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Distinction of some induced representations

Nadir MATRINGE
April 4, 2009

Abstract

Let K/F be a quadratic extension of p-adic fields, o the nontrivial element of the Galois
group of K over F, and A a quasi-square-integrable representation of GL(n, K). Denoting
by AY the smooth contragredient of A, and by A the representation A o o, we show that
representation of GL(2n, K) obtained by normalized parabolic induction of the representation
AY ® A is distinguished with respect to GL(2n, F'). This is a step towards the classification
of distinguished generic representations of general linear groups over p-adic fields.

Introduction

Let K/F be a quadratic extension of p-adic fields, o the nontrivial element of the Galois group
of K over F, and A quasi-square-integrable representation of GL(n, K). We denote by o again
the automorphism of My, (K) induced by o.

If x is a character of F™*, a smooth representation p of GL(2n, K) is said to be x-distinguished if
there is a nonzero linear L form on its space V, verifying L(p(h)v) = x(det(h))L(v) for all h in
GL(2n,F) and v in V, we say distinguished if y = 1. If p is irreducible, the space of such forms
is of dimension at most 1.

Calling AV the smooth contragredient of A and 77 the representation Aoo, we denote by A% x A
the representation of GL(2n, K), obtained by normalized induction of the representation A% @ AY
of the standard parabolic subgroup of type (n,n). The aim of the present work is to show that
the representation A x AV is distinguished.

The case n = 1 is treated in [H] for unitary A% x AV, using a criterion characterizing distinction in
terms of gamma factors. In [[F3], Flicker defines a linear form on the space of A7 x AY by a formal
integral which would define the invariant linear form once the convergence is insured. Finally in
[F=H], for n = 1, the convergence of this linear form is obtained for A7| |5 x AY] |%* and s of
real part large enough when A is unitary, the conclusion follows from an analytic continuation
argument.

We generalize this method here. The first section is about notations and basic concepts used in
the rest of the work.

In the second section, we state a theorem of Bernstein (Theorem 1) about rationality of solu-
tions of polynomial systems, and use it as in [C-P] or [Ba), in order to show, in Proposition 22|
the holomorphy of integrals of Whittaker functions depending on several complex variables.
The third section is devoted to the proof of theorem [B.Il which asserts that the representation
A x AV is distinguished when A is unitary.

In the fourth section, we extend the result in Theorem to A a quasi-square-integrable repre-
sentation.

We end this introduction by recalling a conjecture about classification of distinguished generic
representations:

Conjecture. Let m be a positive integer, and p a generic representation of the group GL(m, K),
obtained by normalized parabolic induction of quasi-square-integrable representations Ay, ..., As.
It is distinguished if and only if there exists a reordering of the A;’s, and an integer r between 1
and t/2, such that we have A7, = AY fori=1,3,..,2r — 1, and A; is distinguished for i > 2r.



We denote by n the nontrivial character of F* trivial on the norms of K*. According to
Proposition 26 in [F1], Proposition 12 of [F2], Theorem 6 of [K], and Corollary 1.6 [A-K-TJ, our
result reduces the proof of the conjecture to showing that representations of the form A x - - x Ay
with A7, = AY for i = 1,3,..,2r — 1 for some r between 1 and ¢/2, and non isomorphic
distinguished or n-distinguished A;’s for i > 2r are not distinguished whenever one of the A;’s is
n-distinguished for ¢ > 2r. According to [M3], the preceding conjecture implies the equality of the
analytically defined Asai L-function and the Galois Asai L-function of a generic representation.

1 Notations

We denote by | |k and | | the respective absolute values on K*, by ¢k and gp the respective
cardinalities of their residual field, and by R the valuation ring of K. The restriction of | | to
F is equal to | |%.

More generally, if the context is clear, we denote by |M|x and |M|r the positive numbers
|det(M)|k and |det(M)|r for M a square matrix with determinant in K and F respectively.
Hence if 7 is a representation of GL(n, K) for some positive n, and if s is a complex number, we
denote by | |% the twist of m by the character |det( )]|5.

We call partition of a positive integer n, a family 7 = (ni,...,n:) of positive integers (for a
certain ¢t in N — {0}), such that the sum n; + --- 4+ n; is equal to n. To such a partition, we
associate a subgroup of GL(n, K) denoted by Py (K), given by matrices of the form

g1 *x  * * *
ga  * * *
* * )
gt—1 %
gt

with g; in GL(n;, K) for ¢ between 1 and t. We call it the standard parabolic subgroup associated
with the partition . We denote by Nj(K) its unipotent radical subgroup, given by the matrices

Finally we denote by P, (K) the affine subgroup of GL(n, K) given by the matrices < g x >,

1
with g in GL(n — 1, K).
Let X be a locally closed space of an [-group G, and H closed subgroup of G, with H. X C X. If
V is a complex vector space, we denote by C°°(X, V) the space of smooth functions from X to
V, and by C°(X,V) the space of smooth functions with compact support from X to V' (if one
has V' = C, we simply denote it by C°(X)).
If p is a complex representation of H in V,,, we denote by C*°(H\X, p, V,) the space of functions
f from X to V,, fixed under the action by right translation of some compact open subgroup Uy
of G, and which verify f(hz) = p(h)f(z) for h € H, and € X (if p is a character, we denote
this space by C*°(H\X, p). We denote by C°(H\X, p,V,) subspace of functions with support
compact modulo H of C*(H\X,p,V,).
We denote by Ind$(p) the representation by right translation of G in C*(H\G, p,V,) and by
ind$ (p) the representation by right translation of G in C2°(H\G, p,V,). We denote by Ind’g(p)
the normalized induced representation Ind$ ((Ag/Aw)'/?p) and by ind’ @ (p) the normalized in-
duced representation ind$ ((Ac/Ar)Y?p).
Let n be a positive integer, and it = (ny,...,n:) be a partition of n, and suppose that we have a
representation (p;, V;) of GL(n;, K) for each ¢ between 1 and ¢. Let p be the extension to Py (K)
of the natural representation p; ® - - ® p; of GL(n1, K) X - -+ x GL(n, K), by taking it trivial on



GL(n,K)( )

Ny (K). We denote by p1 X - -+ X p; the representation Ind’Pﬁ(K)

2 Analytic continuation of Whittaker forms

If p is a generic representation of GL(n, K), and ¢ is a nontrivial character of K, trivial on F,
then for every W in the Whittaker model W (p, ) of p, by standard arguments, the following
integral is convergent for Re(s) large, and defines a rational function in ¢z*, which has a Laurent

series development in ¢—*:

hMWﬁz/ W (p)ldet(p)] >~ dp.
N (F)\ Py (F)

By standard arguments again, the vector space generated by the functions I(gy (W, s), for W
in W(p, ), is a fractional ideal I(gy(m) of C[qz*, ¢], which has a unique generator which is an
Euler factor, independent of 1), that we denote by Lg(o)(p, s).

Similarly, if p’ is another generic representation of GL(n, K), then for every W and W’ in the
Whittaker models W (p, ) and W (p',4~1), the following integral is convergent for Re(s) large,
and defines a rational function in g°, which has a Laurent series development in ¢5°:

mmmM@:/ W ()W ()| det(p)| "~ dp.
N (K)\Pn(K)

The vector space generated by the functions gy (W, W, s), is a fractional ideal of Clqy”", q3],
which has a unique generator which is an Euler factor, independent of 1, that we denote by

Loy(p % p',5).

According to theorem 9.7 of [Z], there is a partition of n and quasi-square-integrable rep-

resentations Aj,...,A; associated to it such that p is isomorphic to Ay x --- x A;. The map
w = (ur,...,ut) — q% = (q3,...,q%) defines an isomorphism of varieties between (Dg)! =

(C/ﬁ)t and (C*)'. We also denote by D the variety ((C/%) which the isomorphism
s+ ¢z° identifies to (C*)*, and we denote by D the product (Dk )" X Dp.

Associate to u and p is the representation p, = Aq| |5 X -+ x A¢| |E. In their classical model,
for every representation p,, the restrictions of the functions of the space of p, to the maximal
compact subgroup GL(n, Ri) of GL(n, K) define the same space F,, which is called the space
of flat sections of the series p,. To each f in F,, corresponds a unique function f, in p,. It is
known that for fixed g in GL(n, K) and f in F,, the function (u, s) — |det(g)|%pu(g)f belongs
to C[D] ®c F,. For every f in F, and u in (Dg)*, there is a function Wy, = Wy, defined in
Section 3.1 of [C=P] in the Whittaker model W (p,,, %), such that Wy, describes W (p,,, ) when
f describes F,. The space W©) is defined in [C-P] as the complex vector space generated by the
functions (g, u) — Wy, (gg’) for ¢’ in GL(n, K).

We will need a theorem of Bernstein insuring rationality of solutions of polynomial systems.
The setting is the following.
Let V' be a complex vector space of countable dimension. Let R be an index set, and let = be a
collection {(x,, ¢, )|r € R} with z, € V and ¢, € C. A linear form X in V* = Homg¢(V,C) is said
to be a solution of the system Z if A(x,) = ¢, for all  in R.
Let D be an irreducible algebraic variety over C, and suppose that to each d, a system =Z; =
{(zr(d), cr(d))|r € R} with the index set R independent of d in D. We say that the family of
systems {E4,d € D} is polynomial if x,.(d) and ¢,(d) belong respectively to C[D] ®c V and C[D].
Let M = C(D) be the field of fractions of C[D], we denote by Vi the space M ®c V and by V3,
the space Homp(Vag, M).
The following statement is a consequence of Bernstein’s theorem, the discussion preceding it, and
its corollary in Section 1 of [Bal.



Theorem 2.1. (Bernstein) Suppose that in the above situation, the variety D is nonsingular and
that there exists a non-empty subset 2 C D open in the usual complex topology of D, such that for
each d in ), the system Z4 has a unique solution \g. Then the system E = {(z,(d), c-(d))|r € R}
over the field M = C(D) has a unique solution A(d) in V3, and A(d) = Aq is the unique solution
of Eq on Q.

In order to apply this theorem, we first prove the following proposition.

Proposition 2.1. Let p be a generic representation of GL(n, K), there are t affine linear forms
L;, for i between 1 and t, with L; depending on the variable u;, such that if the L;(u;)’s and
s have positive real parts, the integral Iio)(W,s) = an(F)\Pn(F) W (p)|det(p)|5 tdp is convergent
for any W in W (py, ).

Proof. We recall the following claim, which is proved in the lemma of Section 4 of [F1].

Claim. Let 7 be a sub-P,(K)-module of C°° (N, (K)\P,(K),v), such that for every k between
0 and n, the central exzponents of T¥) are positive (i.e. the central characters of all the irre-
ducible subquotients of T®) have positive real parts), then whenever W belongs to T, the integral
an(F)\Pn(F) W (p)dp is absolutely convergent.

Applying this to our situation, and noting e, the maximal element of the set of central
exponents of p (see Section 7.2 of [Ber]), we deduce that as soon as w is such that L;(u) = u;—e,—1
has positive real part for i between 1 and ¢, and as soon as s has positive real part, the integral
an(F)\Pn(F) W (p)|det(p)|3dp converges for all W in W (py, ). O

We now can prove the following:

Proposition 2.2. Let p be a generic representation of GL(n, K), for every f in F,, the function
L) (Wi, s) belongs to C(gr", ¢z°).

Proof. In our situation, the underlying vector space is V' = F, and is of countable dimension
because p is admissible. The invariance property satisfied by the functional I, is

10y (pu (D)W, 8) = |det(p)| 5 *Ti0) (Wi s) (1)

for fin F,, and p in P, (F).

From the proofs of Lemma 8 and of the unique proposition of [F4], it follows that out of the
hyperplanes in (u, s) defined by cpu|z|j(s_1) = 1, for p, in the irreducible components of p&"ﬂ),
and for j > 0, the space of solutions of equation [I]is of dimension at most one. If we take a basis
of (fa)aeca of F,, the polynomial family over the irreducible complex variety D = (Dg)* x Dp of

systems =}, for d = (u, s) € D expressing the invariance of I is given by:
—

— { (pu(P)Pu(9i) fo — Idet(p) |5 >pu(gi) fa; 0), }
=d a€ApeP,(F),g € GL(n,K)

Now we define €2 to be the intersection of the three following subsets of D:

e the intersection of the complements of the hyperplanes on which uniqueness up to scalar
fails,

e the intersection of the domains {Re(L;(u)) > 0} and {Re(s) > 0}, on which I[(Wy., ¢, s) is
given by an absolutely convergent integral.

The functional I is the unique solution up to scalars of the system Z’, in order to apply The-
orem 2.1] we add for each d € D a normalization equation E4 depending polynomially on d. This
is done as follows.

From Proposition 3.4 of [M3], if F' is a positive function in C2° (N, (K)\ P, (K), ), we choose a W

in W,§0> such that its restriction to P, (K) is of the form W (u, p) = F(p)P(¢") for some nonzero P



in Po. We thus have the equality I(o)(W,u,s) = [y p)\p.(r) F(p)|det(p)|5 *dpP(¢**). Calling ¢

the constant 7 [, ) ) F(p)|det(p)|5 " dp, this latter equality becomes I(W,u,s) = cP(q5").

\Pp (F
Now as W is in W,EO), it can be expressed as a finite linear combination W(g,u) = >, pu(9a) W, u(9)
for appropriate g, € GL(n, K). Hence our polynomial family of normalization equations (which
is actually independent of s) can be written

Es) = {(Z pu(ga)faacp(qu;u)} .

We now call Z the system given by =’ and E, it satisfies the hypotheses of Theorem 21l We thus
conclude that there is a functional I’ which is a solution of = such that (u,s) — I'(Wy,,s) is a
rational function of ¢5* and ¢£° for f € F, ». We also know that I'(Wy,, s) is the unique solution
of Z{,, ) on Q. This implies that for fixed u € (Dk)! and f € F,, for Re(s) large enough (let’s say
Re(s) > r for some real number r, for which ¢, 2|71 #£ 1, for 7, in the irreducible components
of p"™? and for j > 0), both functions I(Wy,s) and I'(Wy,, s) are equal. As they are rational
functions of ¢z*, they are equal for all s, and we conclude that (u,s) — I(Wy,,s) belongs to

Clar",ar”)- O
We now recall the following theorem of Youngbin Ok:

Proposition 2.3. ([OF], Theorem 8.1.2 or Proposition 1.1 of [M2]) Let p be an irreducible
distinguished representation of GL(n, K), if L is a P,(F)-invariant linear form on the space of
p, then it is actually GL(n, F)-invariant.

In order to apply this theorem later, we also recall the proposition 2.3 of [M2].

Proposition 2.4. Let p be a generic representation of GL(n,K), the functional A, s : W +—
Loy (W, s)/L(oy(p, s) defines a nonzero linear form on W(p,1) which transforms by |det( )
under the affine subgroup P, (F).

For fizted W in W (p, 1), then s — A, s(W) is a polynomial of q".

3 Distinction of representations 77| |5 x 7|

7, Re(s)>n/2
We denote by G the group GL(2n, K), by H its subgroup GL(2n, F'), by G’ the group GL(n, K)

and by M the group M,(K). We denote by P the group P, ,)(K), and by N the group

s :
|~ for unitary

We denote by H subgroup of G given by matrices of the form ( ga AB; >, and by T the

subgroup of H of matrices ( 61 Ag

We call U be the matrix ( ﬁ" _fé" ) of G, and W the matrix (

U°U~! =W and the group H is equal to U1 HU.

>,WithAin G'.

I, —In ) One has

Lemma 3.1. The double class PUH is opened in G.

Proof. Call S the space of matrices ¢ in G verifying ¢° = ¢g~!, which is, from Proposition 3. of

chapter 10 of [S], homeomorphic to the quotient space G/H by the map Q : g — ¢°g~'. As
the map @ sends U on W, the double class PUH corresponds to the open subset of matrices
( él, g ) in S such that det(C') # 0, the conclusion follows.

|



We prove the following integration formula.

Lemma 3.2. There is a right invariant measure dh on the quotient space T\H, and a Haar
measure dB on M, such that for any measurable positive function ¢ on the quotient space T\H,
then the integrals

and

/¢ I, B dB
v\ B7 In ) |det(I, — BB?)|%

Proof. Tt suffices to show this equality when ¢ is positive, continuous with compact support in
T\H. We fix Haar measures dt on T and dg on H, such that dhdt = dg. It is known that there
exists some positive functlon qﬁ with compact support in H, such that ¢ = qﬁT which means that
for any h in H, one has ¢(h fT (tg)dt. One then has the relation

[ ot = /H 3(9)dg

Now as H is conjugate to H, there are Haar measures dA and dB on M such that dt is equal to
d*A = and the Haar measure on H is described by the relation

are equal.

\det(A)l" ’
A B dAdB dAdB

d Ba_ Aa_ = A B T = A B .
d@t o o ‘d@t( o o )
‘ ( B A ) F b A K

Hence we have
A B dAdB
fT\H ¢ f]MxM ¢ ( B° A° ) ) A B\
et BC AU

_ 7 A I, A™'B dAdB
= Jarxnm @ A (A-1B)” I, [dct(A) 22 [det(In—A—TB(A-1B)7 )

as the complement of G’ is a set of measure zero of M (we recall that if M is in G’, one has

det( fw, Af ):det((fw ]\f) (IMG I)):det (I_MMU ]\/‘;):det(I—MM“)).

This becomes after the change of variable B := A~1B equal to

/ ‘73[< A > < I, B ﬂ dA dB
MxM A B? I, |det(A)[% |det(I, — BB?|}-

which is itself equal to

-[( A I, B . dB
Lo 10w ) (5 )] Sy

The conclusion follows from the fact that qBT is equal to ¢.

O

Theorem 3.1. Let n be a positive integer, and let ™ be an admissible unitary representation of
G'. Then the representation ©°| |5 x 7¥| |° is a distinguished representation of G for every
complex number s such that |Re(s)| > n/2.



Proof. As the representations 77| |5, x V| |° and 7| |° X 7| |5 are isomorphic, we only need
to show it for Re(s) < n/2. We denote by < , > a non trivial G’-invariant hermitian definite
positive form on the space V of 7. We denote by V the completion of V for the norm || || associ-
ated to < , >. Denoting by vy the linear for on V given by v; +< v1,v3 >, the functionals vV
describe the topological dual V of V when v describes V, and they describe the smooth dual 1%
of V, when v describes V. Moreover, one has the inequality |vy (v1)| < |lv1||||ve]| for v1 and ve in
V. As the bilinear form (v1,vy) + vy (v1) is a non degenerate 7(G’) x 7V (G’)-invariant bilinear
form on V x V, we deduce that the linear form L given by L(v; ® vy) = vy (v1) is a nonzero
T-invariant linear form on the space of 7% @ 7.

Step 1.
The linear form L is actually a nonzero T-invariant linear form on the space of 77| |5, @ 7| |5°
for all s.
We denote by p the representation P, which is the extension of 77| |5, ®7Y| | to P by the trivial
representation of N, ,)(K). Let f; belong to the space C°(P\G, A;l/st) of 7| |5 x V| |&°s
corresponding to f in the space of flat sections Fi, where II = Il = n° x 7¥. If A, B and g¢
belong respectively to G’, G’ and G, one has the following relation:

rl(a 5 ) - %w% @ ='(B)f(a).

In particular for f in C°(P\G, A;l/st), corresponding to , the restriction to H of the func-
tion Ly, : g — L(fs(g)) belongs to the space C>°(T'\ H), but its support modulo 7 is generally not
compact, we will show later that the space of functions obtained this way contains C>°(T\ H) as a
proper subspace. We must show that for s of real part large enough, the integral fT\ Ly, (h)|dh
converges.

According to lemma [3.2] this integral is equal to

/ I |(In B) dB
v P\ BT I, ) Jdet(I, = BBO)|%

As before, we cane suppose that B belongs to G’, hence the following decomposition holds

(b 2)-( ) () )

Denoting by ®, the function

sesfrarmorna(s[(, ) (% 2)])

the following equalities follow:

/ / — |det(I,,—BB7)| s+n —o aB
fT\H |Lfs(h)|dh - fM( |det(B)|%{ K) * /2|(I)fs (B )| [det(I,—BB°)|%
— |det(In—BB7)|K ys+n —o\|_ldet(B)[%d" B
= Jor( [det(B)[% L) n2|ey, (B )l\det(In—é(B“)\"k

= Jo (ldet(Ln — C~2C7Y)|k|det(C)5)* /21 1. (O) memoymrastir —c==c=yr
= [y ldet(CC7 — L[5 "2 (@4, (C)|dC

Recalling that the map fs belongs to C°(P\G, A;l/st), and as the map (P,N') € PX N —
PW N’ € G is a homeomorphism, we deduce that the function

wromr () O]



from M to V x V is smooth with compact support in M. Hence the image of gs generates a

finite dimensional subspace of V ® Vcv ® V, which is contained in some subspace V; ® VJ,
for V7 and V5 vector subspaces of V' and V respectively, both with finite dimension ¢t. Com-

pleting an orthonormal basis (ug,...,u;) of V; into an orthonormal basis (u;);eny of V, and
an orthonormal basis (vy,...,v) of V5 into an orthonormal basis (v))jen of V, we deduce

that there exist smooth functions \; ; with compact support in M, all zero if i or j is greater
than t + 1, such that gs(C) = >, ; Ai,j(C)u; ® v for C'in M'. Now for C'in M’, one has
@4, (C) = |L(n” (In = B="B~") @ 7" (1) (95 (C)))| = | 22, ; Miy (C)L(7 (In — B~ B~ )u; ® vy |
=122, 2 (C)of (n7 (I = BB~ Ywi)| < 32, [Ni g (O)][v)) (77 (I — B=7 B~ )uy)|
< 20 Pag (Ol (In = B~ B~ usl|= 32, ; X (C)]-

This eventually implies that fT\ 7 L(fs (h))dh is convergent as soon as s has real part greater
than n/2.

Step 2.
Suppose that the complex number s has real part greater than n/2. We are going to show that
the linear form A : f, — fT\ i Ly, (h)dh is nonzero. More precisely we are going to show that the

space of functions L(f) on T\ H for f in C2°(P\G, A;l/st), contain C°(T\H).
According to Lemma 3], the double class PUH is opened in G, hence the extension by zero out-
side PU H gives an injection of the space C>°(P\PUH, A;l/st) into the space C°(P\G, A;1/2ps).
But the right translation by U, which is a vector space automorphism of C°(P\G, A;lmps),
sends C°(P\PUH, A" ?p,) onto C°(P\PH, A;'?p,), hence C*(P\PH,A,"?p,) is a sub-
space of C°(P\G, A;lmps).
Now restriction to H defines an isomorphism between C° (P\_PH7 A;l/st) and C°(T\H, ps)
because Ap has trivial restriction to the unimodular group 7. But then the map f +— L(f)
defines a morphism of H-modules from C°(T\H, ps) to C(T\H), which is surjective because
of the the commutativity of the following diagram,

Cx(H)@V,, " Cx(H)

C?(T{ff, ps) — COF (%\ﬁ)

where the vertical arrows defined in Lemma 2.9 of [M1] and the upper arrow are surjective.
We thus proved that space of restrictions to H of functions of L(f), for f in C°(P\G, A;lmps),

—S

contain C2°(T\H), hence A is nonzero and the representation 7| |5 x 7¥| |;° is distinguished
for Re(s) > n/2.

O

4 Distinction of A% x AV for quasi-square-integrable A

Now we are going to restrain ourself to the case of m a discrete series representation.

We recall if p is a supercuspidal representation of G,.(K) for a positive integer 7. The representa-
tion px p| |[px---xp| |1 of Gpy(K) is reducible, with a unique irreducible quotient that we denote
by [p| %t ol |52, - - -, p]. A representation A of the group Gy, (K) is quasi-square-integrable if and
only if thereisr € {1,...,n} and ! € {1,...,n} with Ir = n, and p a supercuspidal representation
of G,.(K) such that the representation A is equal to [p| |%<*, p| [%2, ..., p], the representation p
is unique.

Let A; and Ay be two quasi-square-integrable representations of Gy, -(K) and Gy, (K), of the

form [p1| %% pu| |72, ..., p1] with p; a supercuspidal representation of G,.(K), and
[p2| |lf(_1, 01l |lf<_2, ..., p2] with py a supercuspidal representation of G, (K) respectively, then if



p1 = p2| |'2, we denote by [A1, Ag] the quasi-square integrable representation [p1] |27, ..., pa] of
G (1, 4+1,)r (K). Two quasi-square-integrable representations A and A’ of G, (K) and G, (K) are
said to be linked if and only if there are quasi-square-integrable representations Ay of G, (K)
for m < min(n,n’), Ag of Gp_p(K), and Az of Gp_p(K), such that A = [Ay, As] and
A" = [Ag, Aq], or A = [Ag, Aq] and A" = [Aq, Az]. Tt is known that the representation A x A’
always has a nonzero Whittaker functional on its space, and is irreducible if and only if A and
A’ are unlinked.

We will need the following theorem.

Theorem 4.1. Let ny and ny be two positive integers, and A1 and As be two unlinked quasi-
square integrable representations of Gp, (K) and G, (K) respectively. If the representation Ay X
A of Gpyiny(K) is distinguished, then either both Ay and Ay are distinguished, either AY is
isomorphic to AJ.

Proof. In the proof of this theorem, we will denote by G the group Gp,4n,(K) (not the group
G2, (K) anymore), by H the group G, 1y, (F), and by P the group P, n,)(K).

As the representation A; X Ag is isomorphic to Ay x Ay, we suppose n1 < no. From Lemma
4 of [F4], the H-module 7 has a factor series with factors isomorphic to the representations

indf,lPumH((éllp/QAl ® Ag)*) (with (5113/2A1 ® Ag)¥(x) = 611,/2A1 ® Ag(uzu~')) when u describes
a set of representatives of P\G/H. Hence we first describe such a set.
Inlfk
. I, =4Iy . .
Lemma 4.1. The matrices uy = I ST , give a set of representatives
k k

I’nz—k‘
R(P\G/H) of the double classes P\G/H when k describes the set {0,...,n1} (we set ug =

In1+n2)'

Proof of Lemmal[{.dl Set n = ny + ng, the quotient set H\G/P identifies with set of orbits of H
for its action on the variety of K-vectors spaces of dimension n; in K™. We claim that two vector
subspaces V' and V' of dimension ny of K™ are in the same H-orbit if and only if dim(V NV 7)
equals dim(V’' N'V’'?). This condition is clearly necessary. If it is verified, we choose S a supple-
mentary space of VN V7 in V and we choose S’ a supplementary space of V' NV’? in V', S and
S’ have same dimension. We also choose @ a supplementary space of V + V7 in K™ defined over
F (i.e. stable under o, or equivalently having a basis in the space F"™ of fixed points of K™ under
o), and Q' a supplementary space of V/+V’? in K" defined over F, and @ and Q’ have the same
dimension. Hence we can decompose K™ in the two following ways: K" = (VNVo)®(S®S7)DQ
and K" = (V'NV'7)® (5'®57)®Q’. Let u; be an isomorphism between VNV and V' NV'7
defined over F (i.e. u(v]) = u(v1)? for v1 in VN V7), us an isomorphism between S and S’
(to which we associate an isomorphism u3 between S? and 5’7 defined by ug(v) = (uz(v?))? for
v in S7), and u4 an isomorphism between @ and @ defined over F. Then the isomorphism h
defined by v1 + va + v3 + v4 — w1 (v1) + u2(va) + us(vs) + ua(vs) is defined over F', and sends
V=8SaVnVoto V' =8 ®V'NV'?, hence V and V' are in the same H-orbit.

If (e1, ..., ep) is the canonical basis of K™, we denote by V,,, the space Vect(ey, ..., en,). Let k be
an integer between 0 and n, the image Vj of V,,, by the morphism whose matrix in the canonical

I’n1—k
. N 1/21, 1/21; o oy
basis of K™ is 120V 1/(20)1 verifies dim(V,, NV,7 ) = n—k. Hence the
Insz
Inlfk
1/21,, 1/21,,

matrices for k between 0 and n; give a set of representa-

“1/@28) I, 1/(26)1,
Inz—k



Inlfk
tives of the quotient set H\G/P, which implies that their inverses ﬁk —(;;Ik
k k
I’IlQ*k
give a set of representatives of P\G/H.
O

We will also need to understand the structure of the group P NuHu~! for u in R(P\G/H).

Lemma 4.2. Let k be an integer between 0 and ny, we deduce the group P N ukHu,;I is the
H X X° M
A Y

A° Y°

Ho

in Gx(K), X in My, —kk(K), Y in My p,—x(K), and M in My, _gn,—x(F). It is the semi-
direct product of the subgroup My (F) of matrices of the preceding form with X, Y, and M equal
to zero, and of the subgroup Ny of matrices of the preceding form with Hi = In,_k, Hy =
I,— 1, and A = I. Moreover denoting by Py the parabolic subgroup of M associated with th

subpartition (n1—k, k, k,na—k) of (n1,n2), the following relation of modulus characters is verified:
2 —
5PmukHu;1|Mk(F) = (0P,0P) a(F)-

group of matrices of the form for Hy in Gp,—k(F), Ha in Gp,—(F), A

Proof of Lemma[-3 One verifies that the algebra M, (K)u; ' consists of matrices having the

M, X X°
. . " Y A B°
block decomposition corresponding to the partition (n1—k, k, k, no—k) of the form ve B oA°
My X X'°
H,y
the first part of the proposition follows. For the second part, if the matrix T' = A Ao
H,

belongs to My (F'), the complex number dp, Hu! (T') is equal to the modulus of the automor-
phism intp of Ni, hence is equal to

|H |3 Al ™ [ H 2" | Ha " AL [ Hal 72 = [Ha [ AR | Ha 5
In the same way, the complex number dp, (T') equals
[ Ha 5| Al ™ Al ™" | Ha 2" = [ Hu |7 A | Ha 22

and 6p, (T) equals (|Hy|x|Alx)")(|Ha| k| Alx) ™) = [Hi| B2 Al ™™ [ Ha 77"
The wanted relation between modulus characters follows. O

A helpful corollary is the following.

Corollary 4.1. Let Py be the standard parabolic subgroup of M associated with the subpartition
(n1—k,k,k,ne —k) of (n1,ne), Uy its unipotent radical, and Ny, the intersection of the unipotent
radical of the standard parabolic subgroup of G associated with the the partition (n1—k, k, k,no—k)
and uHu~". Then one has U, C NiN.

Ly X
Proof of Corollary[.1] It suffices to prove that matrices of the form I I
Inz—k
Iy —k
and I I v for Y and X with coefficients in K, belong to Ny N. This is immedi-
In,—k

10

Mo
Y/
Y'’?
My

)



Inl —k XU Inl —k
o . Iy, Y?
ate multiplying on the left by respectively

Insz Insz
(|

Now if the representation A = A; ® As is distinguished, then at least one of the factors
ind H((éllp/ ?A)") admits on its space a nonzero H-invariant linear form. This is equivalent

uwHu !
PNuHu—1

linear form. From Frobenius reciprocity law, the space Hom,, g, -1 (ind}éﬁ;j;rl (6113/ 2A), 1) is iso-

morphic as a vector space, to Hom pry a1 (5113/2A, Oprubu-1) = Homprymgu-1 (611,/2/5PMHU71 p,1).
Hence there is on the space Va of A a linear nonzero form L, such that for every p in PNuHu ™!,

1/2
and for every v in Va, one has L(x(p)A(p)v) = L(v), where x(p) = 66’%(]7). As both 5113/2

PNuHu—1

and dpnyHy—1 are trivial on Ng, so is x. Now, fixing k such that u = uyg, let n belong to U, from
Corollary [l we can write n as a product ngng, with n in Ng, and ng in N. As N is included
in Ker(A), one has L(A(n)(v)) = L(A(ngno)(v)) = L(A(ng)(v)) = L(x(ng)A(ng)v) = L(v).
Hence L is actually a nonzero linear form on the Jacquet module of VA associated with Uy. But
we also know that L(x(mg)A(myg)v) = L(v) for my in My (F'), which reads according to Lemma
L(6p" " (mi) A(my,)v) = L(v).

This says that the linear form L is My (F)-distinguished on the normalized Jacquet module
T M (A) (as My, is also the standard Levi subgroup of M).

But from Proposition 9.5 of [Z], there exist quasi-square-integrable representations A} of G, —(K),
A and A} of Gi(K), and AY of G,,_,(K), such that Ay = [A], Af] and Ay = [A}, A]], and
the normalized Jacquet module 7, ar(A) is isomorphic to Al @ A] ® AL, ® AJ. This latter
representation being distinguished by My (F'), the representations A} and A} are distinguished
and we have ALY = A”?. Now we recall from Proposition 12 of [F2], that we also know that
either A; and A, are Galois autodual, or we have Ay = A9. In the first case, the representations
A; and Ay are unitary because so is their central character, and if nonzero, A} and A} are also
unitary. This implies that either Ay = A} and Ay = AY (i.e. A; and A, distinguished), or
Ay =AY and Ay = AY (i.e. A = AY). This ends the proof of Theorem [} O

to say that the representation ind (5113/ QA) admits on its space a nonzero uHu ™~ !-invariant

We refer to Section 2 of [M3] for a survey about Asai L-functions of generic representations,
we will use the same notations here. We recall that if 7 is a generic representation of G, (K) for
some positive integer r, its Asai L-function is equal to the product L?,md(ez)(”)Lg(o) (m), where
L;(,Tad(ex)
7 is | |»"-distinguished, i.e. the exceptional poles of the Asal L-function L% (7). We denote by
Lf{ .. () the exceptional part of L¥(r), i.e. the Euler factor whose poles are the exceptional

7) is the Euler factor with simple poles, which are the s;’s in C/(~22~7Z) such that
ple p In(qr)

poles of LE(w), occurring with order equal the order of their occurrence in LE (7). If 7’ is
another generic representation of G, (K), we denote by Lmd(ex)(ﬂ' x 7') the Euler product with
simple poles, which are the exceptional poles of L(w x n’) (see [C-P], 3.2. Definition). An easy
consequence of this definition is the equality L(m x 7') = L(o)(7 X ©') Lyqq(e)(m X 7).

We refer to Definition 3.10 of [M3] for the definition of general position, and recall from Definition-
Proposition of [M3], that if A; and Ay are two square integrable representations of G,,, (K) and
Gn, (K), the representation Aq|.|3 x Ag|.|32 is in general position outside a finite number of
hyperplanes of (m)2 in (u1,us).

We refer to Proposition 2.3 of [A-K-T] and the discussion preceding it for a summary about
Bernstein-Zelevinsky derivatives. We use the same notations, except that we use the notation
[ I%t, ..., p] where they use the notation [p, ..., p| |%].

According to Theorem 3.6 of [M3], we have:

Proposition 4.1. Let m be a positive integer, and w be a generic representation of G, (K) such
that its derivatives are completely reducible, the the Euler factor L?(o) (m) (resp. LE(m)) is equal
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to the l.c.m. \/;“Lgez(ﬁz( )) taken over k in {1,...,n} (resp. in {0,...,n}) and 7T§k) in the
irreducible components of ©(F).

An immediate consequence is:
Corollary 4.2. Let m be a positive integer, and w be a generic representation of G, (K) such
that its derivatives are completely reducible, the the Euler factor Lﬁf(o) (m) (resp. L¥(x)) is equal
to the l.c.m. vk,iL{gmd(ew)(wgk)) taken over k in {1,...,n} (resp. in {0,...,n}) and ﬂ'fk) in the

irreducible components of w(%).

Proof. Let s be a pole of LF e (i, (ko )) for kg in {1,...,n} and wgf) a irreducible component of
m(ko) . Either s is a pole of LK Tad(ez)(ﬂ.(k )) or it is a pole of Lﬁ(o) (ﬂ'z(f“)), which from Proposition

0, for k' > ko and 7" a irreducible

T
component of 7(*). Hence in the factorization L% 0)(m) = ViiLE ., (7™, the factor LE o (rko)y

io
(kO))

T implies that it is a pole of some function L, ((m

can be replaced by L F ra d(em)( , and the conclusion follows from a repetition of this argument.

The case of L¥ (r) is similar. O
This corollary has a split version:

Proposition 4.2. Let m be a positive integer, and ™ and 7' be two generic representations of
G (K) such that their derivatives are completely reducible, the the Euler factor Lg(o)(ﬁ x 7')

(k) /(k))

(resp. LE (7 x 7)) are equal to the l.c.m. vk,mLﬁSmd(ez)(wi x ') taken over k in {1,...,n}

1(k)

(resp. in {0,...,n}), 7T§k) in the irreducible components of %), and n'" in the idrreducible

components of w(¥).

Proof. Tt follows the analysis preceding Proposition 3.3 of [C-P], that one has the equality L) (7 x

') = Vi ]LK( (k) X ﬂ’§k)), and the expected statement is a consequence of the argument used

in the proof of Corollary
O

If 7 is a representation of G, (K) for some positive integer m, admitting a central character,
we denote by R(II) the finite subgroup of elements s in C/(2iw/Ln(qx)Z) such that x| |3 is
isomorphic to 7.

A consequence of Corollary and Theorem [£1] is the following proposition:

Proposition 4.3. Let A be a square-integrable representation of G, (K), and t be a complex
number of real part strictly greater than n/2 such that the representation I1; = A°| |t x AV| |
is in general position, then the Euler factor LK (Il;, ) equals L (A%, s+2t) LE(AY, s—2t)L(A° x
A?Y,s), and the Euler factor Lo)(Ilt, s) equals [, cpea)(1 — q* ) LE (A%, s + 2t)LE(AY, s —
2t)L(A7 x A% s).

Proof. From Corollary [£2] we know that given the hypothesis of the proposition, the function
L7 (I, s) is equal to the Le.m. Vi, g, /iy 4521 L5 pa(en) (A7 [E)F) x (AV] |5 H2)). Writ-

ing the discrete series representation A under the form St;(p) = [p| |§l{1)/2, . P | - /2] for

a positive integer [ and a unitary supercuspidal representation p of G, (K), Wlth Im = n, the
representation (A%| [ )*1) (resp. (AY] |")*2))) is equal to zero unless there exists an integer

K; with ky = mk/ (resp. kj with ks = mk), in which case it is equal to St (p7)] [&/*™ (

kb /2—t
Stii, (0] [ ™).
Suppose that the representations (A%| [%)*1) and (AY] |")*2)) are not zero (hence k; = mk!
for a integer k), a complex number sg is a pole of L?md(ez)((Aﬂ [E)F) x (AV] |5 R2)) if

resp.

and only if the representation St;_; (p7)| |k 12 St (p")] |k 2/t i | |*°-distinguished, i.e.
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St (p7)] |§]§i+so)/2+t x Sti_py (p")] |§]§é+50)/27t is distinguished. But from Theorem E.T], this
implies that k] and k) are equal to an integer k/, (i.e. k1 = ko = k), and that the image of
so + k' in C/(2im/Ln(qx)Z) belongs to the group R(Sti_i(p)) = R(p) (in particular, we have

Re(sg + k') = 0). Conversely if this is the case, the representation St;_x (p”)] |§§/+S°)/2+t X

Stl—k’(pv” |(]7(€'+so)/2—t which is equal to Sti_y ()] |(]7(€'+so)/2+t % Stl—k/(PV)| |g(—k/—so)/2—t’ is
distinguished from Theorem B] as Re((k' + s9)/2 +t) = Re(t) > n/2 > (n — k)/2.

Hence nontrivial Euler factors L rad(ex) (A7] 1) ED) x (AY] |z *2)) belong to one of the
three following classes:

L L aa (eay (A7 [ Y1) for ky = n and k; > 0. In this case, if LFmd(ez ((A7] |5)*1)) is not

1, it is equal to LE rad(ex) (Sti—r; (p7)] |k /2+t for k1 = mkj, and a pole sy of this function

is such that St;_/ (p7)] |(I§°+k1)/ ** is distinguished, hence considering central characters,

we have Re(so) = —k| — 2Re(t) < —n.

2. LK

Fmd(em)((AV| 1) *2)) for ky = n and ko > 0. In this case, if LE rad(e) (A7 [t )#2)) is not

1, it is equal to LK Tad(ez)(Stl*k/( | |K/2 ") for ky = mk}, and a pole sq of this function

is such that St;_p; (p7)] |I?o+kg)/2 t
we have Re(so) = —kj + 2Re(t) > 0.

is distinguished, hence considering central characters,

3. L?md(ez)((Aﬂ L) Fa) s (AT] |5)*#2)) for ky = ko = ks > 1. In this case, if the Euler factor
is not 1, we know that we have Re(sg) = —k4 for k4 in {0,...,n/m} verifying ks = mkj,
or more precisely that the image of so + k% in C/(2im/Ln(qx)Z) belongs to the group
R(Sti_x;,(p)) = R(St;_;(p”)). This is equivalent to the relation [A”V(kS)]V = | [52(A7)ka)
which is itself equivalent to the fact that s is a pole of Lmd(em)(A"(ks) X A“V(ks)) (see Th.
1.14 of [M3]), hence we have Lf . (A7) [5)#) x (A7) [ #2)) = Lyaaqen) (A7H) x
Aav(ki’»)).

In particular, two non trivial factors that don’t belong to the same class have no pole in
common. We deduce that the Euler factor L )(Ilt, s) is equal to

_ . ov(k
Vi L ey (A7 ] 15 PV, X iy (AT 1R D) Vi Lrageny (A7 82 x A7V F2))]

for k1 > 0, ko > 0 and k3 > 1. The two first factors are respectively equal to L& (A %)
and LE(AV| |') according to Corollary EE2) and the third factor is equal from Proposition
to L(g)(A” x A?Y), which is itself equal to L(A”7 x A7Y)/L,qq(ex)(A7 x A7Y). We con-
clude the proof by noticing that sg is an exceptional pole of L(A% x AY) if and only if its
image in C/(2im/Ln(qx)Z) belongs to R(A), which implies the equality L,,q(cz)(A7 x A7) =
1/ 1L, er@ayd —a"7). .

Definition 4.1. We denote by Po)(IL,t,s) the element of C[q%t,qfs] defined by the expres-

HsieR(A) (1—g%i77)
LE(A7,s+2t)LE(AV,s—2t)L(A7 X AV,s) "

Clqt"), having simple roots.

ston The expression P)(I1,t,1) defines a nonzero element of

Proof. As the s;’s have real part equal to zero, and as the function L(A x A%V s) admits no

_si—1

pole for Re(s) > 0 (see [J-P-S], 8.2 (6)), the constant ¢ = %
the zeroes of Py (Il,t,1) are the poles of LE(A%,1+2t)LE(AY,1 — 2t). From Proposition 3.1
of [M3], the function LE (A%, 1+ 2t) has simple poles which occur in the domain Re(1 + 2t) < 0
whereas the function LE (AY, 1 — 2t) has simple poles which occur in the domain Re(1 — 2t) < 0,

hence those two functions have no common pole, and there product have simple poles. ([l

is nonzero. Hence

13



Lemma 4.3. For every f in Fu, the expression P)(ILt,s)I0)(Wy,,s) defines an element of
C[qft,q?ﬁs]. This implies that for fived f in Fi, the function Iy(Wy,,1) is well defined and
belongs to C(q}), and for to in C, the function Ioy(Wy, ,s) is well defined and belongs to C(qz").
Moreover the function Igy(Wy,,1) has a pole at to in C, if and only if the function I(O)(me )
in C(qp®) has a pole at 1, in which case the couple (to,1) lies in a polar locus of the function
Poy(IL,t,5). In this case the functions Py (I1,t,1)10)(Wy,, 1) and P)(IL, to, 5)L0)(Wy,, , ) have
the same limit when t tends to tg and s tends to 1, which is nonzero.

Proof. Let f be in Fiy, the function Pg)(IL, ¢, s)I(o)(Wy,, s) belongs to C(qz", qr*), hence it is the
quotient of two polynomials P(qr", ¢5°)/Q(qr", qr°). If Q is not constant, writing Q(gx", ¢5°)
under the form Zf:io ai(qp)gp", with the a;’s in C[X] — {0}, we deduce that there are two
positive real numbers r and 7/, such that none of the functions a;(¢z") have a zero for Re(t) > r,
and such that if Re(t) > 7 and Re(s) > 7', the function (o) (W7,,s) is given by an absolutely
convergent Laurent development >, cr(t)gp™ with ¢, in ClgE']. Moreover for Re(t) >
n/2 and large enough so that II; is in general position, the function Py)(IL,t,s)Ig)(Wy,,s) =
Loy (Wy,,8)/Loy(Ilt, s) actually belongs to Clgz®]. Suppose there were an infinite number of
nonzero ci’s, then for ¢ of real part large enough, and outside the countable number of zeroes of

the ¢i’s, the Laurent development ), <ng Ck (1f)qgkS would not be finite, a contradiction. Hence

for f in Fi, the function Py (I1, ¢, s)1y(Wy,,s) defines an element of Clgst, ¢

Now the function I(g)(Wy,, 1) defines an element of C(¢j") whose poles form a subset of the poles
of 1/Py(I1,t,1), and for to in C, the function I(g)(Wy, ,s) defines an element of C(gq*) whose
poles form a subset of the poles of 1/Pg(II, to, 5).

The final statement follows from the fact that if ¢y is a pole of I(g)(Wy,,1), or if 1 is a pole
of I1oy(Wy,,s), then (to, 1) must lie in a polar locus of the function 1/P)(IL, 9, s). Now in a
neighborhood of (fo,1), the functions 1/ [, ¢ pa)(1 —¢*7°) and L(A” x AV s) are regular, as
they have no pole at s = 1, hence the polar locus in this neighborhood is the one of the func-
tion L3 (A7, 1+ 2¢) L3 (AY, 1 — 2t), because of the equality 1/P)(IT,t0,5) = 1/T],cpa)(l —
q* 75 )L(A% x AV, s)LE(A%,1 + 2t)LE(AY,1 — 2t). Such a polar locus is actually an affine
hyperplane of the form s — 2t = 1 — 2ty or s + 2t = 1 + 2tg. In both case the functions
LE(A%, s+ 2t) LE(AY, s — 2tg) and LE (A, 1+ 2t)LE(AY,1 — 2t) are defined respectively for
s in a neighborhood of 1, and ¢ in a neighborhood of t3. Now, from Lemma [£3] the complex
number tg is a simple pole of 1/P)(I,#,1), hence it is also a simple pole of I(g)(Wy,, 1), sothat
the function P, (11, ¢, 1)1 (Wy,,1) has a nonzero limit when ¢ tends to to, but as the function
Py (I, 2, 5) L0y (Wy,, s) belongs to (C[quﬁt, qI{ES], the function Pg)(IL, o, s)I(0)(Wy,, , s) tends to the
same limit when s tends to 1. O

Finally we can prove the main result.

Theorem 4.2. Let A’ be a quasi-square-integrable representation of G, (K), then if the repre-
sentation A'7 x A" of Gop(K) is irreducible, then it is distinguished.

Write A’ = A|.|%, for A a square-integrable representation, and « a complex number. De-
noting by II; the representation A7[.|% x AVY|.|%", we know from Proposition B.1] that II; is
distinguished for Re(t) > n/2. Hence for Re(t) > n/2, we know from Proposition 24 that the
linear form Wy, — iilql(o)(Wft ,8)/ L(0y(Ilt, 5) is nonzero and Gy (F)-invariant.

Suppose that ¢ is outside the finite number of affine hyperplanes (i.e. points) such that II; is in gen-
eral position, then the function 1/Lo)(Il;, s) is equal to Po) (11, ¢, s). But the function Py (11, ¢, 1),
which is polynomial in q;t, has no zeroes for Re(t) large enough. From this we deduce that for
Re(t) large enough, according to Lemma 3] the functions s +— Iy (Wy,,s) and t' — Iy (Wy,, ,1)
have respectively no pole at s = 1 and ¢’ = ¢, and we have iiﬂ”ld(o) (Wy,,s) = tl/@t[(o)(wff”l)'
Hence for Re(t) large enough, lets say Re(t) > r for a positive real number r > n/2, if h belongs
to Gon(F) the two functions I(g)(Wy,, 1) and I(g)(p:(h)Wy,,1) coincide, but as they are rational
functions in ¢j', they are equal. Hence for f in the space of Iy, and h in G2, (F), the functions
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Ioy(Wy,, 1) and I(gy(p:(h)Wy,, 1) are equal.

Suppose that for every f in the space of Ily, the function /(o) (p¢(h)Wy,, 1) has no pole at t = u,
then according to Proposition 3] for every f in the space of Ily, the function /(g (pu(h)W7,, s)
has no pole at s = 1, and if h is in Ga,(F), one has iilr%l(o) (pu(R)Wy, ,s) = %%I(O) (pe(h)Wy,, 1) =

giml(o)(Wft, 1) = {irql(o) (Wy,.s). Hence we have a G, (F')-invariant linear form f,, — {irql(o) (Wi, 8)

on the space of IL,. Moreover, as Wy, describes the space W (m,,) when f, describes the
space of IL,, and as the restrictions to P, (K) of functions of W(m,, ) form a vector space
with subspace C°(N,,(K)\ P, (K),¢), if we choose W, with restriction to P, (K') positive and in
C° (N (K)\P,(K), ), then we have I(g)(Wy,,1) = an(F)\Pn(F) Wy, (p)dp > 0, and the Gy, (F)-
invariant linear form defined above is nonzero, hence I, = A’? x A’V is distinguished.

Now if for some f in in the space of Ily, the function I(g)(ps(h)Wy,,s) has a pole at s = 1, it is
a consequence of Lemma [£.3] that we have iilr%P(O) (IT, u, s)I(0y(Wy, , s) is nonzero, and from the

same Lemma, we know that for every f in in the space of IIy, and h in G2, (F), we have
iil?}P(O) (1, w, S)I(o) (pu(h)Wy,,s) = QLTIZP(O) (T1, ¢, 1)[(0) (pe(M)Wy,, 1)
= ngUP(O) (H, f, 1)[(0) (Wft N 1) = i’ﬁ’qp(o) (H, u, S)I(O) (qu 5 S)

Hence in this case too, the representation IT, = A’” x A’V is distinguished.
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