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When does partial commutative closure

preserve regularity?

Antonio Cano Gómez∗ Giovanna Guaiana† Jean-Éric Pin‡§

To appear at ICALP 2008

The closure of a regular language under commutation or partial commutation
has been extensively studied [1, 11, 12, 13], notably in connection with regular
model checking [2, 3, 7] or in the study of Mazurkiewicz traces, one of the models
of parallelism [14, 15, 16, 22]. We refer the reader to the survey [10, 9] or to the
recent articles of Ochmański [17, 18, 19] for further references.

In this paper, we present new advances on two problems of this area. The
first problem is well-known and has a very precise statement. The second prob-
lem is more elusive, since it relies on the somewhat imprecise notion of robust
class. By a robust class, we mean a class of regular languages closed un-
der some of the usual operations on languages, such as Boolean operations,
product, star, shuffle, morphisms, inverses of morphisms, residuals, etc. For
instance, regular languages form a very robust class, commutative languages
(languages whose syntactic monoid is commutative) also form a robust class.
Finally, group languages (languages whose syntactic monoid is a finite group)
form a semi-robust class: they are closed under Boolean operation, residuals
and inverses of morphisms, but not under product, shuffle, morphisms or star.

Here are the two problems:

Problem 1. When is the closure of a regular language under [partial] commu-
tation still regular?

Problem 2. Are there any robust classes of languages closed under [partial]
commutation?

The classes considered in this paper are all closed under polynomial oper-
ations. Recall that, given a class L of regular languages, the polynomial lan-
guages of L are the finite unions of languages of the form L0a1L1 · · · akLk where
a1, . . . , ak are letters and L0, . . . , Lk are languages of L. Taking the polynomial
closure usually increase robustness. For instance, the class Pol(G) of polynomi-
als of group languages is closed under union, intersection, quotients, product,
shuffle and inverses of morphisms.
Let I be a partial commutation and let D be its complement in A × A. Our
main results on Problems 1 and 2 can be summarized as follows:
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(1) The class Pol(G) is closed under commutation. If D is transitive, it is also
closed under I-commutation.

(2) Under some simple conditions on the graph of I, the closure of a language
of Pol(G) under I is regular.

(3) There is a very robust class of languages W which is closed under com-
mutation. This class, which contains Pol(G), is closed under intersection,
union, shuffle, concatenation, residual, length preserving morphisms and
inverses of morphisms. Further, it is decidable and can be defined as the
largest positive variety of languages not containing.

(4) If I is transitive, the closure of a language of W under I is regular.

Result (3) is probably the most important of the four results. It is, in a sense,
optimal since (ab)∗ is the canonical example of a regular language whose com-
mutative closure is not regular.

The proofs are nontrivial and combine several advanced techniques, including
combinatorial Ramsey type arguments, algebraic properties of the syntactic
monoid [5, 6], finiteness conditions on semigroups [8] and properties of insertion
systems [4]. Some proofs are missing but are given in the Appendix.

Our paper is organised as follows. We first survey the known results in
Section 1. Then we establish some combinatorial properties of group languages
in Section 2. Our results on commutative closure are established in Section 3
and those on closure under partial commutation in Section 4.

1 Known results

Let A be an alphabet and let I be a symmetric and irreflexive relation on A
(often called the independence relation). We denote by ∼I the congruence on
A∗ generated by the set {ab = ba | (a, b) ∈ I}. If L is a language on A∗, we
also denote by [L]I the closure of L under ∼I . When I is the relation {(a, b) ∈
A×A | a 6= b}, we simplify the notation to ∼ and [L], respectively. Thus ∼ is the
commutation relation and [L] is the commutative closure of L. The dependence
relation associated with I is the relation D = {(a, b) ∈ A × A | (a, b) /∈ I}. The
relations I and D define two graphs (A, I) and (A, D) with A as set of vertices.
A class C of languages is closed under I-commutation if L ∈ C implies [L]I ∈ C.

1.1 The first problem

For the commutative closure, the problem is solved [11, 12, 13]: the commuta-
tive closure of the language (ab)∗ is not regular, but one can effectively decide
whether the commutative closure of a regular language is regular or not.

For partial commutations, the result of Sakarovitch [22] concluded a series
of previous partial results.

Theorem 1.1 One can decide whether the closure [L]I of a regular language L
is regular if and only if I is a transitive relation.

1.2 The second problem

Only a few results are known for the second problem. They concern the following
classes of languages:
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(1) the class Pol(I) of finite unions of languages of the form A∗a1A
∗ · · · akA∗,

with a1, . . . , ak ∈ A,

(2) the class J of piecewise testable languages (the Boolean closure of Pol(I)),

(3) the class Pol(J ), which consists of finite unions of languages of the form
A∗

0a1A
∗

1 · · · akA∗

k with Ai ⊆ A and a1, . . . , ak ∈ A. These languages are
also called APC (Alphabetic Pattern Constraints) in [2],

(4) the class Pol(Com) of polynomials of commutative languages.

The following theorem summarises the results of Guaiana, Restivo and Salemi
[14, 15], Bouajjani, Muscholl and Touili [2, 3] and Cécé, Héam and Mainier [7].

Theorem 1.2 Let I be any independence relation. Then

(1) the class Pol(I) is closed under commutation,

(2) the class J is closed under commutation,

(3) the class Pol(J ) is closed under I-commutation,

(4) the class Pol(Com) is closed under I-commutation.

1.3 Star-free languages

Two nice results on star-free languages were proved by Muscholl and Petersen
[16]. The first one is the counterpart of Theorem 1.1 for star-free languages.

Theorem 1.3 One can decide whether the closure [L]I of a star-free language
L is star-free if and only if I is a transitive relation.

The second result is related to our second problem.

Theorem 1.4 Let L be a star-free language. If D is transitive, then [L]I is
either star-free or non regular. If D is not transitive, then there exist star-free
languages such that [L]I is regular but not star-free.

2 Properties of group languages

Recall that a group language is a regular language whose syntactic monoid is
a group, or, equivalently, is recognized by a finite deterministic automaton in
which each letter defines a permutation of the set of states. We gather in this
section the properties of these languages needed in this paper.

Let π be a morphism from A∗ onto a finite group G and let R = π−1(1).
The next lemma is a well-known consequence of Ramsey’s theorem [20].

Lemma 2.1 For any n > 0, there exists N > 0 such that, for any u0, u1,
. . . , uN ∈ A∗ there exists a sequence 0 6 i0 < i1 < . . . < in 6 N such that
π(ui0ui0+1 · · ·ui1−1) = π(ui1ui1+1 · · ·ui2−1) = . . . = π(uin−1

· · ·uin−1) = 1.

An insertion system is a special type of rewriting system whose rules are of
the form 1 → r for all r in a given language R. We write u →R v if u = u′u′′ and
v = u′ru′′ for some r ∈ R. We denote by

∗

→R the reflexive transitive closure
of the relation →R. Given a language L of A∗, its closure under

∗

→R is the
language

[L] ∗

→R
= {v ∈ A∗ | there exists u ∈ L such that u

∗

→R v.}
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We are especially interested in the case R = π−1(1), where π is a morphism
from A∗ onto a finite group G. Let F be the set of words of R of length 6 |G|.

It is not difficult to see that the relations
∗

→F and
∗

→R coincide. The next result
follows from the results of Bucher, Ehrenfeucht and Haussler [4].

Proposition 2.2

(1) The relation 6π is a well preorder on A∗.

(2) For any language L, the language [L] ∗

→R
is regular.

We prove a slightly more precise result.

Proposition 2.3 For any language L, the language [L] ∗

→R
is a polynomial of

group languages.

Proof. Let R = π−1(1). By construction, R is a group language. If u =
a1 · · · an, the language [u] ∗

→R
is equal to Ra1R · · ·RanR, a polynomial of group

languages. Now since 6π is a well preorder, every language of the form [L] ∗

→R

is equal to a language of the form [F ] ∗

→R
with F finite and thus a finite union

of languages of the form Ra1R · · ·RanR. It is therefore a polynomial of group
languages.

3 Commutative closure

This section contains three new results. The first one concerns group languages,
the second one polynomials of group languages and the third one a robust class
introduced in [5, 6] and denoted by W .

Recall that if L is a language of A∗, the syntactic preorder of L is the relation
6L defined on A∗ by u 6L v if and only if, for every x, y ∈ A∗, xvy ∈ L implies
xuy ∈ L. The syntactic congruence ∼L is defined by u ∼L v if and only if
u 6L v and v 6L u.

3.1 Group languages

Theorem 3.1 The commutative closure of a group language is regular.

Proof. Let L ⊆ A∗ be a group language and let π : A∗ → G be its syntactic
morphism. Let n = |G| and let N be the integer given by Lemma 2.1. We claim
that for any letter a ∈ A, aN ∼[L] aN+n. Let g = π(a).

Suppose that xaNy ∈ [L]. Then there exists a word w of L commutatively
equivalent to xaNy. It follows that wan is commutatively equivalent to xaN+ny.
Further, since G is a finite group, one has gn = 1 by Lagrange’s theorem,
whence π(wan) = π(w)π(an) = π(w). Thus the words w and wan have the
same syntactic image by π and hence wan ∈ L. Therefore xaN+ny ∈ [L].

Conversely, assume that xaN+ny ∈ [L]. Then xaN+ny is commutatively
equivalent to some word of L, say w = u0au1a · · ·uN−1auNauN+1. By applying
Lemma 2.1 to the sequence of words u0a, u1a, . . . , uNa, we obtain a sequence
0 6 i0 < i1 < . . . < in 6 N such that

π(ui0a · · ·aui1−1a) = π(ui1a · · ·aui2−1a) = . . . = π(uin−1
a · · ·auin−1a) = 1

(1)
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This implies in particular

π(ui0a · · ·aui1−1) = π(ui1a · · ·aui2−1) = . . . = π(uin−1
a · · ·auin−1) = g−1 (2)

Let r and s be the words defined by

w = r(ui0a · · · aui1−1a)(ui1a · · · aui2−1a)(uin−1
a · · ·auin−1a)s

Since w is commutatively equivalent to xaN+ny, the word

w′ = r(ui0a · · ·aui1−1)(ui1a · · ·aui2−1) · · · (uin−1
a · · ·auin−1)s

is commutatively equivalent to xaNy. Furthermore, Formulas (1) and (2) show
that π(w) = π(r)π(s) and π(w′) = π(r)(g−1)nπ(s). Since (g−1)n = 1 by La-
grange’s theorem, π(w) = π(w′) and thus w′ ∈ L. It follows that xaNy ∈ [L],
which proves the claim.

Now, the syntactic monoid of [L] is a commutative monoid in which each
generator has a finite index. Since the alphabet is finite, this monoid is finite
and thus [L] is regular.

Theorem 3.1 indicates that the commutative closure of a group language
is a commutative regular language. One may wonder whether, in turn, any
commutative regular language is the commutative closure of a group language.
The answer is no, but requires an improved version of Theorem 3.1.

Theorem 3.2 The commutative closure of a group language is a polynomial of
group languages.

Proof. Let L be a group language and let π : A∗ → G be its syntactic mor-
phism. We claim that [L] is a filter for 6π, which will give the result by Propo-
sition 2.3. Let us show that if a1 · · · an ∈ [L] and v0, v1, . . . , vn ∈ π−1(1), then
v0a1v1 · · · anvn ∈ [L]. Since a1 · · · an ∈ [L], there exists a word w ∈ L which is
commutatively equivalent to a1 · · ·an. Thus the word wv0v1 · · · vn is commuta-
tively equivalent to v0a1v1 · · · anvn. Now π(wv0v1 · · · vn) = π(w)π(v0) · · ·π(vn) =
π(w). Therefore wv0v1 · · · vn ∈ L, proving the claim.

Note that the commutative closure of a group language is not necessarily
a group language. Indeed, consider the set of all words of {a, b}∗ having an
even number of (scattered) subwords equal to ab. Its commutative closure,
A∗aA∗bA∗ ∪A∗bA∗aA∗ is not a group language. However, Theorem 3.2 can be
extended to polynomials of group languages.

Theorem 3.3 The commutative closure of a polynomial of group languages is
also a polynomial of group languages.

Proof. It is shown in [21] that for any polynomial of group languages L, there
exists a morphism π : A∗ → G from A∗ onto a finite group G such that L is a
finite union of languages of the form Ra1R · · ·RanR, with R = π−1(1). Thus
it suffices to show that if K = Ra1R · · ·RanR for some letters a1, . . . , an, then
[K] is a polynomial of group languages.

We claim that [K] is a filter for 6π, which will give the result by Propo-
sition 2.3. Let us show that if b1 · · · bm ∈ [K] and v0, v1, . . . , vn ∈ R, then
v0b1v1 · · · bmvn ∈ [K]. Let w be a word of K commutatively equivalent to
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b1 · · · bm. As an element of K, w can be written as r0a1r1 · · ·anrn for some words
r0, . . . , rn ∈ R. Since the words v0, . . . , vm are in R, the word wv0v1 · · · vn also
belongs to K and is commutatively equivalent to v0b1v1 · · · bmvm. This proves
the claim and concludes the proof.

3.2 Languages of W

We now define the class of regular languages W first introduced and studied in
[5, 6]. Recall that a positive variety of languages is a class of regular languages
closed under union, intersection, residuals and inverses of morphisms.

The class W is the unique maximal positive variety of languages which does
not contain the language (ab)∗, for all letters a 6= b. It is also the unique
maximal positive variety satisfying the two following conditions: it is proper,
that is, strictly included in the variety of regular languages, and it is closed
under the shuffle operation. It is also the largest proper positive variety closed
under length preserving morphisms. Being closed under intersection, union,
shuffle, concatenation, length preserving morphisms and inverses of morphisms,
W is a quite robust class, which strictly contains the classes APC, Pol(Com)
and Pol(G) introduced in Section 1.2.

The class W has an algebraic characterization [5, 6]. Let a and b be two
elements of a monoid. Recall that b is an inverse of a if aba = a and bab = b.
Now, a regular language belongs to W if and only if its syntactic ordered monoid
belongs to the variety of finite ordered monoids W defined as follows: an ordered
monoid (M, 6) belongs to W if and only if, for any pair (a, b) of mutually
inverse elements of M , and any element z of the minimal ideal of the submonoid
generated by a and b, (abzab)ω 6 ab (see [6, p.435–436] for a precise definition
of the semigroup notions used in this characterization). This description might
appear quite involved, but has an important consequence: the variety W is
decidable. That is, given a regular language L, one can decide whether or not L
belongs to W . We also mention for the specialists that W contains the variety
of finite monoids DS.

The main result of this section states that W is closed under commutative
closure. In fact, we prove a stronger result, which relies on the notion of a period
that we now introduce.

Let M be a finite monoid. The exponent of M is the least integer ω such
that for all x ∈ M , xω is idempotent. Its period is the least integer p such that
for all x ∈ M , xω+p = xω. By extension, the period (respectively exponent) of a
regular language is the period (respectively exponent) of its syntactic monoid.

Proposition 3.4 Let L be a commutative language of A∗ and let d be a positive
integer. If, for each letter c of A, there exists N > 0 such that cN+d 6L cN ,
then L is regular and its period divides d.

Proof. It follows from [8, Theorem 6.6.2, page 215] that, under these conditions,
L is a regular language. Let ω be the exponent of L. The relation cN+d 6L cN

gives cN(ω−1)cN+d 6L cN(ω−1)cN , whence cNω+d 6L cNω and since cω ∼L

c2ω ∼L cNω, one gets finally cω+d 6L cω. It follows that

cω ∼L cω+ωd
6L . . . 6L cω+2d

6L cω+d
6L cω
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and hence cω ∼L cω+d. Since L is commutative, its syntactic monoid is com-
mutative and therefore uω ∼L uω+d for all u ∈ A∗. It follows that the period of
L divides d.

We can now state:

Theorem 3.5 Let L be a language of W(A∗). Then [L] is regular and commu-
tative (and hence in W) and its period divides that of L.

Proof. Let L be a language of W(A∗) and let [L] be its commutative closure.
Then there exist an ordered monoid (M, 6) ∈ W, a surjective monoid morphism
ϕ : A∗ → M and an order ideal P of (M, 6) such that ϕ−1(P ) = L. Let ω be
the exponent of M and let p be its period. Let also d be any number such that,
for all t ∈ M , td is idempotent. In particular, d can be either ω or ω + p. We
claim that, for every such d, there exists an integer N such that, for every letter
c ∈ A, cN+d 6[L] cN . If the claim holds, then Proposition 3.4 shows that [L] is
regular and that its period divides d. Taking d = ω and d = ω + p then proves
that this period also divides p.

The rest of the proof consists in proving the claim. We need two combina-
torial results. The first one is a slight variation of Lemma 2.1.

Lemma 3.6 Let c be a letter of A. For any n > 0, there exists an integer N
such that, for every word u of A∗ containing at least N + 1 occurrences of c,
there exist an idempotent e of M and a factorization u = v0v1cv2c · · · vncvn+1

such that, for 1 6 i 6 n, ϕ(vic) = e.

The second one requires an auxiliary definition. A word u of {a, b}∗ is said
to be balanced if |u|a = |u|b.

Proposition 3.7 Let B = {a, b}. There exists a balanced word z ∈ B∗ such
that, for any morphism γ : B∗ → M , γ(z) belongs to the minimal ideal of the
monoid γ(B∗).

Proof. Let n = |M | and let z be a balanced word of B∗ containing all words
of length 6 n as a factor. Let γ : B∗ → M be a morphism and let m be an
element of the minimal ideal J of γ(B∗). Then one can show there is a word u
of length 6 n such that γ(u) = m. Since |u| 6 n, u is a factor of z and γ(z)
belongs to Mγ(u)M . Now since m ∈ J , Mγ(u)M = MmM = J and hence
γ(z) ∈ J .

Let us continue the proof of Theorem 3.5. Let n = |M | and let z be the
balanced word given by Proposition 3.7. Let r = |z|a = |z|b, n3 = d(1 + r),
n2 = nn3 and n1 = 3n2. Finally let N = N(n1) be the constant given by
Lemma 3.6.

Let x, y ∈ A∗. If xcNy ∈ [L], there exists a word u of L commutatively equiv-
alent to xcNy and hence containing at least N occurrences of c. By Lemma 3.6,
there exist an idempotent e of M and a factorization u = v0v1c · · · vn1

cvn1+1

such that, for 1 6 i 6 n1, ϕ(vic) = e.
Now, since n1 = 3n2, one can also write u as u = v0(f1g1) · · · (fn2

gn2
)vn1+1

where, for 1 6 i 6 n2, fi = v3i−2cv3i−1 and gi = cv3ic.

Lemma 3.8 For 1 6 i 6 n2, the elements ϕ(fi) and ϕ(gi) are mutually inverse.
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Proof. We omit this proof, but it is a straightforward verification.

Setting s̄ = ϕ(c)e, one gets ϕ(gi) = s̄ for 1 6 i 6 n2. Further, by the choice of
n2 and by the pigeonhole principle, one can find n3 indices i1 < . . . < in3

and
an element s ∈ M such that ϕ(fi1) = . . . = ϕ(fin3

) = s. Setting

w0 = v0f1g1 · · · fi1−1gi1−1 x1 = fi1 y1 = gi1

w1 = fi1+1gi1+1 · · · fi2−1gi2−1 x2 = fi2 y2 = gi2

...
...

wn3−1 = fin3−1+1gin3−1+1 · · · fin3
−1gin3

−1 xn3
= fin3

yn3
= gin3

wn3
= fin3

+1gin3
+1 · · · fn2

gn2
vn1+1

we obtain a factorization

u = w0x1y1w1x2y2w2 · · · wn3−1xn3
yn3

wn3
(3)

such that ϕ(w1) = . . . = ϕ(wn3−1) = e, ϕ(x1) = . . . = ϕ(xn3
) = s and ϕ(y1) =

. . . = ϕ(yn3
) = s̄.

Recall that n3 = d(1 + r) where r = |z|a = |z|b. We now define words z1,
. . . , zd as follows: the word zj is obtained by replacing in z the first occurrence
of a by xd+(j−1)r+1, the second occurrence of a by xd+(j−1)r+2, . . . , the r’s
occurrence of a by xd+jr and, similarly, the first occurrence of b by yd+(j−1)r+1,
the second occurrence of b by yd+(j−1)r+2, . . . , the r’s occurrence of b by yd+jr.
Finally, set

u′ = w0(v3i1−2ccv3i1−1cz1v3i1c)(v3i2−2ccv3i2−1cz2v3i2c) · · ·

(v3id−2ccv3id−1czdv3id
c)w1 · · · wn3

(4)

We are now ready for the three final steps.

Lemma 3.9 The word u′ is commutatively equivalent to xcN+dy.

Proof. It is clear that u′ is commutatively equivalent to

cdw0(v3i1−2cv3i1−1cv3i1c) · · · (v3id−2cv3id−1cv3id
c)(z1 · · · zd)(w1 · · · wn3

)

Now, v3i1−2cv3i1−1cv3i1c = fi1gi1 = x1y1, . . . , v3id−2cv3id−1czdv3id
c = fid

gid
=

xdyd. Further, by construction, z1 · · · zd ∼ xd+1yd+1 · · · xn3
yn3

. Therefore

u′ ∼ cdw0x1y1w1x2y2w2 · · · wn3−1xn3
yn3

wn3

and finally u′ ∼ ucd ∼ xcN+dy.

Let T be the submonoid of M generated by s and s̄ and let γ : {a, b}∗ → T
be the morphism defined by γ(a) = s and γ(b) = s̄. By Proposition 3.7, γ(z)
belongs to the minimal ideal of T and since e = ss̄, the definition of W shows
that in M , (eγ(z)e)d 6 e.

Lemma 3.10 One has ϕ(z1) = . . . = ϕ(zd) = γ(z).
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Proof. Each of the words zj is obtained by replacing in z the occurrences of a
by some xk and each occurrence of b by some yk. Since all the xk (resp. yk)
have the same image by ϕ, namely s (resp. s̄), ϕ(zj) is equal to γ(z).

Lemma 3.11 The word u′ belongs to L.

Proof. It follows from (3) that ϕ(u) = ϕ(w0)eϕ(wn3
), and hence, since P =

ϕ(L), ϕ(w0)eϕ(wn3
) ∈ P . Now, observe that

ϕ(v3i1−2ccv3i1−1cz1v3i1c) = ϕ(v3i1−2c)ϕ(c)ϕ(v3i1−1c)ϕ(z1)ϕ(v3i1c)

= eϕ(c)eϕ(z1)e = es̄γ(z)e by Lemma 3.10

By a similar argument, one has

ϕ(v3i1−2ccv3i1−1cz1v3i1c) = . . . = ϕ(v3id−2ccv3id−1czdv3id
c) = es̄γ(z)e

Finally, since ϕ(w1) = . . . = ϕ(wn3−1) = e, it follows from (4) that

ϕ(u′) = ϕ(w0)(es̄γ(z)e)dϕ(wn3
)

Furthermore, since s̄ ∈ T , s̄γ(z) belongs to the minimal ideal of T and since
M is in W, one has (es̄γ(z)e)d 6 e. Since ϕ(L) is an order ideal, the element
ϕ(w0)(es̄γ(z)e)dϕ(wn3

) is also in ϕ(L) and hence u′ ∈ L.

Putting Lemmas 3.9 and 3.11 together, we conclude that xcN+dy ∈ [L],
which proves the claim and the theorem.

4 Closure under partial commutation

Some of the results of Section 3 can be extended to partial commutations, under
some restrictions on the set I.

4.1 The case where D is transitive

The condition that D is transitive is equivalent to requiring that A∗/∼I is
isomorphic to a direct product of free monoids A∗

1 × · · · × A∗

k. Denote by πj

the projection from A∗ onto A∗

j and let πI be the morphism from A∗ onto
A∗

1×· · ·×A∗

k defined by πI(u) = (π1(u), . . . , πk(u)). This morphism is intimately
connected to our problem, since u ∼I v if and only if πI(u) = πI(v). Let us
denote by X the shuffle product. The (easy) proof of the next result is omitted.
The second part of the statement relies on Mezei’s theorem characterizing the
recognizable subsets of a direct product of monoids.

Proposition 4.1 Let L be a language of A∗. If

πI(L) =
⋃

16i6n

Li,1 × · · · × Li,k (5)

where for 1 6 j 6 k, the languages L1,j, . . . , Ln,j are languages of A∗

j , then
[L]I =

⋃

16i6n Li,1 X · · · X Li,k. In particular, if πI(L) is a recognizable
subset of A∗

1 × · · · × A∗

k, then [L]I is regular.
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If L is a group language, one can adapt an argument from [5, Proposition 9.6]
to show that πI(L) can be decomposed as in (5), where each Li,j belongs to
Pol(G). Therefore, since Pol(G) is closed under shuffle, we get:

Theorem 4.2 Suppose that D is transitive. If L is a group language, then [L]I
is a polynomial of group languages.

Still some work is needed to obtain the following result.

Theorem 4.3 Suppose that D is transitive. If L is a polynomial of group lan-
guages, then [L]I is also a polynomial of group languages.

This result cannot be extended to W . Indeed, let A = {a, b, c, d} and I =
{(a, b), (b, c), (c, d), (d, a)}. Then the language (abcd)∗ + A∗aaA∗ + A∗bbA∗ +
A∗ccA∗ + A∗ddA∗ + A∗ababA∗ + A∗bcbcA∗ + A∗cdcdA∗ + A∗dadaA∗ belongs to
W but [L]I is not regular, although D is transitive in this case.

4.2 The case where I is transitive

We now consider the case where I is transitive. In this case, A∗/∼I is a free
product of free commutative monoids.

Theorem 4.4 Let L be a language of W(A∗) and let I be a transitive indepen-
dence relation. Then [L]I is a regular language.

Proof. (Sketch) Let P = {A1, . . . , Ak} be the partition of A such that A∗/∼I

is isomorphic to the free product N
A1 ∗ · · · ∗ N

Ak .
Let A = (Q, A, · , q0, F ) be the minimal automaton of L. Recall that the

states of Q are partially ordered by the relation 6 defined by p 6 q if and only
if, for all u ∈ A∗, q ·u ∈ F implies p·u ∈ F .

We now construct a generalized automaton B, over the same set of states Q,
in which transitions are labelled by regular languages. More precisely, for each
pair of states (p, q), we create a transition from p to q labelled by

Rp,q =
⋃

16i6k

[

{u ∈ A∗

i | p·u 6 q}
]

Each language {u ∈ A∗

i | p·u 6 q} can be written as the intersection of A∗

i and
of the language Kp,q = {u ∈ A∗ | p·u 6 q}. Since L ∈ W(A∗), one also has
Kp,q ∈ W(A∗) and since W is closed under commutation by Theorem 3.5, so
does Rp,q. The remainder of the proof (omitted for lack of space) consists in
proving that B recognizes [L]I . It follows that [L]I is regular.

Note that we don’t know whether [L]I also belongs to W(A∗). However, the
proof of Theorem 4.4 can be adapted to prove another result.

Let I1, . . . , Ik be the connected components of the graph (A, I). Then
A∗/∼I is isomorphic to the free product A∗/∼I1 ∗ · · · ∗A∗/∼Ik

. Let us modify
the construction of the automaton B by taking

Rp,q =
⋃

16j6k

[

{u ∈ A∗

j | p·u 6 q}
]

Ij

10



Then one can prove that if each language [{u ∈ A∗

j | p·u 6 q}
]

Ij
is regular,

then [L]I is regular. Putting Dj = {(a, b) ∈ Aj ×Aj | (a, b) /∈ Ij} for 1 6 j 6 k,
one can show, thanks to Theorem 4.3, that Rp,q is regular if L is a polynomial
of group languages and each relation Dj is transitive.

There is a simple graph theoretic interpretation of this latter condition. One
can show that I satisfies it if and only if the restriction of the graph (A, I) to
any four letter subalphabet is not one of the graphs P4 and Paw represented
below:

P4
Paw

We can now state our last result.

Theorem 4.5 Let L be a polynomial of group languages. If the graph (A, I) is
(P4, Paw)-free, then [L]I is regular.
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