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Distinction of some induced representations

23rd November 2008

Abstract

Let K/F be a quadratic extension of p-adic fields, σ the nontrivial element of the Ga-
lois group of K over F , and π a generic representation of GL(n, K). Denoting by π∨ the
smooth contragredient of π, and by πσ the representation π ◦σ, we show that representation
of GL(2n, K) obtained by normalized parabolic induction of the representation π∨ ⊗ πσ is
distinguished with respect to GL(2n, F ). This is a step towards the classification of distin-
guished generic representations of general linear groups over p-adic fields.

Introduction

Let K/F be a quadratic extension of p-adic fields, σ the nontrivial element of the Galois group of
K over F , and π a generic representation of GL(n,K). We denote by σ again the automorphism
of M2n(K) induced by σ.
A smooth representation ρ ofGL(2n,K) is said to be distinguished if there is a nonzeroGL(2n, F )-
invariant linear form on its space. If ρ is irreducible, the space of such forms is of dimension at
most 1.
Calling π∨ the smooth contragredient of π and πσ the representation π ◦σ, we denote by πσ ×π∨

the representation of GL(2n,K), obtained by normalized induction of the representation πσ ⊗π∨

of the standard parabolic subgroup of type (n, n).
The case n = 1 is treated in [H] for unitary πσ ×π∨, using a criterion characterizing distinction in
terms of gamma factors. In [F3], Flicker defines a linear form on the space of πσ ×π∨ by a formal
integral which would define the invariant linear form once the convergence is insured. Finally in
[F-H], for n = 1, the convergence of this linear form is obtained for πσ| |sK × π∨| |−s

K and s of real
part large enough, the conclusion follows from an analytic continuation argument.
We generalize this method here, the first part, which consists of showing that the representation
πσ| |Ks × π∨| |−s

K when Re(s) is large enough, is quite straightforward. The main difference is
the analytic continuation argument, it is more general here, because the precise computations of
[F-H] doesn’t seem to generalize easily.
The first section is about notations and basic concepts used in the rest of the work.
In the second section, we state a very useful theorem of Bernstein (Theorem 2.1) about rationality
of solutions of polynomial systems, and use it as in [C-P] or [Ba], in order to show, in Proposition
2.2, the holomorphy of integrals of Whittaker functions depending on several complex variables.
The third section is devoted to the proof of our main theorem 3.1, which asserts that the repre-
sentation πσ × π∨ is distinguished.
We end this introduction by recalling a conjecture about classification of distinguished generic
representations:

Conjecture. Let m be a positive integer, and ρ a generic representation of the group GL(m,K),
obtained by normalised parabolic induction of quasi-square-integrable representations ∆1, . . . ,∆t.
It is distinguished if and only if there exists a reordering of the ∆i’s, and an integer r between 1
and t/2, such that we have ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i is distinguished for i > 2r.

We denote by η the nontrivial character of F ∗ trivial on the norms of K∗. According to
Proposition 26 in [F1], Proposition 12 of [F2], Theorem 6 of [K], and Corollary 1.6 [A-K-T], our
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result reduces the proof of the conjecture to showing that representations of the form ∆1×· · ·×∆t

with ∆σ
i+1 = ∆∨

i for i = 1, 3, .., 2r − 1 for some r between 1 and t/2, and non isomorphic
distinguished or η-distinguished ∆i’s for i > 2r are not distinguished whenever one of the ∆i’s is
η-distinguished for i > 2r. According to [M3], the preceeding conjecture implies the equality of
the analitically defined Asai L-function and the Galois Asai L-function of a generic representation.

1 Notations

We denote by | |K and | |F the respective absolute values on K∗, by qK and qF the respective
cardinalities of their residual field, and by RK the valuation ring of K.
We call partition of a positive integer n, a family n̄ = (n1, . . . , nt) of positive integers (for a
certain t in N − {0}), such that the sum n1 + · · · + nt is equal to n. To such a partition, we
associate a subgroup of GL(n,K) denoted by Pn̄(K), given by matrices of the form















g1 ⋆ ⋆ ⋆ ⋆
g2 ⋆ ⋆ ⋆

. . . ⋆ ⋆
gt−1 ⋆

gt















,

with gi in GL(ni,K) for i between 1 and t. We call it the standard parabolic subgroup associated
with the partition n̄. We denote by Nn̄(K) its unipotent radical subgroup, given by the matrices







In1
⋆ ⋆
. . . ⋆

Int






.

Finally we denote by Pn(K) the affine subgroup of GL(n,K) given by the matrices

(

g ⋆
1

)

,

with g in GL(n− 1,K).
Let X be a locally closed space of an l-group G, and H closed subgroup of G, with H.X ⊂ X . If
V is a complex vector space, we denote by C∞(X,V ) the space of smooth functions from X to
V , and by C∞

c (X,V ) the space of smooth functions with compact support from X to V (if one
has V = C, we simply denote it by C∞

c (X)).
If ρ is a complex representation of H in Vρ, we denote by C∞(H\X, ρ, Vρ) the space of functions
f from X to Vρ, fixed under the action by right translation of some compact open subgroup Uf

of G, and which verify f(hx) = ρ(h)f(x) for h ∈ H , and x ∈ X (if ρ is a character, we denote
this space by C∞(H\X, ρ). We denote by C∞

c (H\X, ρ, Vρ) subspace of functions with support
compact modulo H of C∞(H\X, ρ, Vρ).
We denote by IndG

H(ρ) the representation by right translation of G in C∞(H\G, ρ, Vρ) and by

indG
H(ρ) the representation by right translation of G in C∞

c (H\G, ρ, Vρ). We denote by Ind′
G
H(ρ)

the normalized induced representation IndG
H((∆G/∆H)1/2ρ) and by ind′

G
H(ρ) the normalized in-

duced representation indG
H((∆G/∆H)1/2ρ).

Let n be a positive integer, and n̄ = (n1, . . . , nt) be a partition of n, and suppose that we have a
representation (ρi, Vi) of GL(ni,K) for each i between 1 and t. Let ρ be the extension to Pn̄(K)
of the natural representation ρ1 ⊗ · · · ⊗ ρt of GL(n1,K)× · · · ×GL(nt,K), by taking it trivial on

Nn̄(K). We denote by ρ1 × · · · × ρt the representation Ind′
GL(nK)
Pn̄(K) (ρ).

2 Analytic continuation of Whittaker forms

If ρ is a generic representation of GL(n,K), and ψ is a nontrivial character of K, trivial on F ,
then for every W in the Whittaker model W (ρ, ψ) of ρ, by standard arguments, the following
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integral is convergent for Re(s) large, and defines a rational function in q−s, which has a Laurent
series development in q−s:

I(0)(W, s) =

∫

Nn(F )\Pn(F )

W (p)|det(p)|F
s−1dp.

By standard arguments again, the vector space generated by the functions I(0)(W, s), for W

in W (π, ψ), is a fractional ideal I(0)(π) of C[q−s
F , qs

F ], which has a unique generator which is an
Euler factor, independant of ψ, that we denote by L(0)(ρ, s).

According to theorem 9.7 of [Z], there is a partition of n and quasi-square-integrable rep-
resentations ∆1, . . . ,∆t associated to it such that ρ is isomorphic to ∆1 × · · · × ∆t. The map
u = (u1, . . . , ut) 7→ qu

K = (qu1

K , . . . , qut

K ) defines an isomorphism of varieties between (DK)t =
(C/ 2iπ

ln(qK)Z )t and (C∗)t. We also denote by DF the variety (C/ 2iπ
ln(qF )Z ) which the isomorphism

s 7→ q−s
F identifies to (C∗)t, and we denote by D the product (DK)t ×DF .

Associate to u and ρ is the representation ρu = ∆1| |
u1 × · · · × ∆t| |

ut . In their classical model,
for every representation ρu, the restrictions of the functions of the space of ρu to the maximal
compact subgroup GL(n,RK) of GL(n,K) define the same space Fρ, which is called the space
of flat sections of the series ρu. To each f in Fρ, corresponds a unique function fu in ρu. It is
known that for fixed g in GL(n,K) and f in Fρ, the function (u, s) 7→ |det(g)|sKρu(g)f belongs
to C[D] ⊗C Fρ. For every f in Fρ and u in (DK)t, there is a function Wf,u = Wfu

defined in
Section 3.1 of [C-P] in the Whittaker model W (ρu, ψ), such that Wf,u describes W (ρu, ψ) when
f describes Fρ. The space W (0) is defined in [C-P] as the complex vector space generated by the
functions (g, u) 7→Wf,u(gg′) for g′ in GL(n,K).

We will need a theorem of Bernstein insuring rationality of solutions of polynomial systems.
The setting is the following.
Let V be a complex vector space of countable dimension. Let R be an index set, and let Ξ be a
collection {(xr , cr)|r ∈ R} with xr ∈ V and cr ∈ C. A linear form λ in V ∗ = HomC(V,C) is said
to be a solution of the system Ξ if λ(xr) = cr for all r in R.
Let D be an irreducible algebraic variety over C, and suppose that to each d, a system Ξd =
{(xr(d), cr(d))|r ∈ R} with the index set R independant of d in D. We say that the family of
systems {Ξd, d ∈ D} is polynomial if xr(d) and cr(d) belong respectively to C[D]⊗C V and C[D].
Let M = C(D) be the field of fractions of C[D], we denote by VM the space M⊗C V and by V ∗

M

the space HomM(VM,M).
The following statement is a consequence of Bernstein’s theorem, the discussion preceeding it,
and its corollary in Section 1 of [Ba].

Theorem 2.1. (Bernstein) Suppose that in the above situation, the variety D is nonsingular and
that there exists a non-empty subset Ω ⊂ D open in the usual complex topology of D, such that for
each d in Ω, the system Ξd has a unique solution λd. Then the system Ξ = {(xr(d), cr(d))|r ∈ R}
over the field M = C(D) has a unique solution λ(d) in V ∗

M, and λ(d) = λd is the unique solution
of Ξd on Ω.

In order to apply this theorem, we will need the following proposition.

Proposition 2.1. Let ρ be a generic representation of GL(n,K), there are t affine linear forms
Li, for i between 1 and t, with Li depending on the variable ui, such that if the Li(ui)’s and
s have positive real parts, the integral I(0)(W, s) =

∫

Nn(F )\Pn(F )W (p)|det(p)|s−1
F dp is convergent

for any W in W (ρu, ψ).

Proof. We recall the following claim, which is proved in the lemma of Section 4 of [F1].

Claim. Let τ be a sub-Pn(K)-module of C∞(Nn(K)\Pn(K), ψ), such that for every k between
0 and n, the central exponents of τ (k) are positive (i.e. the central characters of all the irre-
ducible subquotients of τ (k) have positive real parts), then whenever W belongs to τ , the integral
∫

Nn(F )\Pn(F )
W (p)dp is absolutely convergent.
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Applying this to our situation, and noting eρ the maximal element of the set of central
exponents of ρ (see Section 7.2 of [Ber]), we deduce that as soon as u is such that Li(u) = ui−eρ−1
has positive real part for i between 1 and t, and as soon as s has positive real part, the integral
∫

Nn(F )\Pn(F )W (p)|det(p)|s−1
F dp converges for all W in W (ρu, ψ).

We now can prove the following:

Proposition 2.2. Let ρ be a generic representation of GL(n,K), for every f in Fρ, the function
I(0)(Wf,u, s) belongs to C(q−u

F , q−s
F ).

Proof. In our situation, the underlying vector space is V = Fρ and is of countable dimension
because ρ is admissible. The invariance property satisfied by the functional I, is

I(0)(ρu(p)Wf,u, s) = |det(p)|1−s
F I(0)(Wf,u, s) (1)

for f in Fρ, and p in Pn(F ).
From the proofs of Lemma 8 and of the unique proposition of [F4], it follows that out of the

hyperplanes in (u, s) defined by cρu
|z|j(s−1) = 1, for ρu in the irreducible components of ρ

(n−j)
u ,

and for j > 0, the space of solutions of equation 1 is of dimension at most one. If we take a basis
of (fα)α∈A of Fρ, the polynomial family over the irreducible complex variety D = (DK)t ×DF of
systems Ξ′

d, for d = (u, s) ∈ D expressing the invariance of I is given by:

Ξ′
d =

{

(ρu(p)ρu(gi)fα − |det(p)|1−s
F ρu(gi)fα, 0),

α ∈ A, p ∈ Pn(F ), gi ∈ GL(n,K)

}

Now we define Ω to be the intersection of the three following subets of D:

• the intersection of the complements of the hyperplanes on which uniqueness up to scalar
fails,

• the intersection of the domains {Re(Li(u)) > 0} and {Re(s) > 0}, on which I(Wf,u, φ, s) is
given by an absolutely convergent integral.

The functional I is the unique solution up to scalars of the system Ξ′, in order to apply The-
orem 2.1, we add for each d ∈ D a normalization equation Ed depending polynomially on d. This
is done as follows.
From Proposition 3.4 of [M3], if F is a positive function in C∞

c (Nn(K)\Pn(K), ψ), we choose a W

inW
(0)
ρ such that its restriction to Pn(K) is of the formW (u, p) = F (p)P (q±u

K ) for some nonzero P
in P0. We thus have the equality I(0)(W,u, s) =

∫

Nn(F )\Pn(F ) F (p)|det(p)|s−1
F dpP (q±u). Calling c

the constant r
∫

Nn(F )\Pn(F )
F (p)|det(p)|s−1

F dp, this latter equality becomes I(W,u, s) = cP (q±u
K ).

Now asW is inW
(0)
ρ , it can be expressed as a finite linear combinationW (g, u) =

∑

k ρu(gα)Wfα,u(g)
for appropriate gα ∈ GL(n,K). Hence our polynomial family of normalization equations (which
is actually independant of s) can be written

E(u,s) =

{

(
∑

α

ρu(gα)fα, cP (q±u
K )

}

.

We now call Ξ the system given by Ξ′ and E, it satisfies the hypotheses of Theorem 2.1. We thus
conclude that there is a functional I ′ which is a solution of Ξ such that (u, s) 7→ I ′(Wf,u, s) is a
rational function of q±u

F and q±s
F for f ∈ Fρ. We also know that I ′(Wf,u, s) is the unique solution

of Ξ′
(u,s) on Ω. This implies that for fixed u ∈ (DK)t and f ∈ Fρ, for Re(s) large enough (let’s say

Re(s) ≥ r for some real number r, for which cτu
|z|j(s−1) 6= 1, for τu in the irreducible components

of ρ
(n−j)
u , and for j > 0), both functions I(Wf,u, s) and I ′(Wf,u, s) are equal. As they are rational

functions of q−s
F , they are equal for all s, and we conclude that (u, s) 7→ I(Wf,u, s) belongs to

C(q−u
F , q−s

F ).
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We now recall the following theorem of Youngbin Ok:

Proposition 2.3. ([Ok], Theorem 3.1.2 or Proposition 1.1 of [M2]) Let ρ be an irreducible
distinguished representation of GL(n,K), if L is a Pn(F )-invariant linear form on the space of
ρ, then it is actually GL(n, F )-invariant.

In order to apply this theorem later, we also recall the proposition 2.3 of [M2].

Proposition 2.4. Let ρ be a generic representation of GL(n,K), the functional Λρ,s : W 7→
I(0)(W, s)/L(0)(ρ, s) defines a nonzero linear form on W (ρ, ψ) which transforms by |det( )|1−s

F

under the affine subgroup Pn(F ).
For fixed W in W (ρ, ψ), then s 7→ Λρ,s(W ) is a polynomial of q−s

F .

3 Distinction of representations π
σ × π

∨

We denote by G the group GL(2n,K), by H its subgroup GL(2n, F ), by G′ the group GL(n,K)
and byM the groupMn(K). We denote by P the group P(n,n)(K), and byN the groupN(n,n)(K).

We denote by H̄ subroup ofG given by matrices of the form

(

A B
Bσ Aσ

)

, and by T̄ the subgroup

of H̄ of matrices

(

A 0
0 Aσ

)

, with A in G′.

We call U be the matrix

(

In −δIn
In δIn

)

of G, and W the matrix

(

−In
In

)

. One has

UσU−1 = W and the group H is equal to U−1H̄U .

Lemma 3.1. The double class PUH is opened in G.

Proof. Call S the space of matrices g in G verifying gσ = g−1, which is, from Proposition 3. of
chapter 10 of [S], homeomorphic to the quotient space G/H by the map Q : g 7→ gσg−1. As
the map Q sends U on W , the double class PUH corresponds to the open subset of matrices
(

A B
C D

)

in S such that det(C) 6= 0, the conclusion follows.

We prove the following integration formula.

Lemma 3.2. There is a Haar measure dḣ on the quotient space T̄\H̄, and a Haar measure dB
on M , such that for any measurable positive function φ on the quotient space T̄\H̄, then the
integrals

∫

T̄\H̄

φ(ḣ)dḣ

and
∫

M

φ

(

In B
Bσ In

)

dB

|det(In −BBσ)|nK

are equal.

Proof. It suffices to show this equality when φ is positive, continuous with compact support in
T̄\H̄ . We fix Haar measures dt on T̄ and dg on H̄ , such that dḣdt = dg. It is known that there
exists some positive function φ̃ with compact support in H̄ , such that φ = φ̃T̄ , which means that
for any ḣ in H̄, one has φ(ḣ) =

∫

T̄
φ̃(tg)dt. One then has the relation

∫

T̄\H̄

φ(ḣ)dḣ =

∫

H̄

φ̃(g)dg.
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Now as H̄ is conjugate to H , there are Haar measures dA and dB on M such that dt is equal to
d∗A = dA

|det(A)|n
K

, and the Haar measure on H̄ is described by the relation

d

(

A B
Bσ Aσ

)

=
dAdB

∣

∣

∣

∣

det

(

A B
Bσ Aσ

)∣

∣

∣

∣

2n

F

=
dAdB

∣

∣

∣

∣

det

(

A B
Bσ Aσ

)∣

∣

∣

∣

n

K

.

Hence we have

∫

T̄\H̄
φ(ḣ)dḣ =

∫

M×M
φ̃

(

A B
Bσ Aσ

)

dAdB
∣

∣

∣

∣

∣

∣

det





A B
Bσ Aσ





∣

∣

∣

∣

∣

∣

n

K

=
∫

M×M
φ̃

[(

A
Aσ

) (

In A−1B
(A−1B)σ In

)]

dAdB
|det(A)|2n

K
|det(In−A−1B(A−1B)σ)|n

K

as the complementeray of G′ is a negligible set of M .
This becomes after the change of variable B := A−1B equal to

∫

M×M

φ̃

[(

A
Aσ

) (

In B
Bσ In

)]

dA

|det(A)|nK

dB

|det(In −BBσ|nK

which is itself equal to

∫

G′×M

φ̃

[(

A
Aσ

) (

In B
Bσ In

)]

d∗A
dB

|det(In −BBσ)|nK
.

The conclusion follows from the fact that φ̃T̄ is equal to φ.

Theorem 3.1. Let n be a positive integer, and π a generic representation of G′. Then the
representation πσ × π∨ is a distinguished representation of G.

Proof. We will first show that the representation πσ| |s × π∨| |−s of G is distinguished for a
complex number s of real part large enough. Then we show that this property still holds for s
equal to 0.

Step 1.
The representation πσ| |s⊗π∨| |−s of G′×G′ is distinguished by T̄ . Call L a nonzero T̄ -invariant
linear form on the space of πσ| |sK ⊗ π∨| |−s

K .
We denote by ρs the representation P , which is the extension of πσ| |sK⊗π∨| |−s

K to P by the trivial

representation of N(n,n)(K). Let f belong to the space C∞
c (P\G,∆

−1/2
P ρs) of πσ| |sK × π∨| |−s

K ,
and A, B and g belong respectively to G′, G′ and G, one has the following relation:

f

[(

A ⋆
0 B

)

g

]

=
|det(A)|

n/2
K

|det(B)|
n/2
K

πσ(A) ⊗ π∨(B)f(g).

In particular for f in C∞
c (P\G,∆

−1/2
P ρ), the restriction to H̄ of the function φf : g 7→ L(f(g))

belongs to the space C∞(T̄ \H̄), but its support modulo T̄ is generally not compact, we will show
later that the space of functions obtained this way contains C∞

c (T̄ \H̄) as a proper subspace. We
must show that for s of real part large enough, the integral

∫

T̄\H̄
|φf (ḣ)|dḣ converges.

According to lemma 3.2, this integral is equal to

∫

M

|φf |

(

In B
Bσ In

)

dB

|det(In −BBσ)|nK
.
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As before, we cane suppose that B belongs to G′, hence the followin decomposition holds

(

In B
Bσ In

)

=

(

(In −BBσ)B−σ In
Bσ

) (

−In
In

)(

In B−σ

In

)

.

Denoting by φ the function

B 7→ |φf |

[(

−In
In

) (

In B
In

)]

,

the following equalities follow:

∫

T̄\H̄
|φf (ḣ)|dḣ =

∫

M
( |det(In−BBσ)|K

|det(B)|2
K

)s+n/2φ(B−σ) dB
|det(In−BBσ)|n

K

=
∫

G′(
|det(In−BBσ)|K

|det(B)|2
K

)s+n/2φ(B−σ)
|det(B)|n

K
d∗B

|det(In−BBσ)|n
K

=
∫

G′(|det(In − C−σC−1)|K |det(C)|2K)s+n/2φ(C) d∗C
|det(C)|n

K
|det(In−C−σC−1)|n

K

=
∫

M
|det(CCσ − In)|

s−n/2
K φ(C)dC

Recalling that the map f belongs to C∞
c (P\G,∆

−1/2
P ρs), and as the map (P,N ′) ∈ P ×N 7→

PWN ′ ∈ G is a homeomorphism, we deduce that

C 7→ f

[(

−In
In

) (

In C
In

)]

has compact support in M , hence so does φ.
This eventually implies that

∫

T̄\H̄ L(f(ḣ))dḣ is convergent as soon as s has real part greater than

n/2.

Step 2.
Suppose that the complex number s has real part greater than n/2. We are going to show that
the linear form Λ : f 7→

∫

T̄\H̄
φf (ḣ)dḣ is nonzero. More precisely we are going to show that the

space of functions L(f) on T̄\H̄ for f in C∞
c (P\G,∆

−1/2
P ρs), contain C∞

c (T̄ \H̄).
According to Lemma 3.1 , the double class PUH is opened in G, hence the extension by zero out-

side PUH gives an injection of the space C∞
c (P\PUH,∆

−1/2
P ρs) into the space C∞

c (P\G,∆
−1/2
P ρs).

But the right translation by U , which is a vector space automorphism of C∞
c (P\G,∆

−1/2
P ρs),

sends C∞
c (P\PUH,∆

−1/2
P ρs) onto C∞

c (P\PH̄,∆
−1/2
P ρs), hence C∞

c (P\PH̄,∆
−1/2
P ρs) is a sub-

space of C∞
c (P\G,∆

−1/2
P ρs).

Now restriction to H̄ defines an isomorphism between C∞
c (P\PH̄,∆

−1/2
P ρs) and C∞

c (T̄\H̄, ρs)
because ∆P has trivial restriction to the unimodular group T̄ . But then the map f 7→ L(f)
defines a morphism of H̄-modules from C∞

c (T̄ \H̄, ρs) to C∞
c (T̄\H̄), which is surjective because

of the the commutativity of the following diagram,

C∞
c (H̄) ⊗ Vρs

Id⊗L
−→ C∞

c (H̄)
↓ ↓

C∞
c (T̄ \H̄, ρs) −→ C∞

c (T̄\H̄)

,

where the vertical arrows defined in Lemma 2.9 of [M1] and the upper arrow are surjective.

We thus proved that space of restrictions to H̄ of functions of L(f), for f in C∞
c (P\G,∆

−1/2
P ρs),

contain C∞
c (T̄ \H̄), hence Λ is nonzero and the reresentation πσ| |sK × π∨| |−s

K is distinguished for
Re(s) ≥ n/2.

Step 3.
We are going to show that πσ×π∨ is distinguished. According to Proposition 2.3 and Proposition
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2.4, an irreducible representation of G is distinguished if and only if for any function W of its
Whittaker model, and any h in H , the rational function I(0)(W, s)/I(0)(ρ(h)W, s) of C(qs

F ) is
equal to 1 when s is zero.
We recall using notaions of Proposition 2.2, that for any f in Fπσ×π∨ , the function I(0)(Wf,u, s)
belongs to C(qs

F , q
u
F ). Hence for any element h of H , the function I(0)(Wf,u, s)/I(0)(ρ(h)Wf,u, s)

belongs to C(qs
F , q

u
F ), which implies that the function I(0)(Wf,u, 0)/I(0)(ρ(h)Wf,u, 0) belongs to

C(qt
F ), when we take u of the form (t,−t). But this latter function is equal to one when Re(t)

is large enough, because for such values of t, the representation πσ| |tK × π∨| |−t
K is distinguished

and irreducible, hence it is one. Taking t = 0, we have I(0)(Wf , 0)/I(0)(ρ(h)Wf , 0) = 1 for any
f in Fπσ×π∨ . The conclusion follows from the fact that Wf describes W (π, ψ) when f describes
Fπσ×π∨ .
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