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1. Introduction

Logic controllers are used in an increasing number of sys-
tems such as embedded systems, transport systems, power
plants and production systems. Numerous components of
our daily lives and of the economy at large thereby rely upon
the successful operations of these controllers. This explains
why dependability of logic controllers is a major concern for
control engineers.

To improve dependability of logic controllers, it is impor-
tant to make sure that no flaw due to a misinterpretation of
the specifications or to any other reason has been introduced
during design. A logic controller can in fact only be referred
to as dependable if its behaviour fulfils the application re-
quirements and therefore must not include design errors
leading to non-functional or hazardous behaviours.

To solve this problem, numerous formal methods have
been proposed during the last decade. They are aimed either
at detecting flaws once the controller is designed or at avoid-
ing flaws during design. The first approach consists in letting
the control system designer develop control laws based on
the requirements contained in the set of specifications and
then in automatically analysing a formal representation of
these control laws. Such an analysis may be carried out by

using model-checking techniques (Bérard et al., 1999) pro-
vided that control laws can be formally represented in the
form of state automata (De Smet & Rossi, 2002; Klein et al.,
2003). The second approach (Ramadge & Wonham, 1989;
Wang, 2000; Zaytoon & Carré-Ménétrier, 2001; Nourelfath
& Niel, 2004; Gouyon et al., 2004) is intended to deduce di-
rectly the control laws from the specifications, without any
involvement of a designer (or at least in limiting involve-
ment to a strict minimum).

The work presented herein is aimed at avoiding flaws dur-
ing the design of logic controllers, by proposing a formal
method that enables the deduction of a complete and consist-
ent formal description of control laws, from specifications
expressed in natural language. A specific algebraic model-
ling framework underlies this formal method; this feature
prevents state space explosion that is often encountered
when applying the previously mentioned formal methods to
industrial size problems. Moreover the formal description of
control laws obtained at the end of design can be easily trans-
lated into a program developed in a standardised language
for programmable logic controllers. The aim of this formal
method is indeed to provide a seamless whole from specifi-
cations analysis to implementation.
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This article is organised as follows. Section 2 is dedicated
to the objective and the main principles of this method as
well as to the introduction to the formal framework. The ba-
sic definitions, operations and relations of this framework
are discussed in section 3, while section 4 deals with symbol-
ic calculus possibilities, focusing mainly on equations sys-
tem solving. Once the formal bases are defined, the design
method is presented in section 5 thanks to a simple example.
The result obtained is compared in section 6 with a SFC de-
veloped by a traditional engineering approach, so as to point
out two significant benefits of the proposed formal method.
In order to assess the scalability of this method, section 7 de-
scribes a case study of a controller including 72 control laws.
The results obtained in this case study provide investigation
prospects discussed in the last section.

2. Objective

The starting point of the proposed design method is the set
of specifications inherent in the control system, as expressed
in natural language. These specifications describe the ex-
pected behaviour of the control system, in the form of vivac-
ity constraints (what the control system must accomplish)
and safety constraints (what the system must not accom-
plish), and may include constraints coming from actuator
and sensor technology choices. All of these constraints are to
be expressed in the form of logic assertions, i.e., propositions
that must be true for the desired control system (see section
5.1). At this point, however, it is important to highlight the
following points:

• The control specifications of a logic system can make ref-
erence to logic variable states, to state changes of these
logic variables (events), or to physical time values. The
formalism that supports the design method is to be
endowed with the capability of expressing these three
types of variables.

• A set of specifications does not necessarily have to be
consistent. The design method must therefore be capable
of detecting possible inconsistencies in the specifications
and then of proposing solutions to solve these problems.

Control laws are to be designed on the basis of this list of
assertions. For a dynamic logic control system with n
Boolean input variables  to  and m Boolean out-
put variables  to , the target control laws must
specify at each date  the output values as functions of input
values, which leads to (Cassandras & Lafortune, 1999):

The search for solutions to this system of m equations gen-
erally requires a reformulation of the problem in the form of
a state model, thereby the introduction of other variables,
state variables  recording the system evolution. Despite
its advantages, this approach displays the disadvantage of
merely providing specific solutions, at a given point in time,
as exemplified in the form of “  becomes true when  be-
comes false and if variables ,  and  are false while
variables  and  true”, but never a general solution that
holds true regardless of the date considered. Moreover mod-
elling a state automaton-based dynamic system corresponds
to an imperative design approach, whereas control system
specifications are in most cases given in declarative form.
The transition from one of these representation modes to the
other one always requires a major effort.

For both reasons, the proposed design method relies upon
a special formalism, named algebra  (called I), that was de-
veloped by our research team. The basic elements of this for-
malism consist of time functions , . The
operations that enabled us to compose these functions lead to
defining an algebraic structure in which the simultaneous
manipulation of Boolean variable states, state changes of
these variables (events) and physical time values is possible.

In sum, the proposed design method for dependable logic
control systems calls for developing a set of control laws in
the form of time functions, from specifications given in the
form of assertions in natural language. This method (Fig. 1)
requires formalizing specifications into relations within al-
gebra , checking the consistency of the set of assertions
and generating the expected control laws from the consistent
set of specifications obtained. 

A large part of the method – consistency checking and
control laws generation – is automated thanks to a symbolic
calculus software tool able to manipulate algebra  state-
ments. Conversely inconsistencies removal will always re-
quire the designer's competence.
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3. Formal framework: a Boolean algebra for binary 
signals

3.1 Concept of binary signals

To describe the behaviour of logic systems, control engi-
neers must refer to logic variables states, to state changes of
these variables (events), and to physical time values. This
explains why they are used to employ commonly timing di-
agrams that describe, in an intuitive way, logic signals be-
haviour. 

Algebra  was defined to manipulate formally such sig-
nals. Contrary to the usual Boolean algebra which basic au-
tomatic control lectures deal with, algebra  takes into
account temporal issues by manipulating binary signals:
functions of time with Boolean values (Fig. 2). 

The elements of algebra  are indeed piecewise-continu-
ous functions from  to  (  means

), formally defined as follows: 

Binary signals can be composed in a combinatory way, i.e.
to obtain a signal whose value at each date is obtained from
the values of the operands at the same date, with three basic
operations And, Or, Not, respectively noted .  Ac-
cording to Grimaldi (2000), these three operations endow al-
gebra  with a Boolean algebra structure that permits to
obtain all classical results for this class of algebra (commu-
tative laws, De Morgan’s laws, ...).

3.2 Specific operations defined on algebra 

 Sequential and timed operations are to be defined to de-
scribe more complex behaviours (Roussel et al. 2004), such
as those included in the specifications of industrial control
systems (Fig. 3 and Fig. 4). Only the definitions of sequen-
tial operations (SR and RS) and of one timed operation
(TON) are given hereinafter.    

3.3 Relations defined on algebra 

Two mathematical relations between binary signals are
defined on algebra :
• the relation “equality” (noted ) which states that the

values of these signals are equal, whatever the considered
date.

• the relation “inclusion” (noted ) which states that for
all dates  such as value  of signal  is true, value

 of signal  is true too (Fig. 5). 

From a mathematical point of view, the relation “inclu-
sion” corresponds to the partial ordering relation which can be
defined on each Boolean algebra. In (Grimaldi, 2000), this
partial ordering relation is defined as follows:

If , define , if 
This relation is reflexive, antisymmetric and transitive.

Fig. 2 Graphical representation of a binary signal
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Fig. 4 Graphical representation of
 and  operations

Fig. 5 Binary signals such as: 

SR s r,( ) t( ) s t( )
t1∃ t<  : s t1( ) 1=( ) d∀ t1( t],∈  : r s ⋅( ) d( ) 0=( )∧( )[ ]

∨=

RS s r,( ) t( ) s t( ) r t( )¬∧( )
t1∃ t<  : s t1( ) 1=( ) d∀ t1 t,[ ]∈ r d( ) 0=( ),( )∧( )[ ]

∨=

f t( )

t
d f⁄( ) t( )

d d t

s t( )
tr t( )
tSR s r,( ) t( )
tRS s r,( ) t( )
t

SR s r,( ) RS s r,( )

II

II
f g=

f g≤
ti f ti( ) f

g ti( ) g

f t( )

tg t( )

t

t

f g⋅( ) t( )

f g≤ ⇔ f g⋅ f=

f g≤

f g,( ) II∈ f g≤ f g⋅ f=



4/13

For all f, g elements of , the 7 following relations were
proved equivalent1: 

The following results, that enable to split a partial ordering
relation into two equivalent ones, were also proved:

These two relations – equality and inclusion – are the cor-
nerstone of our approach. Assertions describing the expected
behaviour of control systems in natural language can indeed
be translated into formal statements thanks to these relations.
Generic assertions and the equivalent formal relations are
given in table 1. Sections 5 and 7 present assertions and re-
lations describing real control specifications.

4. Symbolic calculus on algebra 

The above operations and relations enable symbolic calcu-
lus on binary signals. This important feature can be em-
ployed for two purposes:
• to prove properties of existing logic controllers (Roussel &

Denis, 2002; Roussel & Faure, 2002)
• to design dependable logic controllers.

This article addresses the second issue, the objective being
control laws design from formal assertions. In this synthesis
approach, each control law is obtained formally by solving a
system of equations coming from assertions, as it is ex-

plained in the next section. The bases of symbolic calculus
that underlie this synthesis method are given below. 

4.1 Useful theorems

Performing symbolic calculus on binary signals requires
theorems that were previously demonstrated on algebra .
These theorems (Roussel et al., 2004) enable formulae sim-
plification and rewriting relations. Up to now over 100 the-
orems have been demonstrated on algebra , some of them
leading to simple, usual results, (e.g. ). In this
article the five following theorems are used:

4.2 Solving a system of equations on 

Let us consider three binary signals ,  and ,  and 
being known and  unknown such as:
• It is necessary that the value of signal  is true so as to

obtain the value of signal  true.
• It is sufficient that the value of signal  is true so as to

obtain the value of signal  true.

These two requirements can be formally stated as the fol-
lowing system thanks to relation “ ”.

 or (1)

Proposition 1  System (1) admits a solution if and only if
signals  and  satisfy the following condition: .
When this condition is satisfied, the general solution of sys-
tem (1) is  with  any signal of .

Proof. This demonstration includes three steps.

• Existence of solutions
If  is a solution, as “ ” is a transitive relation, the follow-
ing result becomes:

As  is equivalent to , condition 
is therefore necessary to obtain a solution for system (1).

• , with  any signal of , is a solution of
system (1).

As  is equivalent to , and as  is equiv-
alent to , it is sufficient to verify that

.1. : signal whose value is always 1.
: signal whose value is always 0.

Table 1: 
Formalization of assertions on 

Assertions given in natural language Relations on 
Values of signals f and g are always
equal.
Values of signals f and g are never si-
multaneously true.
At each time, at least one of the values
of signals f and g is true.
When the value of signal f is true, the
value of signal g is true.
It is sufficient that the value of signal f
is true to get the value of signal g true.
It is necessary that the value of signal f
is true to get the value of signal g true.
Value of signal f is never true more
than 3 seconds.
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• if  a solution of system (1), there exists a function  of
 for which: 

For this proof, this intermediate result is need:

To prove this result, it is sufficient to find two signals  and

 that satisfy: . Let us  and

assume  and , then:

With this result, it is possible to assume:

As  is solution of , 

thus, 

As  is solution of , :

thus: 

Remark 1    There is not a single solution for system (1) be-
cause value  of signal  is not imposed for all dates 
such as . As , the set of solutions of
system (1) admits signal  as lower bound element
( ) and signal  as upper bound element ( ).

Proposition 2  When  is satisfied, signal
 is solution of system (1).

The main feature of the proposed solution 
is that it remains constant for all dates  such as

 and then it keeps the last value imposed by
the system (see Fig. 6). 

5. Algebraic synthesis of control laws

In this section, a simple example is used to present our ap-
proach. It concerns the control of an automatic gate for a car
park. The inputs and the outputs of the control system to de-
sign are given in Fig. 7.

Two control laws are to be designed:

where  et  are solutions of two systems as system (1).
Each system is built from formal assertions issued from
specifications given in natural language. 

5.1 Control system specifications
The expected behaviour of the control system with regard

to the application requirements can be expressed by the set
of assertions given hereafter. Among the 8 assertions, the
first three ones (A1 to A3) are related to vivacity require-
ments (what must be done to perform the expected task), as-
sertions A4 and A7 express safety requirements. Assertions
A5 and A6 express constraints coming from actuators fea-
tures and the last one (A8) is an assumption on the correct
operation of the sensors (the problem of sensors monitoring
will not be dealt with in this study).
A1 When the remote control is activated, the gate opens.
A2 When the gate has been open for 3 seconds without a

request from the user or the detection of a car, the gate
closes.

A3 While the gate is not totally closed, the detection of a car
causes the reopening of the gate.
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Fig. 7 Inputs and outputs of the control system to design
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A4 The gate must never be simultaneously controlled to
open and to close.

A5 An open gate cannot be controlled to open.
A6 A closed gate cannot be controlled to close.
A7 When the remote control is activated, the gate cannot be

controlled to close.
A8 The gate is never simultaneously open and closed.

5.2 Formalization of specifications

The previous set of assertions can be translated into a set
of formal relations (table 2) that include input signals (Car,
CG, OG, RC) and output signals (Open, Close). For more
complex control systems than this example, internal signals
can also be defined.

5.3 Equations systems design

From this set of formal assertions, two systems of equa-
tions are to be built (one for each output). The first step of
this design process is aimed at labelling assertions according
to the kind of binary signals that they include.
• Assertions that include only input signals. These relations

are assumptions. They are used to simplify control laws.
• Assertions that include only one output or one internal sig-

nal and input signals. Each relation is used to build the
respective control law.

• Assertions that include several outputs or internal signals.
In that case, either the relation can be decomposed in ele-
mentary relations (relations comprising only one output or
internal signal) as stated in section 3.3, that leads to the pre-
vious case (e.g. assertion A3), or the designer has to decide
which signal is function of the other ones (e.g. assertion
A4). This decision introduces a partial order between sig-
nals.

The result of this analysis for the control system of the au-
tomatic gate is presented in table 3. For safety reasons, open-
ing the gate has priority over closing. Therefore signal Open
must be used to compute signal Close (assertion A4).

From previous results a dependency graph can be built
(Fig. 8). If this graph does not include any cycle, the partial
order between signals is consistent. If it is not the case, part
of the assertions set must be modified by the designer in or-
der to eliminate these inconsistencies.

The systems of equations that must be solved are present-
ed in table 4. These systems must be solved according to the
above priority rules, i.e., the system defining signal Open
must be solved prior to the system defining signal Close. 

Table 2: 
Formal assertions for the control system
Assertions Assertions written on 
A1
A2

A3

A4

A5

A6

A7

A8

II
RC Open≤

3s OG RC Car+( )⋅( )⁄ Close≤

CG Car⋅ Open Close⋅≤

Open Close⋅ 0∗=

OG Open⋅ 0∗=

CG Close⋅ 0∗=

RC Close⋅ 0∗=

OG CG⋅ 0∗=

Table 3: 
Dependency relations derived from assertions labelling
Output
signal

Assertions
to be used Signals involved in the assertions

Open A1, A3, A5 Car(A3a), CG(A3a), OG(A5), 
RC(A1)

Close A2, A3,
A4, A6

Car(A2, A3b), CG(A3b, A6), 
OG(A2), RC(A2, A7), Open(A4)

Fig. 8 Dependency graph derived from assertions labelling

Table 4: 
Systems of equations to solve

Signal Initial system

Open

Close

Open F1 Car CG OG RC, , ,( )=

A1( ) RC Open≤

A3a( ) CG Car⋅ Open≤

A5( ) OG Open≤

Assumption: OG CG⋅ 0∗=









Close F2 Car CG OG RC Open, , , ,( )=

A2( ) 3s OG RC Car+( )⋅( )⁄ Close≤

A3b( ) CG Car⋅ Close≤

A4( ) Open Close≤

A6( ) CG Close≤

A7( ) RC Close≤

Assumptions: OG CG⋅ 0∗=

Open F1 Car CG OG RC, , ,( )=

















7/13

5.4 Solving equations systems
Let us first hear in mind that a solution can be found for

system (1) if and only if: . For most systems ob-
tained from control specifications, this condition is not true.
As assertions were written independently and come from
different, antagonistic concerns (e.g. productivity and safety
concerns), there is indeed no reason for obtaining from the
start consistent systems, such as: . In the case of
the controller studied in this section for instance, signal
Open is defined by the initial system:

Proposition 1 implies that there exists a solution if and
only if input signals RC, CG, Car and OG are such as:

This condition on inputs behaviour is not realistic; the re-
mote control (RC) may be set when the gate is open (OG) for
instance: . Hence the initial system must be
modified so as to ensure assertions consistency and to yield
a solution whatever the behaviour of these inputs.

Therefore once the initial system of a given output is set
up, the proposed synthesis method detects whether this sys-
tem includes inconsistencies or not by symbolic calculus.
When an inconsistency is detected, it is clearly pointed out
by exhibiting the two assertions that give rise to inconsisten-
cy as well as the inconsistency condition. Then the designer
must remove this inconsistency by defining which assertion
has priority over the other one (a safety-related assertion has
priority over an assertion describing a normal running mode,
for instance). Given this information, the lower priority as-
sertion can be modified automatically so as to obtain a con-
sistent set.

The initial system of signal Open includes two inconsist-
encies:
• between A1 and A5 for condition: .

• between A3a and A5 for: .
To remove these inconsistencies, the designer requires that
A5 has priority over A1 and over A3a. These priority rules
state that the assertion for stopping the opening movement
(A5) is more significant than those specifying normal oper-
ation (A1 and A3a), that is usual for that kind of automatic
gate whose actuators must be shut down when the stop posi-
tion is reached. The consistent final system is therefore:

whose solution, according to the results of section 4.2, is:

Remark 2    When an inconsistency cannot be removed by
introducing priority levels, one of the assertions that leads to
inconsistency (or both) is (are) faulty. Then the designer
must rewrite this (these) assertion(s) and check again con-
sistency of the assertions set.

The initial system of signal Close does not include any in-
consistency for:

with:

This result being obtained by symbolic calculus on algebra
. According to the results of section 4.2, the solution is:

To sum up, the control laws of this automatic gate are:

5.5 Generation of PLC program
This set of formal statements can be easily translated into

a Programmable Logic Controller (PLC) program written in
a standardized language (IEC, 1993), like Ladder Diagram,
a widespread programming language for PLCs (Fig. 9). It
matters to highlight that the instruction lines of this program
are ordered according to the dependency constraints previ-
ously obtained. Output Close, for instance, must be elaborat-
ed once output Open is computed. 

a b⋅ 0∗=

a b⋅ 0∗=

RC CG Car⋅+( ) Open≤

OG Open≤



RC CG Car⋅+( ) OG⋅ 0∗=

RC OG⋅ 0∗≠

C1 RC OG⋅=

C2 CG Car⋅ OG⋅=

Open F1 Car CG OG RC, , ,( )=

A1( ) RC OG⋅ Open≤

A3a( ) CG Car OG⋅ ⋅ Open≤

A5( ) OG Open≤
Assumption: OG CG⋅ 0∗=










   |                          +----+       |
   |        RC                | RS |  Open |
R1 +--+-----| |------+--------|S  Q|--( )--+
   |  |  CG    Car   |        |    |       |
   |  +--|/|---| |---+        |    |       |
   |       OG                 |    |       |
   +-------| |----------------|R1  |       |
   |                          +----+       |
   |                                       |
   |                 +-----+  +----+       |
   |  OG   RC   Car  | TON |  | SR | Close |
R2 +--| |--|/|--|/|--|IN  Q|--|S1 Q|--( )--+
   |              3s-|PT   |  |    |       |
   |      CG         +-----+  |    |       |
   +--+---| |---+-------------|R   |       |
   |  |   Car   |             +----+       |
   |  +---| |---+                          |
   |  |   RC    |                          |
   |  +---| |---+                          |
   |  |   Open  |                          |
   |  +---| |---+                          |
   |                                       |

Fig. 9 PLC program developed from the control laws

Open SR RC OG⋅ CG Car OG⋅ ⋅+( ) OG,( )=

RS RC CG Car⋅+( ) OG,( )=

3s OG RC Car+( )⋅( )⁄( )

CG Car⋅ Open CG RC+ + +( )⋅ 0∗=

OG CG⋅ 0∗=

Open RS RC CG Car⋅+( ) OG,( )=



II

Close SR 3s OG RC Car+( )⋅( )⁄( ) Car CG RC Open+ + +( ),( )=

Open RS RC CG Car⋅+( ) OG,( )=

Close SR 3s OG RC Car+( )⋅( )⁄( ) Car CG RC Open+ + +( ),( )=


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Other programming languages can be employed to devel-
op this control program, provided that each operation of al-
gebra  is translated into a set of instructions of the
considered languages.

The obtained program fulfils the set of 8 assertions includ-
ing initial assertions A2 and A4 to A7 as well as the follow-
ing two assertions that are modified versions of initial
assertions A1 and A3 so as to ensure consistency of the sys-
tem of equations that defines signal Open:
• When the remote control is activated, the gate opens, if it is

not already completely open.
• While the gate is not totally closed, the detection of a car

causes the reopening of the gate, if it is not already com-
pletely open.

Therefore the presented formal method delivers a set of
properties, stated as logic assertions, that hold true for the
designed PLC program. Moreover the proof of these proper-
ties is formed by the design file that gathers all the symbolic
computations leading to the control laws. These major fea-
tures of the method can strongly benefit when designing con-
trollers for critical systems with high SIL (Safety Integrity
Level) (IEC, 1998); for these systems indeed, formal proof
of compliance with the application requirements is often
asked by customers or certification authorities.

5.6 Generalisation

Assuming that the specifications that describe the expect-
ed behaviour of the controller have been translated into for-
mal assertions, the main steps of this algebraic method are
summarised below:
1 Setting up equations systems. This step yields one system

of equations for each output (or internal) signal by gather-
ing all the assertions that contain this signal. A large part
of this step is automated, the only role of the designer
being to decide which signal is function of the other ones
when an assertion contains several outputs or internal sig-
nals.

2 Ordering equations systems. Systems related to output (or
internal) signals that depend only on input signals can be
solved in any order, whereas systems related to signals
that depend on input signals and on output (or internal)
signals must be solved once the formal statements of
these latter signals have been obtained, i.e., once their
own systems have been solved. Hence the aim of this step
is to determine the order in which systems of the second
kind must be solved, by analysing automatically the
dependency graph issued from the set of assertions. When
a cycle is detected within this graph, the designer is asked
to tackle this problem by modifying the specifications; in
that case, the method must be restarted from the begin-
ning.

3 Solving equations systems. Systems are solved one by

one, according to the order determined at the previous
step. Solving a system implies to check its consistency, to
remove inconsistencies if needed, and last to obtain the
solution. Consistency checking is performed automati-
cally by a symbolic calculus software that detects whether
Proposition 1 is satisfied or not; inconsistencies removal
necessitates the designer's competence to modify asser-
tions that give rise to these problems; obtaining the solu-
tion of a consistent system consists merely in applying
Proposition 2 to this system.

This method has been applied successfully to several case
studies. The detailed results of these studies can be found at
http://www.lurpa.ens-cachan.fr/isa/asc/.

6.  Comparison with a traditional engineering approach

To point out the advantages of this algebraic method, the
result obtained will be compared with that obtained with a
traditional engineering approach based only on the design-
er's skill. This traditional approach is assumed to yield a SFC
(Sequential Function Chart) program (IEC, 1993). SFC has
been chosen because its good structuring features will ease
the comparison of the two methods. A similar, but longer,
discussion is possible for controllers developed in other pro-
gramming languages.

In a traditional approach, the designer first identifies the
meaningful states of the controlled system ("Closed gate",
"Opening gate", "Open gate" and "Closing gate" in this ex-
ample), then defines the transitions that link these states and
the transition conditions (from state "Closed gate", it is pos-
sible to move to state "Opening gate" if and only if the re-
mote control is activated, for instance). Then, proceeding by
trial and error, the designer can produce a SFC simular to
that presented in Fig. 10. Steps 1, 2, 4 correspond respective-
ly to states "Closed gate", "Opening gate" and "Closing
gate". State "Open gate" gave rise to two steps (3 and 5), de-
pending on the presence or absence of an opening request
(Remote Control or Car detected), so as to facilitate timer
management; when the gate is completely open indeed, the
timer must count the elapsed time from the beginning of step
3 when there is no request and must be reset if a request oc-
curs. This program seems able to control the gate; neverthe-
less it includes two significant flaws that come from the
engineering approach.

6.1 Initial state

The program presented in Fig. 10 has been designed as-
suming that the controlled system is initially in a well-de-
fined state: the gate is assumed to be closed when step 1 is
active. If this assumption is no longer true, for instance be-
cause an operator lets the gate completely open at the end of

II
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a maintenance operation and then restarts the controller from
its initial state, the program will no longer run correctly; step
1 will be active while the gate is open and it will be manda-
tory to activate Remote Control to close the gate, which is
quite unusual and hazardous. Conversely the program ob-
tained at the end of the last section is able to control the gate
whatever its initial state may be, because it has been obtained
from an assertions set that does not include any assumption
on the initial state of the controlled system. 

Therefore the first advantage of the algebraic method, that
is not state-based and therefore that does not require to iden-
tify meaningful states, is to yield a result that does not de-
pend on the initial state of the controlled system. This feature
is quite interesting when designing controllers that must run
correctly after maintenance operations that may leave the
controlled physical system in any state.

6.2 Unexpected behaviours

The transitions defined by the designer correspond to the
basic evolutions of the program (from step 2 to step 3 once
the gate is completely open, from step 3 to step 4 if the gate
has been open for 3 seconds, and so on). Nevertheless other
evolutions are possible by firing sequentially several transi-
tions without any change of inputs. The SFC can evolve for
instance from step 2 to step 5 going through step 3 if OG be-
comes true while RC is already true, and from step 4 to step
5 going through steps 2 and 3 if RC is true when the gate is
still entirely open. Some of these evolutions, like the first
one, are without consequence because they do not operate
opposite actuators controls; other ones, like the latter evolu-
tion mentioned above, can damage actuators because they
induce sequences of contradictory controls leading to haz-
ardous energy pulses. These evolutions which must be for-
bidden are nevertheless difficult to detect and significant

efforts must be made to correct them, particularly when deal-
ing with large systems.

By requiring the designer to specify, at the very beginning
of design, all the behaviours that he or she expects (e.g., the
gate cannot be controlled to close when the remote control is
activated) and by providing the formal proof of the compli-
ance of the obtained controller to these requirements, the al-
gebraic method presents the advantage of avoiding tedious,
costly and time-consuming detection and correction tasks
following usual design based on traditional engineering ap-
proaches. 

Remark 3    It is possible to represent the overall behaviour
of the Ladder Diagram program of Fig. 9 in the form of the
SFC shown in Fig. 11 that includes only 3 steps and does not
give rise to unexpected behaviours. However the condition
transitions of this SFC are more complex than those of the
previous model. Hence obtaining this dependable model by
using a traditional approach would be an extremely hard
task. 

7. Application to an experimental manufacturing line

Any design method should be able to deal with industrial
size problems that include numerous variables. To assess
scalability of the proposed synthesis method, several case
studies were performed in our laboratory. Only the results
obtained for an experimental manufacturing line, the exam-
ple on the largest scale that we dealt with, are given below.
The objectives of this section are twofold:
• To provide a methodology to obtain assertions systemati-

cally for large systems. This methodology benefits from
modularity and genericity principles.

• To demonstrate the ability to design controllers far larger
than the one studied in section 5.

+----+
|    |
| +==+==+
| || 1 ||  (* The gate is closed. *)
| +==+==+
|    |
|    + RC
|    |
|    +---------------------<----------------------+
|    |                                            |
| +--+--+  +-------+                              |
| |  2  |--| Open  |                              |
| +--+--+  +-------+                              |
|    |                                            |
|    + OG                                         |
|    |                                            |
|    +---------------------<-------------------+  |
|    |                                         |  |
| +--+--+                                      |  |
| |  3  |  (* The gate is open without *)      |  |
| +--+--+  (* an opening request.      *)      |  |
|    |                                         |  |
|    *--------------------+                    |  |
|  2 |                  1 |                    |  |
|    + 3.T>T#3s           + RC OR Car          |  |
|    |                    |                    |  |
| +--+--+  +-------+   +--+--+ (* Open with  *)|  |
| |  4  |--| Close |   |  5  | (* an opening *)|  |
| +--+--+  +-------+   +--+--+ (* request    *)|  |
|    |                    |                    |  |
|    |                    + NOT (RC OR Car)    |  |
|    *--------------+     |                    |  |
|  2 |            1 |     +--------------------+  |
|    |              |                             |
|    + CG           + RC OR Car                   |
|    |              |                             |
+----+              +-----------------------------+

Fig. 10 SFC program obtained with traditional approach

+----+
|    |
| +==+==+                             VAR
| || 1 || (* No mouvement *)            TON1 : TON ;
| +==+==+                             END_VAR
|    |
|    +---------------------+
|    |                     |
|    + (RC OR              + TON1(
|    |    (Car & NOT CG))  |  IN:=(OG & NOT(RC OR Car)),
|    |  & (NOT OG)         |  PT:= T#3s ).Q
|    |                  +--+--+  +-------+
|    |                  |  2  |--| Close |
|    |                  +--+--+  +-------+
|    |                     |
|    |     +---------------+----------+
|    |     |                          |
|    |     + (RC OR (Car & NOT CG))   + CG & NOT RC
|    |     | & (NOT OG)               | OR OG & RC
|    +--<--+                          | OR OG & Car
|    |                                |
| +--+--+  +-------+                  |
| |  2  |--| Open  |                  |
| +--+--+  +-------+                  |
|    |                                |
|    + OG                             |
|    |                                |
|    +---------+----------------------+
|              |
+--------------+

Fig. 11 SFC deduced of Ladder program (Fig. 9)
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7.1 System to control

This system (Fig. 12) is a didactic manufacturing line de-
veloped by Bosch company. It is composed of four stations
controlled by a single PLC. Table 5 gives the main features
of this line as regards control.

The description of the overall operation of this line is out
of the scope of this article. The design methodology is illus-
trated thanks to a device located at station 3: insert device,
described in Fig. 13. The scalability of the synthesis method
is demonstrated by presenting the results obtained for the
global system. 

7.2 Methodology

The input data of the synthesis method are specifications
assumed to express all the users concerns (normal operation,
time constraints, safety concerns, …). Any missing assertion
within this specifications set will lead to control laws that
will not comply totally with users requirements. Unfortu-
nately obtaining a complete set of assertions is a tedious task
for large systems. Our experiments have shown nevertheless
that most of assertions could be obtained from generic ones.
Hence an actuator-oriented methodology has been set up.
With this methodology, assertions may be ranked into three
categories:
• assertions coming from technological features,
• assertions developed for collision avoidance,
• assertions describing functionalities of sub-systems.

This approach benefits of modularity and genericity prin-
ciples advocated by (Vogrig et al., 1987, Gouyon et al.,
2004) and implemented by means of behaviour filters. A be-
haviour filter (filter in what follows) is a low-level controller
that is aimed:

• At filtering observations supplied by sensors and at com-
puting reports about the state of physical components to
be sent to high-level controllers so that these reports
would be consistent with the real behaviour of these com-
ponents,

• At filtering functional requests submitted by high-level
controllers and at computing appropriate signals to be
sent to actuators in such a way that these signals comply
with the current state of physical components. 

Fig. 14 shows how filters may be employed to structure
the control system of the insert device. Three filters (one for
each actuator) were introduced. For space reasons, focus will
be put mainly on the press filter in what follows. 

7.2.1 Assertions coming from technological features
These assertions allow to obtain the control laws of the

outputs of filters from sensors signals and from functional
requests. As manufacturing lines include numerous similar

Fig. 12 Structure of the manufacturing line

Table 5: 
Design features of the manufacturing line

Station 1 Station 2 Station 3 Station 4
Inputs 17 20 21 23
Outputs 13 12 13 10
Cylinders 2 4 6 1
Motors 1 1 0 1
Electromagnets 3 0 2 0

The insert device assem-
blies plain bearings into
gear wheels and can be de-
composed into three sub-
systems: the press, the
wheel feeder and the bear-
ing feeder. The press and the
wheel feeder are both actu-
ated by a double-acting cyl-
inder with a single-solenoid valve and are fitted with two
position sensors. As for the bearing feeder, it is actuated by
a double-acting cylinder with a single-solenoid valve and is
fitted with only one position sensor.

Fig. 13 Structure of the insert device (station 3)

Station 1 Station 2 Station 3 Station 4

Press 

Wheel feeder

Bearing feeder

PressWheel feeder Bearing feeder

S3cs_fdwp1_in S3cs_fdwp1_out S3cs_fd_pb_out S3cs_p1_up S3cs_p1_down

S3cy_p1_fdwp S3cy_p1_fdpb S3cy_p1_press Fig. 14 Behaviour filters of the insert device

High
Level

Controller 

Press
filter

Wheel 
feeder
filter

Bearing
feeder
filter

Wheel 
feeder

Bearing
feeder

Press



11/13

technological solutions, e.g. double-acting cylinders with
single-solenoid valve, electrical motors with two rotating
senses, ... , it is of interest to design specific assertions from
generic ones. Generic assertions describe the behaviour of a
class of technological solutions which is characterized by
three parameters: 
• kind of power used by the actuator (electric power, com-

pressed air, …),
• kind of preactuator (kind of valve or contactors),
• number and location of position sensors.

The example of the press filter (Fig. 15) will illustrate de-
sign of a filter for a technological solution including a dou-
ble-acting cylinder with single-solenoid valve and two
position sensors. Signals S3cs_P1_up and S3cs_P1_down
come from the two sensors while signal S3cy_P1_press is
used to drive the valve. The other signals come from or go to
the high-level controller.

The interface between the filter and the high-level control-
ler is composed of two movement requests (P1_Go_up,
P1_Go_down) and of two position information (P1_up,
P1_down) (Fig. 15). These latter ones are built from the
states of sensors as follows:

These equations mean that the states of sensors must be con-
sistent to consider that the upper or lower positions are
reached.

Signal S3cy_P1_press is obtained from the system below
which means that the valve is driven according to the two
movement requests and the two position information:

From previous results, the solution of this system is:

Moreover two relations between requests and position in-
formation can be stated:

These relations mean that a request is satisfied when the stop
position is reached.

7.2.2 Assertions developed for collision avoidance

To avoid collisions between mechanical components
moved by actuators, safety assertions must be introduced.
These assertions are independent from technological fea-
tures and from functionalities of sub-systems and may be ob-
tained by analysing the common workspaces of sub-systems.
For the insert device, the workspaces of the press, of the
wheel feeder and of the bearing feeder are shown in Fig. 16. 

Analysing this figure leads to two assertions for the press:

Meaning that press movements are possible only if the other
actuators are correctly located.

Similar assertions can be easily obtained for the other sub-
systems (wheel feeder and bearing feeder).

7.2.3 Assertions describing functionalities of sub-systems
These assertions depend upon the positions of sub-systems

and upon the current state of the manufactured parts. For the
insert device, six assertions are sufficient to describe normal
operation:
A1 The press cylinder moves down when the two parts

(wheel and bearing) are correctly located and if these
parts have not been assembled previously.

A2 Once the lower position reached, the press cylinder
moves up.

A3 The wheel feeder loads a wheel when the wheel-
carrying conveyor stands in front of the press and carries
a wheel on which no bearing has been assembled.

A4 The wheel feeder unloads the finished part (wheel and
bearing assembled) when assembly is finished.

A5 When a bearing is put on the bearing feeder, the bearing
feeder loads it into the press.

A6 When the bearing feeder is empty, it comes back to the
bearing warehouse (right most position on Fig. 16) so as
to take a new bearing.

Only the first two assertions deal with press functionnali-
ties. They give rise to the following formal relations:
A1 :  

<

Fig. 15 Filter inputs and outputs

Press
filter 

S3cy_P1_press
S3cs_P1_up
S3cs_P1_down

P1_Go_up
P1_Go_down

P1_up
P1_down

P1_up S3cs_P1_up S3cs_P1_down⋅=

P1_down S3cs_P1_down S3cs_P1_up⋅=



P1_up P1_Go_down P1_Go_up⋅ ⋅ S3cy_P1_press≤

P1_down P1_Go_up P1_Go_down⋅ ⋅ S3cy_P1_press≤



S3cy_P1_press RS
P1_up P1_Go_down P1_Go_up⋅ ⋅( ),

P1_down P1_Go_up P1_Go_down⋅ ⋅( )
=

P1_up P1_Go_up≤

P1_down P1_Go_down≤



Fig. 16 Workspaces of the three sub-systems

Bearing feeder 
workspace

Wheel feeder
workspace Press workspace

P1_whl_inP1_whl_out

P1_brg_out

P1_up

P1_brg_in

P1_down

P1_Go_up P1_brg_in P1_whl_in⋅≤
P1_Go_down P1_brg_in P1_whl_in⋅≤




P1_brg_in P1_brg_load⋅( ) P1_whl_in P1_op_made⋅( )⋅
P1_Go_down P1_Go_up⋅≤
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A2 : 
where: 
• P1_brg_in: position of bearing feeder (see Fig. 16)
• P1_brg_load: bearing feeder with one part (state of manu-

factured part),
• P1_whl_in: position of wheel feeder (see Fig. 16)
• P1_op_made: Operation made (state of manufactured part)

7.2.4 Control laws generation

These laws are obtained by using the method explained in
section 5, from an assertions set that gathers the three kinds
of assertions. Our experiments showed that introducing pri-
ority levels could be carried out in a systematic way: asser-
tions describing safety concerns having priority over
assertions describing normal operation.

The control laws for the press are given below:

7.3 Current results

To avoid tedious symbolic calculus and to help the design-
er during the different steps of this synthesis method, a pro-
totype software tool has been developed in Python. This tool
performs all the computations required for variables depend-
ency analysis, inconsistencies detection and control laws
generation, that enables the designer to focus only on appli-
cation-related issues.

This tool was used to design the control system of the
manufacturing line previously presented. The results ob-
tained for some devices of this line that exhibit different
technological features are given in table 6, where:
• C1 is the horizontal conveyor of station 1. It has three stop-

ping positions and is actuated by an electric motor.
• T1 is the test module of station 2. It is actuated by a pneu-

matic cylinder and is aimed at detecting whether a bearing
is inserted within a wheel or not.

• G1 is the gripper of station 2. This rotary/lift gripper is a
pneumatic handling device with two motion axes and a
gripper. Wheels are seized, lifted, and repositioned after a
swivelling movement of up to 180°.

• C2 is the horizontal conveyor of the station 3. It has four

stopping positions and is actuated by a pneumatic cylinder.
Positioning is performed with contactless sensors and elec-
tromagnetically operated mechanical stops.

• P1 is the insert press of station 3 (presented before).
• G2 is the gripper of station 4, similar to gripper G1. 

Among the 202 assertions necessary to specify the behav-
iours of these devices, 126 (62 %) were obtained automati-
cally from knowledge of technological features, 25 (12 %)
come from collision avoidance analysis and only 51 (26 %)
describe devices functionalities. All priorities were elaborat-
ed automatically by considering that safety assertions have
priority over other assertions.

The 72 control laws were automatically generated and
translated into a program in Structured Text (IEC, 1993).
This program was implemented on the Schneider-Electric
PLC controlling the line. This program has been tested suc-
cessfully. It matters to highlight that translation of control
laws into an executable program was possible because the
prototype tool is able to generate all data mandatory to exe-
cute a program on a PLC (e.g. mnemonic tables).

This tool generates too an analysis file that gathers:
• the list of controller signals,
• the list of variables dependencies (in textual form as shown

in table 3 or in graphical form as depicted in Fig. 8),
• and, for each control law, the relations set that specifies its

behaviour, the priorities introduced to obtain a consistent
set as well as the formal solution on .

8.  Conclusion

The increasing productivity constraints as well as the need
for compliance with standards for functional safety (IEC
61508) explain that designing dependable logic controllers
becomes a more and more crucial concern for companies in
many industrial domains. Formal methods can efficiently
contribute to reach this objective by tackling out the usual
problems of specifications inconsistency and of specifica-
tions misinterpretation leading to design faults.

P1_down P1_Go_up P1_Go_down⋅≤

P1_up S3cs_P1_up S3cs_P1_down⋅=

P1_down S3cs_P1_down S3cs_P1_up⋅=

P1_Go_down RS
P1_brg_load P1_op_made⋅( ) ,

P1_brg_in P1_whl_in P1_down+ +( )
=

P1_Go_up RS

P1_down ,

P1_brg_in P1_whl_in P1_up+ + +(

P1_brg_load P1_op_made⋅( ) )

=

S3cy_P1_press RS
P1_up P1_Go_down P1_Go_up⋅ ⋅( ) ,

P1_down P1_Go_up P1_Go_down⋅ ⋅( )
=



















Table 6: 
Results obtained on the manufacturing line

Number of C1 T1 G1 C2 P1 G2 Ttl
Sub-systems 1 1 3 3 3 3 14
Control laws 10 4 14 16 14 14 72
Assertions 31 10 38 47 38 38 202
- technological features 21 4 24 29 24 24 126
- collision avoidance 3 2 6 3 5 6 25
- functionalities 7 4 8 15 9 8 51
Priorities 21 5 21 29 21 21 118

II
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The formal synthesis method presented in this article cov-
ers the whole design phase, from specifications to control
laws that can be implemented into a PLC. Its ability to deal
with large enough problems has been demonstrated that al-
lows to consider application to industrial size problems, pro-
vided that the actuator-oriented methodology for assertions
elicitation is used.

The Boolean algebra that underlies this method provides
an integrating framework for specifications formalization
and analysis as well as for control laws generation by solving
equations systems. Using a single formalism guarantees the
soundness of the synthesis method by avoiding semantics
changes that may give rise to formal incompleteness and in-
consistency.

The case studies that we achieved have yielded several in-
vestigation prospects. First the development of new opera-
tions and relations of algebra  is intended so as to increase
the capability for expressing natural language sentences that
describe specifications. Then, new solving techniques will
be investigated to obtain control laws from assertions includ-
ing these new operations and relations.
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