the finite-dimensional distributions of W̃ U
x,1

converge weakly as x → x0 to some probability measures.

Proof. For all t ∈ (0, 1), let us denote by µt the limit of W̃ U
x,1(Xt ∈ dy) as

x → x0. By Portemanteau Theorem,

µt(U ) ≥ lim sup
x→x0

W̃ U
x,1(Xt ∈ U) = 1 .

Since µt(∂U) = 0, we have µt(U) = 1.
Now, consider times 0 < t1 < t2 < · · · < tn and a bounded continuous

function f : R
n → R, and set F = f(Xt1 ,Xt2 , . . . ,Xtn). Fix 0 < t <

min(t1, 1) and observe that for all x ∈ U we have

W̃ U
x,1(F ) = W̃ U

x,1

(
W̃ U

Xt,1−t(f(Xt1−t,Xt2−t, . . . ,Xtn−t))
)

= W̃ U
x,1(Ht(Xt)) ,

with Ht(y) = W̃ U
y,1−t(f(Xt1−t,Xt2−t, . . . ,Xtn−t)). By Proposition 2.3, the

function y 7→ Ht(y) is continuous on U . Since W̃ U
x,1(Xt ∈ dy) converges

weakly to µt(dy) as x → x0, it follows from the continuous mapping theorem
that

lim
x→x0

W̃ U
x,1(Ht(Xt)) = µt(Ht) .

That is

lim
x→x0

W̃ U
x,1(F ) =

∫
W̃ U

y,1−t(f(Xt1−t,Xt2−t, . . . ,Xtn−t))µt(dy) .

The expression on the right side of this equation clearly defines a probability
measure on R

n, thus Proposition 2.4 is proved. �
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Let x ∈ U and t > 0. The Markov property of Brownian motion gives

W̃ U
x,1(Xt ∈ dy) =

Wx(Xt ∈ dy; τU > 1)

Wx(τU > 1)

=
Wx(Xt ∈ dy; τU > t;WXt(τU > 1 − t))

Wx(τU > 1)
.

Since the transitions Wx(Xt ∈ dy; τU > t) of Brownian motion killed on the
boundary of U have densities pU (t, x, y) with respect to Lebesgue measure
dy, we get

W̃ U
x,1(Xt ∈ dy) =

pU (t, x, y)

Wx(τU > 1)
Wy(τU > 1 − t) dy .

Hence, proving convergence of the finite-dimensional distributions of W̃ U
x,1

consists essentially in finding an equivalent of the heat kernel pU (t, x, y) as
x → x0.

2.4. Neat convergence. Let U ⊂ R
d be a co-regular open set and let x0

be a boundary point of U . We shall now take the opposite view to the
initial problem and exhibit conditions ensuring that some properties of the
conditional distributions are preserved by weak limit.

Suppose that there exists a law W̃ U
x0,1 on C∞ such that W̃ U

x,1 ⇒ W̃ U
x0,1

as x ∈ U tends to x0. We will say that the convergence is neat (or that

W̃ U
x,1 converges neatly to W̃ U

x0,1 as x ∈ U → x0) if the limit process does

not leave U before time 1, i.e. W̃ U
x0,1(τU > 1) = 1. The next proposition

gives a sufficient condition for neat convergence and states that the Markov
property then holds for the limit process.

Proposition 2.5. Suppose W̃ U
x,1 ⇒ W̃ U

x0,1 as x ∈ U → x0.

If W̃ U
x0,1(Xt ∈ ∂U) = 0 for all 0 < t < 1, then the convergence is neat, and

the limit process W̃ U
x0,1 has the Markov property:

For all t > 0, A ∈ Ft+ and B ∈ F ,

(1) W̃ U
x0,1(A; θ−1

t B) = W̃ U
x0,1

(
A; W̃ U

Xt,1−t(B)
)

.

Proof. Let t ∈ (0, 1). By Portemanteau Theorem, we get

W̃ U
x0,1(Xt ∈ U) ≥ lim sup

x→x0

W̃ U
x,1(Xt ∈ U) = 1 .

Since W̃ U
x0,1(Xt ∈ ∂U) = 0, we see that W̃ U

x0,1(Xt ∈ U) = 1. Note that it is

enough for the right hand side of equation (1) to be correctly defined. We

will now prove that the Markov property holds for W̃ U
x0,1 and then use it to

show that the convergence is neat.
Consider a finite sequence 0 < s1 < s2 < · · · < sn and a function G =

g(Xs1 ,Xs2 , . . . ,Xsn), where g : R
n → R is bounded and continuous. Choose

ǫ ∈ (0, s1), and consider another finite sequence 0 ≤ t1 < t2 < · · · < tm ≤
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t+ǫ and a function F = f(Xt1 ,Xt2 , . . . ,Xtm), where f : R
m → R is bounded

and continuous. For every x ∈ U , we have

W̃ U
x,1(F ;G ◦ θt) = W̃ U

x,1 (F ; g(Xt+s1 , . . . ,Xt+sn))

= W̃ U
x,1

(
F ; W̃ U

X(t+ǫ),1−t−ǫ(g(Xs1−ǫ, . . . ,Xsn−ǫ))
)

= W̃ U
x,1(F ;Hǫ(Xt+ǫ)) ,

where Hǫ(y) = W̃ U
y,1−t−ǫ(g(Xs1−ǫ, . . . ,Xsn−ǫ)).

If t + ǫ ≥ 1, then Hǫ is defined on R
d by the formula

Hǫ(y) = Wy(g(Xs1−ǫ, . . . ,Xsn−ǫ))

and is therefore continuous everywhere; thus the function Hǫ(Xt+ǫ) is con-
tinuous on C∞.
If t+ǫ < 1, then Hǫ is defined and continuous on U by Proposition 2.3. Since

the coordinate mapping Xt+ǫ is continuous on C∞ and W̃ U
x0,1-almost surely

takes its values in U , we see that the mapping Hǫ(Xt+ǫ) is almost-surely

continuous with respect to W̃ U
x0,1.

Thus, in each case, the continuous mapping theorem gives

lim
x→x0

W̃ U
x,1(F ;Hǫ(Xt+ǫ)) = W̃ U

x0,1(F ;Hǫ(Xt+ǫ)) .

We have also, by hypothesis

lim
x→x0

W̃ U
x,1(F ;G ◦ θt) = W̃ U

x0,1(F ;G ◦ θt) .

Hence

(2) W̃ U
x0,1(F ;G ◦ θt) = W̃ U

x0,1(F ;Hǫ(Xt+ǫ)) .

By density, relation (2) holds for all Fs+ǫ-measurable function F , and a
fortiori for all F ∈ Fs+ . Now suppose F ∈ Fs+ . We shall let ǫ → 0 in (2).
If t ≥ 1, then Hǫ(Xt+ǫ) = WX(t+ǫ)(g(Xs1−ǫ, . . . ,Xsn−ǫ)), and it is clear that
Hǫ(Xt+ǫ)(w) → H0(Xt)(w) as ǫ → 0 for all w ∈ C∞.

If t < 1, then by Proposition 2.3, we have W̃ U
w(t+ǫ),1−t−ǫ ⇒ W̃ U

w(t),1−t as

ǫ → 0 for all w ∈ C∞ such that w(t) ∈ U . Since the collection of those w

forms a set of full W̃ U
x0,1-measure, we see that Hǫ(Xt+ǫ) converges W̃ U

x0,1-

almost surely to H0(Xt) as ǫ → 0.
In each case, the dominated convergence theorem gives

lim
ǫ→0

W̃ U
x0,1(F ;Hǫ(Xt+ǫ)) = W̃ U

x0,1(F ;H0(Xt)) .

Hence

W̃ U
x0,1(F ;G ◦ θt) = W̃ U

x0,1(F ;H0(Xt)) = W̃ U
x0,1(F ; W̃ U

Xt,1−t(G)) .

Here again, by density, the result holds for all G ∈ F .
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It remains to prove that W̃ U
x0,1(τU > 1) = 1. By the Markov property of

W̃ U
x0,1, we have

W̃ U
x0,1(∀t ∈ (ǫ, 1],Xt ∈ U) = W̃ U

x0,1

(
W̃ U

Xǫ,1−ǫ
(τU > 1 − ǫ)

)
= 1

for all ǫ ∈ (0, 1). The expected result follows by letting ǫ → 0. �

Remark 2.6. Letting t → 0 in (1) would give a zero-one law for W̃ U
x0,1

(i.e. W̃ U
x0,1(A) = 0 or 1 if A ∈ F0+) if we had the stronger assumption that

W̃ U
x,t ⇒ W̃ U

x0,1 as (x, t) → (x0, 1). Note that in the special case where U = C

is a cone, the last convergence follows from the hypothesis W̃ C
x,1 ⇒ W̃ C

x0,1

because of the scaling property of Brownian motion. More precisely, let Kt

be the scaling operator defined for all w ∈ C∞ by

Kt(w)(s) =
√

tw(s/t) .

Recall that W0 is Kt-invariant. From the scaling invariance of the cone C,
it is easily checked that

W̃ C
x,t = W̃ C

x/
√

t,1
◦ K−1

t .

If (x, t) → (x0, 1), then x/
√

t → x0 and, by the continuous mapping theorem,
we get

W̃ C
x,t ⇒ W̃ C

x0,1 ◦ K−1
1 = W̃ C

x0,1 .

Therefore, the zero-one law follows under the hypothesis of Proposition 2.5.

3. The half-space case

3.1. Brownian motion conditioned to stay positive. We will now re-
call the one dimensional theorem of Durret, Iglehart and Miller ([5], Theo-
rem 2.1) and give a sketch of their proof. Auxiliary results such as Propo-
sitions 3.2 and 3.3 shall also be used in Section 4. Throughout this section
we set d = 1 and we denote by τ+ = inf{t > 0 : Xt ≤ 0} the first exit time
from the half-line (0,+∞). The related conditional laws will be denoted by

W̃+
x,1.
The Brownian meander is an inhomogeneous Markov process with con-

tinuous path that is obtained from Brownian motion by the following path
transformation:
Let σ = max{t < 1 : Xt = 0} be the time of the last zero before time 1, and

X̃t =
1√

1 − σ
|X(σ + t(1 − σ))| .

Then, with respect to Wiener measure W0, the process (X̃t)t≥0 is the Brow-

nian meander. Let W̃+
0,1 be the law of the Brownian meander on C∞. We

have the following theorem.
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Theorem 3.1 (Durrett, Iglehart, Miller). As x > 0 tends to 0, W̃+
x,1 ⇒

W̃+
0,1.

Note that Theorem 3.1 gives a precise meaning to the statement that
Brownian meander is Brownian motion conditioned to stay positive until
time 1.

The idea of the proof of Theorem 3.1 is to turn the conditioned laws
into unconditioned ones by the mean of well-chosen sections of the original
process. Let us give some details.

For all x ≥ 0, introduce the random time

Tx = inf{t ≥ 0 : Xt = x and Xs > 0 for all s ∈ (t, t + 1]} .

These times are W0-almost surely finite. To see this, suppose first x > 0,
and let h = inf{t > 0 : Xt = x} be the first hitting time of x and g = inf{t >
h : Xt = 0} be the time of the first return to 0 after time h. Note that they
are both stopping times. By the Markov property of Brownian motion, we
have

W0(g − h > 1) = Wx(τ+ > 1) > 0 .

We construct an increasing sequence of stopping times h1 < g1 < h2 <
g2 < · · · , setting h1 = h, g1 = g and for all i ≥ 1, hi+1 = gi + h ◦ θgi

and
gi+1 = gi + g ◦θgi

. Then (gi −hi)i≥1 is a sequence of i.i.d. random variables.
Since

∑
W0(gi − hi > 1) = +∞, we get W0(gi − hi > 1 i.o.) = 1 by the

Borel-Cantelli lemma. In particular W0(Tx < +∞) = 1. Finally, we remark
that W0(T0 ≤ Tx) = 1 for every x > 0, so that T0 is also W0-almost surely
finite.

To each time Tx we associate the shift operator φx := θTx acting on C∞.
We then have:

Proposition 3.2. For every x > 0, W̃+
x,1 = W0 ◦ φ−1

x .

Proof. Consider a finite sequence of times 0 ≤ t1 < t2 < · · · < tn, a sequence
B1, B2, . . . , Bn of Borel subsets of R, and set B = {w ∈ C∞ : w(ti) ∈ Bi,∀i =
1 . . . n}.
Let hx = inf{t > 0 : Xt = x} be the hitting time of x and write

(3) W0(φx ∈ B) = W0(φx ∈ B;Tx = hx) + W0(φx ∈ B;Tx > hx) .

By the Strong Markov property, we have

(4) W0(φx ∈ B;Tx = hx) = W0(θ
−1
hx

{B; τ+ > 1}) = Wx(B; τ+ > 1) .

In order to compute the second term of the right hand side of (3), observe
that

{φx ∈ B;Tx > hx} = {τ+ ◦ θhx
≤ 1; θTx ◦ θτ+ ◦ θhx

∈ B} ,
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so that applying successively the strong Markov property to hx and then to
τ+ gives

W0(φx ∈ B;Tx > hx) = Wx(τ+ ≤ 1; θTx ◦ θτ+ ∈ B)

= Wx(τ+ ≤ 1;W0(θTx ∈ B))

= Wx(τ+ ≤ 1)W0(φx ∈ B) .(5)

Putting (4) and (5) in equation (3) gives

W0(φx ∈ B) = Wx(B; τ+ > 1) + {1 − Wx(τ+ > 1)}W0(φx ∈ B) ,

Therefore

W0(φx ∈ B) =
Wx(B; τ+ > 1)

Wx(τ+ > 1)
= W̃+

x,1(B) .

�

Proposition 3.2 gives an “unconditioned” representation of the laws W̃+
x,1,

x > 0. It is noteworthy that W0 ◦ φ−1
x also make sense for x = 0 whereas

the definition of W̃+
x,1 does not.

Proposition 3.3. As x → 0, φx converges almost surely to φ0 with respect
to W0.

Proof. It suffices to prove that Tx almost surely converges to T0 with respect
to W0. Let w be a continuous path such that w(0) = 0 and T0 := T0(w) <
+∞. By definition of T0 and continuity of w, if ǫ is small enough, then
w(t) > 0 for all t ∈ (T0, T0 +1+ ǫ]. Put η = w(T0 + ǫ) > 0. For all x ∈ [0, η),
there exists t ∈ [T0, T0 + ǫ) such that w(t) = x. Since w(s) > 0 for all
s ∈ (t, t + 1], we see that Tx(w) ≤ T0 + ǫ. On the other hand it is clear that
T0 ≤ Tx(w). Hence Tx(w) → T0 as x → 0. �

From Propositions 3.2 and 3.3, it follows by the dominated convergence
theorem that

W̃+
x,1 = W0 ◦ φ−1

x ⇒ W0 ◦ φ−1
0

as x → 0. Note that the limit law clearly satisfies W0 ◦ φ−1
0 (τ+ > 1) = 1;

hence the convergence is neat. In order to prove Theorem 3.1, it remains
to identify the limit with the Brownian meander. This can be done by

computing the limit of the finite-dimensional distributions of the laws W̃+
x,1

which are easily derived from a classical formula for the joint distribution of
Brownian motion and its minimum. We do not give further detail since no
expression of these finite-dimensional distributions will be needed in what
follows.

3.2. Brownian motion conditioned to stay in a half-space. Theo-
rem 3.1 can easily be extended to multidimensional Brownian motion con-
ditioned to stay in a half-space. Let d ≥ 2. Because of invariance properties
of d-dimensional Brownian motion we need only to study the case of the
half-space D = {x ∈ R

d : x1 > 0}. Let BM be a Brownian meander and
B2, . . . , Bd be one-dimensional Brownian motions such that BM,B2, . . . , Bd
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are mutually independent. The d-dimensional process (BM,B2, . . . , Bd) will

be called D-Brownian meander and its law will be denoted by W̃ D
0,1.

Corollary 3.4. As x ∈ D → 0, W̃ D
x,1 ⇒ W̃ D

0,1.

Proof. A Brownian motion conditioned to stay in the half-space D is a Brow-
nian motion whose first coordinate is conditioned to stay positive. Since the
coordinates are independent one-dimensional Brownian motions, the result
follows immediately from Theorem 3.1. �

Remark 3.5. It is clear from the definition of the D-Brownian meander that
it satisfies W̃ D

0,1(τD > 1) = 1; thus the convergence in Theorem 3.4 is neat.

Therefore, W̃ D
0,1 has the Markov property of Proposition 2.5. Moreover, since

D is a cone, it follows from Remark 2.6 that we also have a zero-one law

with respect to W̃ D
0,1.

Remark 3.6. For x = (x1, x2, . . . , xd) ∈ D, define a process Zx by

∀t ≥ 0, Zx(t) = x + X(Tx1(X1) + t) − X(Tx1(X1)) .

It is not difficult to verify that, under the Brownian distribution, the law of

the random process Zx is precisely W̃ D
x,1. This alternative representation of

the laws W̃ D
x,1 will be used in the next section.

4. Preconditioning

We shall now use the results of Section 3 in order to obtain a convergence
theorem for the Brownian motion conditioned to stay in a set satisfying
some regularity and convexity assumptions (Theorem 4.11). Section 4.1
introduces the idea of preconditioning and explains how it could be applied
to the convergence problem. The proposed method requires two estimates
that are studied in Sections 4.2 and 4.3. This finally leads us to introduce the
class of nice sets for which we solve the convergence problem in Section 4.4.

4.1. Changing laws for the convergence problem. Let U ⊂ R
d be a

co-regular open set with 0 ∈ ∂U . Recall that the definition of W̃ U
x,1 by the

formula

W̃ U
x,1(∗) =

Wx(∗; τU > 1)

Wx(τU > 1)
,

does not make any sense for x = 0 since W0(τU > 1) = 0.
Now suppose that U is contained in the half-space D. Then a Brownian

motion conditioned to stay in U is also a Brownian motion conditioned to
stay in D and then conditioned to stay in U , that is:

(6) W̃ U
x,1(∗) = W̃ D

x,1(∗ | τU > 1) =
W̃ D

x,1(∗; τU > 1)

W̃ D
x,1(τU > 1)

.

This simple identity is what we call preconditioning, for if we take it as a
definition, it is the same as before except we have changed the initial law
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of the paths (Wx ↔ W̃ D
x,1) which are now preconditioned to stay in D. The

gain is that, although W0(τU > 1) = 0, we might have W̃ D
0,1(τU > 1) > 0

if the boundary of U is smooth enough at 0. Proposition 4.3 in Section 4.2

gives a sufficient condition on U which ensures that W̃ D
0,1(τU > 1) > 0. If

so, we will set W̃ U
0,1(∗) := W̃ D

0,1(∗ | τU > 1).

At this point, we have to note that W̃ D
0,1(τU > 1) > 0 is equivalent to

W̃ D
0,1(τU > 0) = 1. The last condition is necessary for if W̃ D

0,1(τU > 0) was

< 1, then it would be 0 by the zero-one law, and W̃ D
0,1(τU > 1) would also

be equal to 0. The condition is also sufficient: It implies that there exists

an ǫ > 0 such that W̃ D
0,1(τU > ǫ) > 0, and by the Markov property we then

have

W̃ D
0,1(τU > 1) = W̃ D

0,1

(
τU > ǫ; W̃ D

Xǫ,1−ǫ(τU > 1 − ǫ)
)

> 0

since Wx(τU > 1 − ǫ) is > 0 for all x ∈ U .

The problem we then have to solve is the following: Since W̃ D
x,1 ⇒ W̃ D

0,1

and W̃ D
0,1(τU > 1) > 0, do we have

W̃ D
x,1(∗ | τU > 1) ⇒ W̃ D

0,1(∗ | τU > 1) ?

The next lemma shows that the answer is positive when U is locally a
half-space at 0.

Lemma 4.1. Let V ⊂ Rd be an open co-regular set such that 0 ∈ V . For
every bounded continuous function f : C∞ → R, we have

lim
x→0

W̃ D
x,1(f ; τV > 1) = W̃ D

0,1(f ; τV > 1) .

In addition, we have W̃ D
0,1(τV > 1) > 0; thus, as x → 0,

W̃ D∩V
x,1 ⇒ W̃ D∩V

0,1 .

Proof. Set Ω = {X0 = 0, τV = τV 6= 1}.
We first prove that W̃ D

0,1(Ω) = 1. For all ǫ ∈ (0, 1), we have

W̃ D
0,1(ǫ < τV < τV ) = W̃ D

0,1(W̃
D
Xǫ,1−ǫ(τV < τV )) = 0

since Wx(τV < τV ) = 0 for all x ∈ R
d. Hence, letting ǫ → 0 gives

W̃ D
0,1(τV < τV ) = 0 .

To see that W̃ D
0,1(τV = 1) = 0, fix ǫ ∈ (0, 1) and write

W̃ D
0,1(τV = 1) = W̃ D

0,1(W̃
D
Xǫ,1−ǫ

(τV = 1 − ǫ)) .

The result follows immediatly because Wx(τV = 1 − ǫ) = 0 for all x ∈ R
d.

Then, we prove the following statement: For all w ∈ Ω and every sequence
(wn) ∈ C∞ such that wn → w, we have

(7) 11{τV >1}(wn) → 11{τV >1}(w) .
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If τV (w) > 1, then w(t) ∈ U for all t ∈ [0, 1] and for n large enough wn(t) ∈ U
for all t ∈ [0, 1]; thus τV (wn) > 1.
If τV (w) = τV (w) < 1, then there exists t ∈ (0, 1) such that w(t) /∈ V . For n

large enough we then have wn(t) /∈ V and so τV (wn) < 1. This proves (7).
We can now apply the continuous mapping theorem which gives

W̃ D
x,1(f ; τV > 1) → W̃ D

0,1(f ; τV > 1), as x → 0 ,

for any bounded continuous function f : C∞ → R, and the lemma is proved.
�

If U is not locally a half-space at 0, then τU is everywhere discontinuous.
A way to get round this difficulty is given by the next lemma which will be
the basic tool for applying preconditioning to the convergence problem.

Lemma 4.2. Suppose W̃ D
0,1(τU > 1) > 0 and let (xn) be a sequence of points

in U such that xn → 0.
If we have

lim
s→0

lim sup
n

W̃ D
xn,1(τU ≤ s) = 0 ,

then
lim
n→0

W̃ D
xn,1(f ; τU > 1) = W̃ D

0,1(f ; τU > 1)

for every bounded continuous function f : C∞ → R.

As a consequence W̃ U
xn,1 ⇒ W̃ U

0,1.

Proof. We follow Shimura’s proof ([7], Lemma 4.1). Fix s ∈ (0, 1) and
introduce the random times τ s

U = inf{t ≥ s : Xt /∈ U} and τ s
U

= inf{t ≥ s :

Xt /∈ U}. Set Ω = {τ s
U = τ s

U
6= 1}.

We shall prove that W̃ D
0,1(Ω) = 1. By the Markov property we have

W̃ D
0,1(τ

s
U = 1) = W̃ D

0,1

(
Xs ∈ U ; W̃ D

Xs,1−s(τU = 1 − s)
)

= 0

because Wx(τU = 1 − s) = 0 for all x ∈ R
d. We have also

W̃ D
0,1(τ

s
U < τ s

U
)

= W̃ D
0,1(Xs ∈ U ; τ s

U < τ s
U
) + W̃ D

0,1(Xs /∈ U ; s < τ s
U
)

= W̃ D
0,1

(
Xs ∈ U ; W̃ D

Xs,1−s(τU < τU)
)

+ W̃ D
0,1

(
Xs ∈ ∂U ; W̃ D

Xs,1−s(τU > 0)
)

= 0

since Wx(τU < τU ) = 0 for all x ∈ R
d and Wx(τU > 0) = 0 for all x ∈ ∂U

(remember that U is co-regular). Hence W̃ D
0,1(Ω) = 1.

Then, we shall prove the following statement: For all w ∈ Ω and every
sequence (wn) ∈ C∞ such that wn → w, we have

(8) 11{τs
U

>1}(wn) → 11{τs
U

>1}(w) .

If τ s
U (w) > 1, then w(t) ∈ U for all t ∈ [s, 1] and for n large enough wn(t) ∈ U

for all t ∈ [s, 1]; thus τ s
U (wn) > 1.
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If τ s
U (w) = τ s

U
(w) < 1, then there exists t ∈ [s, 1) such that w(t) /∈ U . For n

large enough we then have wn(t) /∈ U and so τ s
U (wn) < 1. This proves (8).

For any bounded continuous function f : C∞ → R, the continuous map-
ping theorem gives

W̃ D
xn,1(f ; τ s

U > 1) → W̃ D
0,1(f ; τ s

U > 1) .

If B is a bound for |f |, then

|W̃ D
xn,1(f ; τU > 1) − W̃ D

0,1(f ; τU > 1)|
≤ |W̃ D

xn,1(f ; τ s
U > 1) − W̃ D

0,1(f ; τ s
U > 1)|

+B
(
W̃ D

xn,1(τU ≤ s) + W̃ D
0,1(τU ≤ s)

)
.

Hence

lim sup
n

|W̃ D
xn,1(f ; τU > 1) − W̃ D

0,1(f ; τU > 1)|

≤ B

(
lim sup

n
W̃ D

xn,1(τU ≤ s) + W̃ D
0,1(τU ≤ s)

)
.

Therefore, using the hypothesis of the Lemma and the fact that W̃ D
0,1(τU =

0) = 0, we obtain the announced result by letting s go to 0.
�

4.2. An irregularity criterion. In order to apply the ideas of precondi-

tioning to a set U , we have to know whether W̃ D
0,1(τU > 0) = 1 or not. Such

a criterion was discovered independently by Shimura ([7], Lemma 3.1) in
the two dimensional case, and by Burdzy ([4], Corollary 3.1) when studying
excursions from hyperplanes and smooth surfaces.

Suppose d ≥ 2. Let h : [0,+∞) → [0,+∞) be a continuous function and
set

Uh =

{
x ∈ R

d : x1 > h

(√
x2

2 + · · · + x2
d

)}
.

We then have :

Proposition 4.3. If h(r)/r, r > 0, is non-decreasing in a neighborhood of

0, then W̃ D
0,1(τUh

> 0) = 1 if and only if
∫ 1
0 h(r)r−2 dr < ∞.

For the reader convenience, we will now sketch a proof of Proposition 4.3.
We go back first to dimension d = 1. Let n > 0 and let hn = inf{t > 0 :
Xt = 1/n} be the first hitting time of 1/n. Let a1,n = max{t < hn : Xt = 0}
be the time of the last return to 0 before time hn and let b1,n = inf{t >
hn : Xt = 0} be the first hitting time of 0 after time hn. Note that b1,n

is a stopping time. We construct an increasing sequence of random time
a1,n < b1,n < a2,n < b2,n < · · · by setting aj+1,n = a1,n ◦ θbj,n

+ bj,n and
bj+1,n = b1,n ◦ θbj,n

+ bj,n. Since the Brownian motion starts afresh at bj,n,
the distribution of the process X(aj,n + ·) (w.r.t. W0) does not depend on
j.
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Now recall that Brownian meander is the section of Brownian motion
which starts at time

T0 = inf{t > 0 : Xt = 0 and Xs > 0 for all s ∈ (t, t + 1]} .

If w ∈
C∞ is such that T0(w) < +∞, then there exists an integer n > 0 such that,
after time T0(w), the path w hits 1/n before hitting 0. Hence, T0(w) is one
of the times aj,n(w).

Let d ≥ 2 and consider the d-dimensional processes Zj,n and Z0 defined
by

Zj,n(t) = (X1(aj,n(X1) + t),X2(t), . . . ,Xd(t))

and

Z0(t) = (X1(T0(X1) + t),X2(t), . . . ,Xd(t)) .

We know that Z0 has the law of a D-Brownian meander with respect to W0.
Hence, for an open set U , we have

W̃ D
0,1(τU > 0) = W0(τU (Z0) > 0) .

Since there almost surely exists j, n > 0 such that T0 = aj,n, the condition
W0(τU (Z0) > 0) = 1 is implied by the condition

W0(τU (Zj,n) > 0 for all j, n > 0) = 1

which is equivalent to

∀j, n > 0, W0(τU (Zj,n) > 0) = 1 .

As the distribution of the processes Zj,n does not depend on j, this is also
equivalent to

∀n > 0, W0(τU (Z1,n) > 0) = 1 .

Recall that a1,n(X1) is the time of the last return to 0 of X1 before it hits 1/n.
We know from Williams (see [10]) that a Brownian motion taken between
those two times is a 3-dimensional Bessel process taken between time 0 and
its first hitting time of 1/n. Therefore

W0(τU (Z1,n) > 0) = W0(τU (BS,X2, . . . ,Xd) > 0) ,

where BS is a 3-dimensional Bessel process independent from X2, . . . ,Xd.
Since BS is the norm of a 3-dimensional Brownian motion, we can rewrite
the last equality as

W0(τU (Z1,n) > 0) = W0(τU (
√

X2
1 + X2

2 + X2
3 ,X4, . . . ,Xd+2) > 0) .

Now, for any set U ⊂ R
d, put

U∗ = {x ∈ R
d+2 : (

√
x2

1 + x2
2 + x2

3, x4, . . . , xd+2) ∈ U} .
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We have just proved that W0(τU∗ > 0) = 1 implies W̃ D
0,1(τU > 1) = 1. The

same arguments hold if the event {τU > 0} is replaced by {τU = 0}, and we
have in fact an equivalence:

W0(τU∗ > 0) = 1 ⇔ W̃ D
0,1(τU > 1) = 1 .

Thanks to this duality, Proposition 4.3 simply follows from a classical ir-
regularity criterion for Brownian motion (e.g. Port and Stone [6], Proposi-
tion 3.5).

Remark 4.4. Although the criterion given in Proposition 4.3 is designed
for the sets Uh, it can be applied to any set U that coincides with a set Uh

in a neighborhood of 0: If V is a neighborhood of 0 then W̃ D
0,1(τV > 0) = 1

and by consequence

W̃ D
0,1(τU > 0) = W̃ D

0,1(τU∩V > 0) .

Thus, if U ∩ V = Uh ∩ V ,

W̃ D
0,1(τU > 0) = W̃ D

0,1(τUh
> 0) .

As an example of application, the ball B with center at (1, 0, . . . , 0) and

radius 1 verifies W̃ D
0,1(τB > 0) = 1. On the contrary, for a proper cone C ⊂ D

with vertex at the origin, Proposition 4.3 shows that W̃ D
0,1(τC > 0) = 0,

hence a law W̃ C
0,1 can not be defined directly.

4.3. The ball estimate. In this section we will prove a fundamental esti-
mate (Lemma 4.6) which solves the convergence problem for the Brownian
motion conditioned to stay in a ball. This estimate will also play a key
role in the study of Brownian motion conditioned to stay in nice sets (see
Section 4.4).

Fix d ≥ 2. Let D be the half-space {x ∈ R
d : x1 > 0} and B the open

ball with center at e1 = (1, 0, . . . , 0) and radius 1. As we have already seen,

Proposition 4.3 shows that W̃ D
0,1(τB > 0) = 1.

Set W̃ B
0,1(∗) = W̃ D

0,1(∗ | τB > 1). According to Lemma 4.2, in order to prove

that W̃ B
x,1 ⇒ W̃ B

0,1 as x ∈ B → 0, it would be sufficient that

(9) lim
s→0

lim sup
n→∞

W̃ D
xn,1(τB ≤ s) = 0 .

for every sequence (xn) ∈ B such that xn → 0. But (9) does not hold

in general: for any x ∈ ∂B \ {0} we have W̃ D
x,1(τB = 0) = 1, thus it is

possible to find sequences (xn) ∈ B and (sn) such that xn → 0, sn → 0 and

W̃ D
xn,1(τB ≤ sn) → 1.
To overcome this difficulty, we will only prove that (9) holds for every

sequence (λne1) with λn → 0 and e1 = (1, 0, . . . , 0), and then deduce the

convergence of W̃ B
xn,1 -for a general sequence (xn)- from the convergence of

W̃ B
λne1,1 thanks to invariance properties of Brownian motion.
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We start with elementary geometry. Let E be the set of all (d − 1)-uples
(ǫ2, . . . , ǫd) with ǫi = ±1. For all ǫ = (ǫ2, . . . , ǫd) ∈ E, let ǫ = (−ǫ2, . . . ,−ǫd)
be the opposite of ǫ. We define a familly of 2d−1 disjoint subsets of D indexed
by E by setting

∀ǫ ∈ E, Dǫ = {x ∈ D : ǫ2x2, . . . , ǫdxd > 0} .

Let H be the hyperplane {x1 = 1} and, for all x ∈ R
d, let B(x) be the open

ball with center at x and radius 1.

Lemma 4.5. If x ∈ Dǫ ∩ H, then B(x) ∩ Bc ∩ Dǫ = ∅.
Proof. Let x ∈ Dǫ ∩ H. For any y ∈ B(x) ∩ Dǫ we have

1 > (y1 − 1)2 + (y2 − x2)
2 + · · · + (yd − xd)

2

= (y1 − 1)2 + y2
2 + · · · + y2

d +
d∑

i=2

(x2
i − 2yixi)

> (y1 − 1)2 + y2
2 + · · · + y2

d

since x ∈ Dǫ and y ∈ Dǫ imply −xiyi > 0 for all i = 2 . . . d. Hence y belongs
to B. �

We now come to the estimate which is the heart of this section:

Lemma 4.6.

lim
s→0

lim sup
λ→0

W̃ D
λe1,1(τB ≤ s) = 0 .

Proof. We will show that

(10) lim sup
λ→0

W̃ D
λe1,1(τB ≤ s) ≤ 2d−1 W̃ D

0,1(τB ≤ s)

for all s > 0, and the lemma will then follow by letting s → 0 since W̃ D
0,1(τB =

0) = 0.
For λ ≥ 0, set

Tλ = inf{t ≥ 0 : X1(t) = λ and X1(s) > 0,∀s ∈ (t, t + 1]}
and consider the process Zλ defined by

∀t ≥ 0, Zλ(t) = X(Tλ + t) − X(Tλ) + λe1 .

Remember that Zλ has the distribution W̃ D
λe1,1 with respect to W0 (see

Lemma 3.6).
Write

W0(τB(Zλ) ≤ s) ≤ W0(τB(Z0) ≤ s + Tλ − T0)(11)

+W0(τB(Z0) > s + Tλ − T0; τB(Zλ) ≤ s) .

For convenience, we set u = τB(Zλ). If τB(Z0) > s + Tλ − T0 and u ≤ s,
then Z0(u + Tλ − T0) = X(Tλ + u) − X(T0) belongs to B; this means that
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Zλ(u) belongs to B(Yλ), where we have put

Yλ = X(T0) − X(Tλ) + (1 + λ)e1

= (1,X2(T0) − X2(Tλ), . . . ,Xd(T0) − Xd(Tλ)) .

Note that Yλ ∈ H. Since Zλ(u) 6∈ B, we see by Lemma 4.5 that Zλ(u) /∈ Dǫ

as soon as Yλ ∈ Dǫ. Therefore

W0(τB(Z0) > s + Tλ − T0; τB(Zλ) ≤ s)

≤
∑

ǫ∈E

W0(Yλ ∈ Dǫ; τB(Zλ) ≤ s;Zλ(u) /∈ Dǫ) .

Now, it is easily seen that Yλ is independent of Zλ conditionally to X1. In
addition, we have W0(Yλ ∈ Dǫ|X1) = 1/2d−1. Thus

W0(τB(Z0) > s + Tλ − T0; τB(Zλ) ≤ s)

≤ 1

2d−1

∑

ǫ∈E

W0(τB(Zλ) ≤ s;Zλ(u) /∈ Dǫ)

=
2d−1 − 1

2d−1
W0(τB(Zλ) ≤ s) .

Combining this inequality with equation (11) gives

W0(τB(Zλ) ≤ s) ≤ 2d−1 W0(τB(Z0) ≤ s + Tλ − T0)

and the result follows by letting λ → 0 since limλ→0 Tλ = T0 almost surely
(see Lemma 3.3). �

Remark 4.7. Note that the proof of Lemma 4.6 does not involve the “size”
of B. Hence the result holds if B is replaced by any open ball B′ that is
tangent to ∂D at 0.

The following proposition and its proof illustrate how the ball estimate
can be combined to invariance properties of Brownian motion in order to
solve the convergence problem.

Proposition 4.8. As x ∈ B → 0, W̃ B
x,1 ⇒ W̃ B

0,1.

Proof. It follows from Lemmas 4.2 and 4.6 that

W̃ B
λe1,1 ⇒ W̃ B

0,1 as λ → 0 .

Let (xn) ∈ B be a sequence such that xn → 0 and set λn = 1−‖xn−e1‖. For
each n, choose a rotation Rn in the plane (0, e1, xn) with center at e1 such
that Rn(λne1) = xn. From the invariance properties of Brownian motion, it
is easily seen that

W̃ B
xn,1 = W̃ B

λne1,1 ◦ R−1
n .

Now, by elementary geometry,

‖Rn(y) − y‖ ≤ ‖y − e1‖
‖xn − λne1‖
‖xn − e1‖
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for all y ∈ R
d. Thus, for any w ∈ C∞ and any sequence (wn) ∈ C∞ such

that wn → w, we get

Rn(wn) → w .

It therefore follows from the continuous mapping theorem that

W̃ B
xn,1 = W̃ B

λne1,1 ◦ R−1
n ⇒ W̃ B

0,1 .

�

4.4. Application to nice sets. In this section, we introduce the notion of
nice sets and solve the convergence problem for those sets.

4.4.1. Convergence with variable sets. For any set U ⊂ R
d and any ǫ > 0,

put

Uǫ+ = {x ∈ R
d : d(x,U) ≤ ǫ}

and

Uǫ− = {x ∈ U : d(x,U c) ≥ ǫ} .

If (Un) is a sequence of subsets of R
d, we will say that (Un) converges to U

and write Un → U if for all ǫ > 0 there exist a n0 such that

n ≥ n0 ⇒ Uǫ− ⊂ Un ⊂ Uǫ+ .

Let D be the half-space {x ∈ R
d : x1 > 0} and let B be an open ball tangent

to ∂D at 0. Set e1 = (1, 0, . . . , 0).

Proposition 4.9. Let U be an open co-regular set such that B ⊂ U ⊂ D
and let (Un) be a sequence of sets such that:

(1) For all n, B ⊂ Un ⊂ D;
(2) For all R > 0, Un ∩ B(0, R) → U ∩ B(0, R).

Then, for all sequence (λn) of positive numbers converging to 0,

W̃ Un

λne1,1 ⇒ W̃ U
0,1 .

Proof. Since W̃ D
0,1(τU > 1) ≥ W̃ D

0,1(τB > 1) > 0, it suffices to prove that

(12) lim
n→∞

W̃ D
λne1,1(f ; τUn > 1) = W̃ D

0,1(f ; τU > 1)

for all bounded continuous function f :
C∞ → R.

First, suppose that Un → U . Since each set Un contains the ball B, we
have

W̃ D
λne1,1(τUn ≤ s) ≤ W̃ D

λne1,1(τB ≤ s) .

Hence

(13) lim
s→0

lim sup
n

W̃ D
λne1,1(τUn ≤ s) = 0
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by Lemma 4.6. Now, a minor modification of the proof of Lemma 4.2 shows
that (12) holds. Let us give some details. Because of (13) it is sufficient to
prove that

(14) lim
n→∞

W̃ D
λne1,1(f ; τ s

Un
> 1) = W̃ D

0,1(f ; τ s
U > 1)

for all s > 0, where τ s
Un

= inf{t ≥ s : Xt /∈ Un} and τ s
U = inf{t ≥ s : Xt /∈

U}. Recall that Ω = {τ s
U = τ s

U
6= 1} satisfies W̃ D

0,1(Ω) = 1. Let w ∈ Ω be

given and let (wn) ∈ C∞ be a sequence such that wn → w.
If τ s

U (w) > 1, then w(t) ∈ U for all t ∈ [s, 1]. Choose ǫ > 0 such that
w(t) ∈ U2ǫ− for all t ∈ [s, 1]. Then, for n large enough, wn(t) ∈ Uǫ− for all
t ∈ [s, 1] and Un ⊃ Uǫ− ; thus τ s

Un
(wn) > 1.

If τ s
U (w) = τ s

U
(w) < 1, then there exists t ∈ [s, 1) such that w(t) /∈ U . Pick

ǫ > 0 such that w(t) /∈ U2ǫ+ . Then, for n sufficiently large, wn(t) /∈ Uǫ+ and
Un ⊂ Uǫ+; hence τ s

Un
(wn) < 1. This proves that in each case

11{τs
U

>1}(wn) → 11{τs
U

>1}(w)

and (14) follows from the continuous mapping theorem.
Now we turn to the general case, that is we consider the local convergence

hypothesis 2. of Proposition 4.9. Fix ǫ > 0 and choose R > 0 such that

W̃ D
0,1(τB(0,R) > 1) ≥ 1 − ǫ. By Lemma 4.1, we have

lim
n→∞

W̃ D
λne1,1(τB(0,R) > 1) = W̃ D

0,1(τB(0,R) > 1) .

Therefore
W̃ D

λne1,1(τB(0,R) > 1) ≥ 1 − 2ǫ

for all large enough n. Set U ′
n = Un ∩ B(0, R) and U ′ = U ∩ B(0, R). Then

|W̃ D
λne1,1(f ; τUn > 1) − W̃ D

0,1(f ; τU > 1)|
≤ |W̃ D

λne1,1(f ; τU ′
n

> 1) − W̃ D
0,1(f ; τU ′ > 1)| + 3Mǫ

where M is a bound for |f |. By hypothesis U ′
n → U ′, hence

lim sup
n

|W̃ D
λne1,1(f ; τU ′

n
> 1) − W̃ D

0,1(f ; τU ′ > 1)| = 0

by the first step of this proof. Therefore

lim sup
n

|W̃ D
λne1,1(f ; τUn > 1) − W̃ D

0,1(f ; τU > 1)| ≤ 4Bǫ

and the desired result follows by letting ǫ → 0. �

4.4.2. Nice sets. Let U be an open subset of R
d and x0 a boundary point of

U . We will say that U is nice at x0 if there exist a neighborhood V of x0

and a number r > 0 such that the following conditions are satisfied:

(1) For all x ∈ ∂U ∩ V there exists a half-space Dx ⊃ U such that:
• x ∈ ∂Dx;
• The ball Bx ⊂ Dx with radius r which is tangent to ∂Dx at x

is contained in U ;
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• The application c which maps x to the center c(x) of the ball
Bx is continuous at x0.

(2) For all y ∈ U ∩ V such that d(y, ∂U) ≤ r/2, there exists a point
x = p(y) ∈ ∂U ∩ V such that:

• y ∈ (x, c(x)];
• The mapping y 7→ p(y) is continuous.

Remark 4.10. It can be verified that regularity and convexity assumptions
ensures the property of being a “nice set”. If the open set U is convex and
has a boundary of class C2 in a neighborhood of x0 then the set U is nice
at x0.

Suppose that U is nice at x0. With the above notations, for any x ∈
∂U ∩ V , the point x + c(x0)− c(x) belongs to the boundary of the ball Bx0;
thus we can choose a planar rotation Rx with center at c(x0) and such that
Rx(x + c(x0)− c(x)) = x0. Note that the angle of Rx tends to 0 as x → x0,
since c(x) → c(x0). Set φx(y) = Rx(y + c(x0) − c(x)) and Ux = φx(U).
Then it can be seen that

(15) Bx0 ⊂ Ux ⊂ Dx0

and

(16) Ux ∩ B(0, R) → Ux0 ∩ B(0, R), as x → x0 ,

for all R > 0.

Theorem 4.11. Suppose that U is co-regular and nice at x0.
Then, as x ∈ U → x0, we have

W̃ U
x,1 ⇒ W̃ U

x0,1 .

Proof. For y close to x0, set x = p(y). Since y belongs to (x, c(x)], the point
q(y) = φx(y) belongs to (x0, c(x0)]. Moreover, q(y) tends to x0 as y → x0.
Thus, from (15) and (16) together with Proposition 4.9, we obtain

W̃ Ux

q(y),1
⇒ W̃ U

x0,1, as y → x0 .

Now by the invariance properties of Brownian motion, we have

W̃ U
y,1 = W̃ Ux

q(y),1 ◦ φx .

Since φx tends to the identity mapping as x → x0, uniformly on compact
subsets of R

d, it follows from the continuous mapping theorem that

W̃ U
y,1 ⇒ W̃ U

x0,1, as y → x0 .

�
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5. Nice cones

Let d ≥ 2 and let C ⊂ R
d be an open cone with vertex at 0. We will say

that C is a nice cone if it is nice (see 4.4.2) at any point of its boundary,
excepting 0. For example, any two-dimensional convex cone is nice. In
higher dimension, any circular cone or ellipsoidal cone is nice.

We note two important facts about nice cones:

(1) If C is a nice cone, then it is a Lipschitz cone;
(2) If C is a nice cone, ∂C is a null set with respect to Lebesgue measure.

The proof of the first one is elementary but quite tedious, so we omit it here.
Note that the second fact is a consequence of the first one.

5.1. Proof of Theorem 1.1. We begin with the following lemma:

Lemma 5.1. Suppose C is a nice cone. Let x0 ∈ ∂C \ {0} and t0 > 0. As
(x, t) → (x0, t0),

W̃ C
x,t ⇒ W̃ C

x0/
√

t0,1 ◦ K−1
t0 .

Proof. By the scaling property of W̃ C (see Remark 2.6), we have

W̃ C
x,t = W̃ C

x/
√

t,1
◦ K−1

t .

The result simply follows from Theorem 4.11 together with the continuous
mapping theorem. �

5.1.1. Convergence of the finite-dimensional distributions. We will prove in

this section that the finite-dimensional distributions of W̃ C
x,1 converge weakly

as x ∈ C → 0. Recall that for any t ∈ (0, 1] the law W̃ C
x,1(Xt ∈ dy) has the

density ex(t, y) given by

ex(t, y) =
pC(t, x, y)

Wx(τC > 1)
Wy(τC > 1 − t) .

By using an expansion of the heat kernel pC(t, x, y) of C that is given by
R. Bañuelos and R. Smits in [1], we shall prove that ex(t, y) converges to a
limit density e(t, y), as x ∈ C → 0.

Before we recall their result, let us introduce some notations. Let CΣ be
the intersection of the cone C with the unit sphere S

d−1 and suppose that it is
a regular set for the Dirichlet problem with respect to the Laplace-Beltrami
operator L on S

d−1. Then there exists a complete set of orthonormal eigen-
functions mj with corresponding eigenvalues 0 < λ1 < λ2 ≤ λ3 < · · ·
satisfaying {

Lmj = −λjmj on CΣ ;

mj = 0 on ∂CΣ .

We set αj =
√

λj + (d
2 − 1)2. We will use the following facts that are proved

in [1] :
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• there exists two constants 0 < c1 < c2 such that

(17) ∀j ≥ 1, c1j
1

d−1 ≤ αj ≤ c2j
1

d−1 ;

• there exists a constant c such that

(18) ∀j ≥ 1, ‖mj‖∞ ≤ cα
d−1
2

j ;

• if C is a Lipschitz cone, then there exists a constant c′ such that

(19) ∀j ≥ 1,∀η ∈ CΣ, m2
j (η) ≤ c′m2

1(η)

Iαj
(1)

,

where Iν is the modified Bessel function of order ν :

Iν(x) =
2(x

2 )ν√
πΓ(ν + 1

2)

∫ π
2

0
(sin t)2ν cosh(x cos t) dt(20)

=

∞∑

m=0

(x
2 )ν+2m

m!Γ(ν + m + 1)
.

Then we have the following lemma :

Proposition 5.2 (Bañuelos, Smits). Write x = ρθ, y = rη, ρ, r > 0, θ,
η ∈ CΣ. We have

pC(t, x, y) =
e−

(r2+ρ2)
2t

t(ρr)
d
2
−1

∞∑

j=1

Iαj

(ρr

t

)
mj(θ)mj(η) .

Together with the expression of Iαj
, this suggests that pC(t, x, y) is equiv-

alent at x = 0 to the product g(x)h(t, y) where

g(x) = ρα1−(d
2
−1)m1(θ)

and

h(t, y) =
rα1−(d

2
−1)e−

r2

2t

2α1Γ(α1 + 1)tα1+1
m1(η) .

In fact, we have the following :

Lemma 5.3. For x = ρθ, y = rη, ρ, r > 0, θ, η ∈ CΣ, we have

lim
ρ→0

pC(t, x, y)

g(x)
= h(t, y) ,

uniformly in (t, r, θ, η) ∈ [T,+∞) × [0, R] × CΣ × CΣ, for any positive con-
stants T and R.

Proof. Throughout this proof, the letter κ will denote some positive constant
whose value may change from line to line.
Set M = ρr

t . We have

pC(t, x, y)

g(x)h(t, y)
= 2α1Γ(α1 + 1)e−

ρ2

2t

∞∑

j=1

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)
.
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Using relation (19), we get
∣∣∣∣
Iαj

(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)

∣∣∣∣ ≤
κ

Mα1

Iαj
(M)

Iαj
(1)

.

Now, using the integral expression for Iαj
, we obtain

Iαj
(M) ≤ 2(M

2 )αj

√
πΓ(αj + 1

2 )
cosh(M)

∫ π
2

0
(sin t)2αj dt

and

Iαj
(1) ≥ 2(1

2 )αj

√
πΓ(αj + 1

2)

∫ π
2

0
(sin t)2αj dt .

Hence
Iαj

(M)

Iαj
(1)

≤ Mαj cosh M ,

and so we get
∣∣∣∣
Iαj

(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)

∣∣∣∣ ≤ κMαj−α1 cosh M .

From relation (17), it is easily seen that the series
∑

j Mαj−α1 cosh M is

uniformly convergent on [0, 1 − ǫ]. So, the series

∑

j

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)

is uniformly convergent for (M,θ, η) ∈ [0, 1 − ǫ] × CΣ × CΣ. Therefore we
can take the limit term by term : since

lim
M→0

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)
=

{
1

2α1Γ(α1+1) si j = 1 ;

0 si j ≥ 2 ;

we get

lim
M→0

∞∑

j=1

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)
=

1

2α1Γ(α1 + 1)
,

where the convergence is uniform for (θ, η) ∈ CΣ × CΣ. �

Lemma 5.4. The function of y

sup
‖x‖≤ 1

2

∣∣∣∣
pC(1, x, y)

g(x)

∣∣∣∣

is integrable on R
d.
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Proof. Throughout this proof, the letter κ will denote some positive constant
whose value may change from line to line.
Using relations (18) and (19), we get

∣∣∣∣
pC(1, x, y)

g(x)

∣∣∣∣ ≤ e−
(ρ2+r2)

2

r
d
2
−1ρα1

∞∑

j=1

Iαj
(ρr)

∣∣∣∣
mj(θ)

m1(θ)
mj(η)

∣∣∣∣

≤ e−
r2

2

r
d
2
−1ρα1

∞∑

j=1

Iαj
(ρr)

Iαj
(1)

1
2

α
d−1
2

j .

From the integral expression for Iαj
, we find that

Iαj
(ρr) ≤ 2(ρr

2 )αj

√
πΓ(αj + 1

2 )
cosh(ρr)

∫ π
2

0
(sin t)2αj dt

and

Iαj
(1) ≥ 2(1

2 )αj

√
πΓ(αj + 1

2)

∫ π
2

0
(sin t)2αj dt .

So, if we set ωαj
=

∫ π
2

0 (sin t)2αj dt, we get

Iαj
(ρr)

Iαj
(1)

1
2

≤ κ cosh(ρr)

(
ρr√

2

)αj
√

ωαj

Γ(αj + 1
2)

1
2

.

The Wallis integral
∫ π

2
0 (sin t)2n dt is equivalent to cn− 1

2 , thus ωαj
is equiv-

alent to cα
− 1

2
j . From Stirling’s Formula we also get Γ(αj + 1

2 ) ≥ cα
αj

j e−αj .
Thus,

Iαj
(ρr)

Iαj
(1)

1
2

≤ κ cosh(ρr)

(√
eρr√
2

)αj α
− 1

4
j

α
αj/2
j

.

Therefore,

∣∣∣∣
pC(1, x, y)

g(x)

∣∣∣∣ ≤ κ
e−

r2

2

r
d
2
−1ρα1

cosh(ρr)
∞∑

j=1

(√
eρr√
2

)αj α
2d−3

4
j

α
αj/2
j

.(21)

Since αj ≥ α1, the right-hand side of (21) is increasing with ρ, so

sup
ρ≤ 1

2

∣∣∣∣
pC(1, x, y)

g(x)

∣∣∣∣ ≤ κ
e−

r2

2

r
d
2
−1

cosh
(r

2

) ∞∑

j=1

(√
er

2
√

2

)αj α
2d−3

4
j

α
αj/2
j

=: f(r) .

Because αj >
(

d
2 − 1

)
, the function f is integrable on any compact subset

of [0,+∞). We shall now find an upper bound for the sum that appears in
the definition of f for large values of r. Let M ≥ 1. For 2n ≤ αj ≤ 2n + 1,
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we have

Mαj
α

2d−3
4

j

α
αj/2
j

≤ M2n+1 (2n + 1)
2d−3

4

(2n)n
= M(M2/2)n

(2n + 1)
2d−3

4

nn
.

Since αj > c1j
1

d−1 , the number of indices j for which αj ≤ 2n+1 is bounded

by
(

2n+1
c1

)d−1
. Thus, there exist K = K(d) > 0 such that

∞∑

j=1

Mαj
α

2d−3
4

j

α
αj/2
j

≤ M

∞∑

n=1

(M2/2)n
nK

nn
≤ P (M)eM2/2 ,

where P is a polynomial. Applying this result with M =
√

er

2
√

2
and r ≥ 2

√
2/e

gives

f(r) ≤ κ
e−(1−e/8) r2

2

r
d
2
−1

P̃ (r) cosh
(r

2

)
,

where P̃ is a polynomial whose coefficients depend only on d. This is suffi-
cient to conclude the proof of Lemma 5.4. �

Proposition 5.5. For any t ∈ [0, 1] and any R > 0, we have

lim
‖x‖→0

ex(t, y) =
h(t, y)∫
h(1, z) dz

Wy(τC > 1 − t) ,

uniformly on {y ∈ C : ‖y‖ ≤ R}.

Proof. First recall that Wx(τC > 1) =
∫

pC(1, x, z) dz. It follows from Lem-
mas 5.3, 5.4 and the dominated convergence theorem that

(22) lim
‖x‖→0

Wx(τC > 1)

g(x)
=

∫
h(1, z) dz .

Since

ex(t, y) =
pC(t, x, y)

g(x)

g(x)

Wx(τC > 1)
Wy(τC > 1 − t) ,

the desired result is easily deduced from proposition 5.3 and relation (22).
�

Remark 5.6. By scaling, it is easily deduced from (22) that

lim
t→+∞

Wx(τC > t)

g(t−1/2x)
=

∫
h(1, z) dz ,

uniformly on {x ∈ C : ‖x‖ ≤ R}, for any positive constant R. So, for a
Lipschitz cone, the convergence is stronger than what was announced by
R. Bañuelos and R. Smits ([1], Corollary 1).
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Note that a straightforward computation gives
∫

h(1, z) dz = 2−
α1
2

+ d−2
4

Γ(α1
2 + d+2

4 )

Γ(α1 + 1)

∫

CΣ

m1(η)σ(dη) ,

where σ is Lebesgue measure on the unit sphere S
d−1.

Let e(t, y) be the limit of the densities ex(t, y) as x ∈ C → 0. By Propo-
sition 5.5, we have

(23) e(t, y) = ct−α1−1‖y‖α1−(d
2
−1)e−

‖y‖2

2t m1(~y)Wy(τC > 1 − t) ,

where c−1 = 2
α1
2

+ d−2
4 Γ(α1

2 + d+2
4 )

∫
m1(η)σ(dη) and ~y = y/‖y‖.

Proposition 5.5 is not sufficient to prove weak convergence of the law

W̃ C
x,1(Xt ∈ dy) = ex(t, y) dy

as x ∈ C goes to 0. Indeed, except for t = 1, we don’t know a priori if e(t, y)
is a probability density (except for the case t = 1), and this seems hard to
check by a direct computation. However, when C is a nice cone, we may
handle this by proving the equi-integrability of the family {ex(t, y) : ‖x‖ ≤
1}.
Lemma 5.7. For all t ∈ [0, 1), we have

lim
R→∞

sup
‖x‖≤1

W̃ C
x,1(‖Xt‖ > R) = 0 .

In other words, the familly of probability {W̃ C
x,1(Xt ∈ dy) : x ∈ C, ‖x‖ ≤ 1}

is tight.

Proof. Let x ∈ C with ‖x‖ ≤ 1 be given, and let R > 2. We denote by
ρ = τB(0,2) the first exit time from the ball B(0, 2). A continuous path
started at x that is outside B(0, R) at time t must have left B(0, 2) before
that time, so

W̃ C
x,1(‖Xt‖ > R)

= W̃ C
x,1(ρ < t; ‖Xt‖ > R)

= W̃ C
x,1(ρ < t; W̃ C

Xρ,1−ρ(‖Xt−s‖ > R)|s=ρ)

≤ sup
{

W̃ C
y,1−s(‖Xt−s‖ > R) : y ∈ C, ‖y‖ = 2 and s ∈ [0, t]

}
.

Suppose that the last expression does not tend to 0 as R → ∞; then there
exist a sequence (yn) ∈ C with ‖yn‖ = 2 and a sequence (sn) ∈ [0, t] such
that

(24) lim inf
n→∞

W̃ C
yn,1−sn

(‖Xt−sn‖ > n) > 0 .

Without loss of generality, we can suppose that (yn) converges to a point
y ∈ C with ‖y‖ = 2, and that (sn) converges to s ∈ [0, t]. But Lemma 5.1

(or Proposition 2.3 if y ∈ C) then implies that
(
W̃ C

yn,1−sn
(Xt−sn ∈ dy)

)
is a

convergent sequence of probability measures : this contradicts (24). �
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Proposition 5.8. The finite-dimensional distributions of W̃ C
x,1 converge

weakly as x ∈ C tends to 0.

Moreover, the limit distribution of the first transition law W̃ C
x,1(Xt ∈ dy),

t ∈ (0, 1], has density e(t, y) w.r.t. Lebesgue measure.

Proof. By Proposition 5.5, ex(t, y) converges to e(t, y) uniformly on every
compact set as x ∈ C tends to 0. Thus, for all R > 0, we have

lim sup
‖x‖→0

∫
|ex(t, y) − e(t, y)| dy

≤ sup
‖x‖≤1

∫

B(0,R)c

ex(t, y) dy +

∫

B(0,R)c

e(t, y) dy .

Thanks to Lemma 5.7 and the integrability of e(t, y), letting R → +∞ gives

lim sup
‖x‖→0

∫
|ex(t, y) − e(t, y)| dy = 0 .

This proves that the function y 7→ e(t, y) is a probability density and that the

probability measures W̃ C
x,1(Xt ∈ dy) converge weakly to e(t, y) dy as x ∈ C

tends to 0. The weak convergence of the finite-dimensional distributions
then follows from Proposition 2.4 since ∂C has Lebesgue measure 0. �

5.1.2. Tightness. For any T > 0, the space CT of continuous paths w :
[0, T ] → R

d is endowed with the topology generated by the supremum metric
and the corresponding Borel σ-algebra.

Proposition 5.9. For any sequence (xn) of points of C converging to 0 and

for any T > 0, the sequence of probability measures (W̃ C
xn,1) is tight in CT .

Proof. Since the arguments do not depend on the value of T , we will only
consider the case T = 1. It suffices to prove that, for all ǫ > 0,

lim
δ→0

lim sup
n→∞

W̃ C
xn,1(χ(δ, 0, 1) > ǫ) = 0 ,

where

χ(δ, a, b)(w) = sup{‖w(s) − w(t)‖ : |s − t| ≤ δ, s, t ∈ [a, b]}
is the modulus of continuity of order δ of w on [a, b] (see Billingsley [2]).

Our proof is a modification of Shimura’s one for the two-dimensional
case ([8], Theorem 2).

Fix ǫ > 0 and set s = 1/2. Since χ(δ, ·, ·) is sub-additive when considered
as a function on the set of intervals, we have

W̃ C
xn,1(χ(δ, 0, 1) > 4ǫ) ≤ W̃ C

xn,1 (χ(δ, 0, s) > 3ǫ)
︸ ︷︷ ︸

An(δ)

+ W̃ C
xn,1 (χ(δ, s, 1) > ǫ)

︸ ︷︷ ︸
Bn(δ)

.

Let us start with Bn(δ). It follows from Proposition 5.8 that

lim
r→0,R→∞

lim inf
n→∞

W̃ C
xn,1 (r ≤ ‖Xs‖ ≤ R) = 1 .
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Hence we can fix α > 0 and choose 0 < r < R such that

inf
n

W̃ C
xn,1 (r ≤ ‖Xs‖ ≤ R) ≥ 1 − α .

We then have

Bn(δ) ≤ W̃ C
xn,1 (r ≤ ‖Xs‖ ≤ R;χ(δ, s, 1) > ǫ) + α ,

So, by the Markov property,

Bn(δ) ≤ W̃ C
xn,1

(
r ≤ ‖Xs‖ ≤ R; W̃ C

Xs,1−s(χ(δ, 0, 1 − s) > ǫ)
)

+ α

≤ sup
{
W̃ C

y,s (χ(δ, 0, s) > ǫ)) : y ∈ C and r ≤ ‖y‖ ≤ R
}

︸ ︷︷ ︸
D(δ)

+α .

Now, if D(δ) did not tend to 0 as δ goes to 0, then we could find a sequence
(δn) converging to 0 and a sequence (yn) of points of C converging to a point
y ∈ C \ {0} such that

lim inf
n→∞

W̃ C
yn,s (χ(δn, 0, s) > ǫ) > 0 ,

which would contradict the weak convergence of the sequence of probability

measures
(
W̃ C

yn,s

)
(Lemma 5.1 or Proposition 2.3 if y ∈ C). This proves

that limδ→0 lim supn Bn(δ) ≤ α, and letting α → 0 then gives

lim
δ→0

lim sup
n→∞

Bn(δ) = 0 .

We now turn to An(δ). Let ρ = τB(0,ǫ) be the exit time from the ball
B(0, ǫ) with center at 0 and radius ǫ. Since the modulus of continuity of a
path w is less than 2ǫ as long as it has not left the ball B(0, ǫ), we have

An(δ) ≤ W̃ C
xn,1 (ρ < s;χ(δ, ρ, s) > ǫ)

≤ W̃ C
xn,1

(
ρ < s; W̃ C

X(ρ),1−ρ(χ(δ, 0, 1) > ǫ)
)

.

Hence

lim sup
n→∞

An(δ)

≤ sup{W̃ C
y,t(χ(δ, 0, 1) > ǫ) : y ∈ C, ‖y‖ = ǫ and t ∈ [s, 1]} .

In the same way as above, we then get

lim sup
n→∞

An(δ) = 0 ,

which is sufficient to prove Proposition 5.9. �

Together with Proposition 5.8, Proposition 5.9 proves that W̃ C
x,1 converges

weakly on every CT , T > 0, as x ∈ C tends to 0. This is equivalent to weak
convergence on C∞; thus Theorem 1.1 is proven.

The limit law will be denoted by W̃ C
0,1 and called the law of C-Brownian

meander. Thanks to Theorem 1.1 we shall say that the C-Brownian meander
is Brownian motion conditioned to stay in C for a unit of time.
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5.2. Properties of the C-Brownian meander. The C-Brownian mean-
der starts from the vertex of the cone C and stays in it for a unit of time.
From the Markov property and the expression of the densities of the entrance
laws, the law of the exit time of C after time 1 is easily derived :

Proposition 5.10. For any t > 1, we have

W̃ C
0,1(τC > t) = t−

α1
2

+ d−2
4 .

Proof. By the Markov property, we have

W̃ C
0,1(τC > t) = W̃ C

0,1

(
WX1(τC > t − 1)

)

=

∫

C
e(1, y)Wy(τC > t − 1) dy .

With the change of variables y =
√

tu, the integral becomes∫

C
e(1,

√
tu)W√

tu(τC > t − 1) t
d
2 du .

The scaling property of Brownian motion gives

W√
tu(τC > t − 1) = Wu(τC > 1 − 1/t) ,

and from relation (23) p. 27 it is easily seen that

e(1,
√

tu)Wu(τC > 1 − 1/t) t
d
2 = t−

α1
2

+ d−2
4 e(1/t, u) .

The expected result follows from the fact that e(1/t, u) is a probability
density. �

5.3. Application to random walks. Let (ξn)n≥1 be a sequence of i.i.d.
random vectors of R

d with E(ξn) = 0 and a covariance matrix equal to the
identity. Form the random walk Sn = ξ1 +ξ2 + · · ·+ξn and let {Sn(t), t ≥ 0}
be the process with continuous paths for which Sn(k/n) = Sk/

√
n and which

is linearly interpolated elsewhere.
Consider a nice cone C for which P(ξ1 ∈ C) > 0, and let

TC = inf{n > 0 : Sn /∈ C}
be the first exit time of the random walk from the cone C.

For d = 1 and C = (0,+∞), Bolthausen proved in [3] that conditionally
on {TC > n} the process Sn converges in law to a Brownian meander; in
other words, we have

P(Sn ∈ ∗ |TC > n) ⇒ W̃+
0,1 .

This means that a random walk conditioned to stay positive converges in
law to a Brownian motion conditioned to stay positive. By analogy, we are
led to conjecture that a multidimensional random walk conditioned to stay
in a cone should converge, in good cases, to a Brownian motion conditioned
to stay in the same cone, that is,

(25) P(Sn ∈ ∗ |TC > n) ⇒ W̃ C
0,1 .
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Shimura proved it to be true in the two-dimensional case, under extra sym-
metry assumptions on the random walk and the cone (see [9]). It is clear
that such an invariance principle can not hold without extra assumptions.
For example, consider the simple random on Z

3 and the cone C = {(x, y, z) :
x ≥ 0 and x/2 ≤ y ≤ 2x}. Given {TC > n}, {Sk, k = 1 . . . n} is a simple
random walk on {(0, 0, z) : z ∈ Z}. Hence it converges in law to a one-
dimensional Brownian motion that lives on the z-axis. Note that in this
case P(TC > n) = 1/3n decreases exponentially to 0. The next result states
that a necessary condition for the above-mentioned limit theorem to hold is
that P(TC > n) decreases polynomialy to 0

Proposition 5.11. Suppose d ≥ 2 and let C be a nice cone in R
d.

If

P(Sn ∈ ∗ |TC > n) ⇒ W̃ C
0,1 ,

then

P(TC > n) = n−α1
2

+ d−2
4 L(n) ,

where L is a slowly varying function.

Proof. Set µn(∗) = P(Sn ∈ ∗ |TC > n). Let t > 1 and observe that

P(TC > [tn])

P(TC > n)
= µn(τC > tn) ,

where tn = [tn]/n. Since µn ⇒ W̃ C
0,1 and tn → t, an argument similar to the

one used in the proof of Lemma 4.2 shows that

lim
n→∞

µn(τC > tn) = W̃ C
0,1(τC > t) .

By Proposition 5.10 we have therefore

lim
n→∞

P(TC > [tn])

P(TC > n)
= t−

α1
2

+ d−2
4 .

This proves that L(n) = n
α1
2
− d−2

4 P(TC > n) is slowly varying. �

For a two-dimensional random walk with bounded increments, the con-
ditional limit theorem (25) holds under the assumption that P(TC > n) is
“slowly” decreasing to 0. We will present this result in a forthcoming paper.
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Appendix A. The continuous mapping theorem

For the reader convenience we state here the continuous mapping theorem.
The proof can be found for example in Billingsley [2].

Theorem A.1. Let X and Y be two metric spaces equipped with their Borel
σ-algebras. Let (µn), µ be probability measures on X such that µn ⇒ µ, and
let (φn), φ : X → Y be measurable mappings.
If there exists a measurable subset X ′ of X such that µ(X ′) = 1 and such
that φn(xn) → φ(x) for all sequence (xn) converging to a point x ∈ X ′, then

µn ◦ φ−1
n ⇒ µ ◦ φ−1 .
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