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Abstract: In this paper we propose a new dichotomic linear discrimination algorithm based on a criterion recursively defined 
from the min and max functions. This criterion allows us, using a gradient algorithm, to find two hyperplanes which split two 
classes in an optimal way. We give two examples of the possibilities of the method. 
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1. Introduction 

The main goal of pattern recognition is to assign a new observed vector into one class out of M known 
classes. This decision can be made with the help of discriminant surfaces obtained from the knowledge of 
sample vectors in classes. 

Let us suppose that we have to discriminate only between two classes (dichotomy) in R n. Different possibili- 
ties exist; the optimum one is the Bayes discriminator. Associate costs are {0,1 } (cost of good classification 
is 0, cost of an error is 1), the optimum decision is associate x to o9i if: 

P(°gi I x) = max p(ogj l x ) ,  j = 1,2. 

p(co, I x) is the a posteriori probability of class o9~ given x. 
If these probabilities are unknown, they have to be estimated using samples of different classes. This set 

of samples is called the learning set. 
Another possibility is to first decide on the form of the boundary between the two classes. One of the most 

studied discriminant functions is the linear one. Classes are said to be linearly separable if we can compute 
the equation of a hyperplane in ~n separating the two classes. 

The first linear discrimination algorithm was developed by Rosenblatt (Rosenblatt, 1957) in the mid 1950s, 
and was inspired from the neuronal model of Mc Culloch and Pitts (Mc Culloch & Pitts, 1943). Its usual 
name is the Perceptron. This algorithm is considered as a special case of the reward-and-punishment proce- 
dure. Unfortunately, if the classes are not linearly separable, this algorithm does not converge and no indica- 
tion of this fact is given to the user. 

The Ho-Kashyap procedure (Ho & Kashyap, 1965) gives a better solution to this problem. It always con- 
verges, indicating that the classes are linearly separable or not; if they are, this algorithm furnishes a hyper- 
plane equation. 

New solutions are currently proposed to solve non-linear separability by using the connexionnist approach 
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(Widrow, Hoff, 1960) (neuron models). Although this non-probabilistic approach has interesting new devel- 
opments, we are not interested in this approach. 

Our  goal is to find two parallel hyperplanes P1 and P2 separating the two classes in an optimal way. This 
problem is completely equivalent to find an optimal unit vector u*, orthogonal to P:  and P2, and maximising 
a criterion d(u) which represents a signed distance between the classes. 

We will define this signed distance from the difference between some min and max functions, and use it 
to find the optimal solution. 

If the signed distance d(u*), corresponding to the optimal solution is positive, we will conclude that the 
classes are linearly separable; if it is not, we will conclude that they are not linearly separable. 

2. Principle of the method 

Let 0)1 and (~o 2 be two classes of ~a. We want to discriminate between these two classes. 
The learning set %" is composed of n vectors, nl from 0)1 and n2 from 0)2: 

Yx ~n: and 0) 2 = { X 2 , 1 , . .  X2,n2} = 5X ).n2 0)1 = {Xl ,1  . . . . .  X l , n l }  = t 1,iS1 • [ 2 , i j 1  • 

Let u be a unitary vector orthogonal to P:  and P2 (see Figure 1). And let ~i,k = U'X~,k. 
Now we have to choose a criterion for our problem. This criterion represents a signed distance: 

d ( u )  = s ( u )  - b ( u )  

where 

(1) 

s(u) = min(~2A . . . . .  x2,.2) = min(x2,i)~ 2, b(u) = max(~l,:  . . . . .  x:,.1) = max(~l.i)'~:. 

Let u* be the direction which maximises the criterion d(u). Two opposite cases may happen: 
Case 1: d(u*) > 0. Then 09: and 0)2 are linearly separable (Figure 2a). We can easily find two parallel hyper- 

planes, orthogonal to the direction u*, with the equations: 

P l :  x t u *  - -  b(u*) and P 2 :  x t u *  - -  8(14") .  

If the classes are interchanged, the optimal vector u* becomes - u* and the difference d(u*) is still positive• 
For  example, if we have first b(u*) = 2 and s(u*) = 3 then d(u*) = 1 > 0. After interchanging the classes, u* 
becomes - u*, and b(u*) = - 3, s(u*) = - 2, then d(u*) = - 2 - ( - 3) = 1 is still positive• 

Case 2: d(u*) < 0. Then 0)1 and 0)2 are not linearly separable with a zero error probability (Figure 2b). 
The same considerations can be reformulated about the interchange of 0)1 and 0)2. 

Let us first consider the functions min and max used above in the definition of the functions s(u) and b(u). 

Figure  1. 
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3. Definition and computation of  M I N  and M A X  

3.1. The M I N  funct ion 

Let E = {al . . . . .  a.}, be a set of  n real values. The min function is defined by the following: 

min{al  . . . . .  a.} = ai i f a i <  aj fo r j  = 1 . . . . .  n, j:/:i. 

If  the cardinal i ty of  E is one, it is obvious  that  min(a l )  = al .  Let  us choose the cardinali ty of  E equal  to 
2. It  is also obvious  that: 

1 
min(a l , a2)  = ~(a l  + a2 - -  l a, - a2  I)" 

So recursively we can write when card E = n: 

1 
min(a l  . . . . .  a.) = ~(min(a l  . . . . .  a . _  1) + a.  - I min(a l  . . . . .  a . _  1) - a . [ ) .  

Using the no ta t ion  min(a~ . . . . .  a.) = min(a~)]: 

1 
min(a~)] = a l ,  min(a~)] = ~(min(a~)]-  1 + a,  - [ (min(a~)] - I  _ a.  [. 

(2) 

3.2. The M A X  funct ion  

The same considerat ions m a y  be used for the max  function. 

1 
m a x ( a 0  = al ,  m a x ( a l , a z )  = ~(a l  + az + l al - a21), 

max(a, ) l  = a l ,  
1 

max(al)]  = ~ ( m a x ( a , ) ] - i  + a.  + I ( m a x ( a , ) ' i - '  - a .  [). (3) 
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4. Computation of the optimal vector u* 

4.1. A gradient algorithm 

We search for a unit vector U* that maximizes d(u). This optimisation can be solved using a fixed step 
gradient: 

ll n + 1 = 48 + P . $wT p being the step to be fixed. 

If we use this method directly, the vector u,, tends towards the right direction, but unfortunately its norm 
tends towards + cc (unconstrained solution). 

We used the unitary norm constraint: IIu*jI = 1. S o, we must normalize the vector u after each gradient 
algorithm iteration. Thus, the modified gradient algorithm is: 

“n=u”+p.-$(u), u,+1 =v”. 
IhII 

4.2. Gradient ofs(u), b(u) and d(u) 

The functions S(U) and b(u) are recursively defined, so are their gradient functions. 

Remark. Let j(x) be a function from I?” to I?, derivable from I?“. Theoretically, (8/8x)lf(x)( is not defined on 
j(x) = 0. So, we will fix by definition: 

$lj(x)l = 0 when f(x) = 0, 

which is completely equivalent to: 

with 

sign(f(x)) = - 1 if f(x) < 0, signCf(x)) = 0 if f(x) = 0, sign(f(x)) = 1 if@) > 0. 

We have 

t s(u) = t min(& i)12 

and from (2) 

i a ( min(ZZ2,, i)y2 - ’ + X2,n2 - sign(min(Z2, i)12 - 1 - x2,n2) ( a =2 au - min(f,J” - ’ - x2,n2 . 
au >> 

so 
i a - 

=2 au ( 
-min(Z2,, i);’ - ‘( 1 - sign(min(i2, i);2 - 1 - _qn2) 

+ X~,~2(1 + sign(min(~2,i)~2 - 1 - x2,n2) 
> 

with i min(g2, i)i = x2, 1. (4) 
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Likewise, we can write: 

0 
~ b ( u )  = ~u max(~l,i)]2 

and from (3) 

1 max(:~l,i)]l - 1 + x1,.1 + sign(max(~l 3] 1 - 1 x L . O  ~_~umax(~l,i)l - 1 - ~  , - -  - -  X l , n l  • 

So 

1 (d-~max(~l, ,)]l  - 1(1 + sign(max(21 ,)]1 - 1 x1,.1) 
2 

) + x1,.1( 1 _ sign(max(2x,3~l - 1 _ xx,.1) with - -max(21 ,31  = xl,1. 
Ou 

Finally, using (1): 

~ d(u) - - ~ s ( . ) -  ~ b(u). 

(5) 

(6) 

5. Algorithm implementation 

We give a simplified skeleton of  the min-max algorithm, using (4), (5), (6). We must  fix the gradient algo- 

r i thm step, the parameter  e which controls  the calculation accuracy,  and the initial unit vector. 

Do 
m i n l =  x2,1; grads = x2,1 
For  i = 2 to n2 

min2 = x 2 , i  

1 
grads = ~((1 - sign(mini - rain2)) grads + (1 + sign(mini - min2))x2, i) 

min l  = min(minl ,min2)  
E n d _ F o r  

max l  = ~x,1; gradb = xt,1 
For  i = 2 to nl 

max2 = xl,i 
1 

gradb = ~((1 + sign(maxl - max2)) gradb + (1 - sign(maxl - max2))xl,  3 

max 1 = max(max 1,max2) 

E n d _ F o r  
gradd = grads - gradb 
u = u + step" gradd; u = u/ l[ul l  

diffl = minl  - max l  
While (diffl - diff2) > e 
I f  (diffl < 0) then write "o~  and o3 2 are not  linearly separable" End 

Else 
Write  "~Oa and ~o 2 are linearly separable" 
Write  "Hyperp lane  equat ions:"  # x  - minl ,  # x  - maxl  

End_Else  
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6. Experimental results 

The following are two examples  of the use of this a lgori thm. In both  configurations,  each class contains  
100 vectors coming f rom two normal  popula t ions  of  R 2, where the var iance-covar iance matr ices are set to 
the identity matrix.  

Configuration 1 (Figure 3): linearly separable  classes (there exists a hyperplane  separat ing the two classes with 
a zero est imated error  probabil i ty).  

091: m e a n = ( ~ ) ,  ~o2: m e a n = ( 5 5 ) .  

parameters :  step = 1 0 -  ~, e = 1 0 -  s, to ta l i t e ra t ion  number  = 52. 

This a lgor i thm converges in an efficient way, concluding that  the classes are actually linearly separable  
(Difference = + 1.674 > 0). This m a x i m u m  difference gives a good  indication of the absolute  gap  between 
the two classes. 

It  also gives two hyperplane  equat ions (here they are straight lines) that  give two linear boundar ies  for 

the classes ~o~ and COz: 

Px: 0 . 7 1 1 x ~ + 0 . 7 0 3 x 2 - 4 . 3 7 3 = O ,  P2: 0 . 7 1 1 x ~ + 0 . 7 0 3 x 2 - 2 . 6 9 9 = O .  

Configuration 2 (Figure 4): nonlinearly separable  classes. 

eg~: m e a n = ( ~ ) ,  co2: m e a n = ( 3 3 ) .  

parameters :  step = 10 - 3 ,  ~ = 10 8, total  i teration number  = 1062. 

50- 

10- 

• ",a, ,", 
\ ~ • H.I~I/,,~_ ~ . class 2 

\ \ ,, , , , ,¢ ' t , , , , ,  

n ~ -  ° D  n o  oF;g, o° °\ \ 
O 

class 1 
. . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I 

-30 I 0 50 90 

Figure 3. Direction = 7.1118283E-01, 7.0300710E-01. Di- 
rection = 7.1119996E-01, 7.0298977E-01. Result after 52 
iterations: Min = 4.3736852E + 00, Max = 2.6990202E + 00, 
Difference = 1.6746650E + 00, Direction = 7.1119996E-01, 

7.0298977E-01. 

5 0 - -  

x ~rI I ~  - -  

[] t~mO classl  

- 3 0  J i i i i , , J i I i i i i i i i i i I i i i i 

-30 I 0 50 

Figure 4. Direction=5.4219291E-01, 8.4025404E-01. Di- 
rection=5.4171130E-01, 8.4056461E-01. Result after 1062 
iterations: Min = 1.3271238E + 00, Max = 2.3541315E + 00, 
Difference = - 1.0270076E + 00, Direction = 5.4171130E-01, 

8.4056461E-01. 
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We point out that it was necessary to use a small step value (10-3). From that beginning, the algorithm 
converges, and then it oscillates around the solution. This approximate convergence allows us to conclude 
that the two classes are not linearly separable (Difference = - 1.027 < 0). This maximum difference gives 
a good indication of the classes overlapping. 

7. Conclusions 

This algorithm based on the new criterion d(u), allows us to know, if the two classes are linearly separable 
or not. In the two cases, it gives a notion about an 'absolute distance' between the classes (gap or overlapping) 
and if they are linearly separable. It also gives two hyperplane equations which can be used in pattern recogni- 
tion algorithms. 

We noticed that the algorithm behaviour depends on the classes overlapping size: it would converge rapidly 
if the classes do not overlap. 

In practice, we have to set the step value: if it is too big, the algorithm will converge first, and then will 
oscillate around the solution (with insufficient accuracy); if too small it will converge slowly. This heuristic 
step setting is the main default of this algorithm. 
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