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1 Introduction

When a language theorist encounters a new operation on languages, his first
impulse is to know whether this operation preserves rational languages. If
the answer appears to be positive, he proceeds immediately to the construc-
tion of a more or less complicated automaton to solve the problem. However
there are many operations on languages, many language theorists (see the
references) and many different constructions to study these many opera-
tions. The aim of this paper is to show that almost all these constructions
are a particular case of a general and simple approach. It is fair to say im-
mediately that a few operations are overlooked, such as the star operation,
complementation and reversal. However, the scope of our method is quite
broad, broader indeed than one would expect, and goes from “classical” op-
erations such as union, intersection, concatenation, quotient, shuffle, inverse
and direct morphisms, etc., to less classical ones such as infiltration, Dyck
reduction, longest common prefix, Straubing’s counting, etc. It includes
also questions that are not expressed directly as operations on languages,
as, for example, Reutenauer’s theorem on TOL-systems. The interest of
the method in not only to give a unified framework for all these results.
Statements of the form “such an operation preserves rational languages”
can be readily be refined into “such an an operation preserves star-free lan-
guages” or even more generally “such an operation preserves such a variety
of rational languages”.

The key idea of our construction is to consider an operation ϕ : A∗
1 ×

· · · × A∗
n → A∗ as the inverse of a transduction τ : A∗ → A∗

1 × · · · × A∗
n

(whenever it is possible). Then, given monoids M1, . . . , Mn, recognizing the
languages L1, . . . , Ln, of A∗

1, . . . , A∗
n, respectively, we are able to construct

a monoid M recognizing (L1, . . . , Ln)ϕ as soon as the transduction τ admits
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a matrix representation. At this point the term “matrix representation”
is intentionally imprecise. The following definition gives a first approach
to the notion. Let µ be a morphism from A∗ into the monoid of k × k

matrices (for some k), whose entries are subsets of A∗
1 × · · · × A∗

n. Roughly
speaking, the transduction τ is then asked to be such that, for every u in
A∗, uτ is a fixed linear expression of the entries of uµ. Thus, for instance,
the Kleene-Schützenberger theorem says that every rational transduction
admits a matrix representation with rational subsets as entries. However,
one can replace “linear expression” by “polynomial expression” and even by
“series” in the previous definition. In any case, the construction of a monoid
M that recognizes (L1, . . . , Ln)ϕ only depends on the morphism µ and on
M1, . . . , Mn.

Therefore, if ϕ is an operation, we proceed as follows: we first check
whether ϕ can be expressed as the inverse of a transduction τ . This works
in most cases (except for star and complementation). Now the construc-
tion of M reduces to finding a matrix representation for τ . This is again
possible in most cases (except for reversal) and in general τ even admits a
“linear” matrix representation. However, the following example, which is an
extension of a classical exercise in language theory, shows that non-linear
matrix representations might be required: given a language L of A∗, divide
the words of L into 2n+1 equal segments (if possible) for any prime number
2n+1: ζ(L) is the set of all medial segments one can obtain this way. Then
if L is rational, ζ(L) is rational.

2 Matrix representations of transductions

We refer the reader to [3] for undefined terms of this article.
Let M be a monoid (with unit 1). We denote by P(M) the power set

of M : P(M) is a semiring with union as addition and the usual product
of subsets as multiplication. The set of rational subsets of M , denoted
Rat(M), is the smallest subsemiring of P(M) containing the finite sets and
closed under the star operation. As usual, we denote by P(M)n×n the set
of matrices of size n with entries in P(M).

A subset P of M is recognized by a morphism η : M → N if P = Pηη−1,
that is, if there exists a subset Q of N such that P = Qη−1. In this case
we also say that N recognizes P . Note that if N is a submonoid of N ′, then
N ′ also recognizes P . A set P is recognizable if it is recognized by a finite
monoid. Kleene’s theorem states that a language is recognizable if and only
if it is rational.

Let M and N be two monoids. A transduction τ : M → N is a mapping
from M into the P(N). One extends τ to a mapping P(M) → P(N) by
setting Pτ =

⋃

m∈P mτ . The inverse transduction τ−1 : N → M is defined
by Qτ−1 = {m ∈ M | τ ∩ Q 6= ∅}. The transduction is rational if the set
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{(m,n) ∈ M × N | n ∈ mτ} is a rational subset of M × N .
Let A be an alphabet and let M be a monoid.

Definition 2.1 A transduction τ : A∗ → M admits a linear matrix repre-
sentation (λ, µ, ν) if there exist n > 0, a morphism µ : A∗ → P(M)n×n, a
row vector λ ∈ P(M)1×n, a column vector ν ∈ P(M)n×1 such that for all
f ∈ A∗, fτ = λ· fµ· v.

The theorem of Kleene-Schützenberger (cf. [3]) states that a transduc-
tion τ : A∗ → M is rational if and only if it admits a linear matrix repre-
sentation with entries in Rat(M).

Every monoid morphism M → N can be extended to a morphism
P(M) → P(N) and, for each n > 0, to a morphism P(M)n×n → P(N)n×n.

The following elementary result is efficient for most of the applications
we have in view.

Theorem 2.1 Let τ : A∗ → M be a transduction that admits a linear
matrix representation (λ, µ, ν) and let P be a subset of M recognized by a
morphism η : M → N . Then the language Pτ−1 is recognized by the monoid
of matrices A∗µη.

Proof. Let Q = Pη and let R be the subset of A∗µη defined by

R = {m ∈ P(N)n×n | λη ·m· νη ∩ Q 6= ∅}

Then by a routine calculation:

R(µη)−1 = {f ∈ A∗ | fµη ∈ R} = {f ∈ A∗ | λη · fµη · νη ∩ Q 6= ∅}
= {f ∈ A∗ | fτη ∩ Q 6= ∅} = {f ∈ A∗ | fτ ∩ Qη−1 6= ∅}
= {f ∈ A∗ | fτ ∩ P 6= ∅} = Pτ−1

Corollary 2.2 Let τ : A∗ → M be a transduction that admits a linear ma-
trix representation. If P is a recognizable subset of M , Pτ−1 is a recognizable
— hence rational — language of A∗.

The extension of Theorem 2.1 requires some preliminaries.
Let M be a monoid and let Ξ be an alphabet. We denote by M ∗Ξ∗ the

free product (or coproduct) of the monoids M and Ξ∗. The monoid M ∗Ξ∗

can be identified with the set of words of the form m0ξ1m1 · · · ξnmn (where
m0, . . . ,mn ∈ M and ξ1, . . . , ξn ∈ Ξ) equipped with the product

(m0ξ1m1 · · · ξnmn)(m′
0ξ

′
1m

′
1 · · · ξ′nm′

n′) =

m0ξ1m1 · · · ξn(mnm′
0)ξ

′
1m

′
1 · · · ξ′nm′

n′

Let θ : Ξ∗ → P(M) be a morphism, that is, a substitution from Ξ∗ to M .
We denote by [θ] : P(M ∗ Ξ∗) → P(M) the semiring morphism defined by

3



(a) u[θ] = m0(ξ1θ)m1 · · · (ξnθ)mn for u = m0ξ1m1 · · · ξnmn ∈ M ∗ Ξ∗,

(b) X[θ] =
⋃

u∈X u[θ] for X ∈ P(M ∗ Ξ∗).

Of course we identify in this definition the element m and the set {m}.
Let η : M → N . We also denote by η the induced morphisms M ∗Ξ∗ →

N ∗ Ξ∗ and P(M) → P(N). A formal verification suffices to prove the
following lemma:

Lemma 2.3 Let η : M → N and θ : Ξ∗ → P(M) be two monoid mor-
phisms. The following diagram is commutative:

P(M ∗ Ξ∗) P(M)

P(N ∗ Ξ∗) P(N)

η η

[θ]

[θη]

For any positive integer n, let Ξn = {ξ1,1, ξ1,2, . . . , ξn,n} be an alphabet
with n2 letters. Any matrix m ∈ P(M)n×n defines a morphism m : Ξ∗

n →
P(M)n×n by ξi,jm = mi,j. We can now generalize Definition 2.1.

Definition 2.2 A transduction τ : A∗ → M admits a matrix representation
(s, µ) if there exist n > 0, a morphism µ : A∗ → P(M)n×n, and an element
s ∈ P(M ∗ Ξ∗

n) such that for all f ∈ A∗, fτ = s[fµ].

Then Theorem 2.1 can be generalized as follows.

Theorem 2.4 Let τ : A∗ → M be a transduction that admits a matrix
representation (s, µ) and let P be a subset of M recognized by a morphism
η : M → N . Then the language Pτ−1 is recognized by the monoid of matrices
A∗µη.

Proof. The proof mimics the proof of Theorem 2.1. Let Q = Pη and let R

be the subset of A∗µη defined by

R = {m ∈ P(N)n×n | sη[m] ∩ Q 6= ∅}

Thus R(µη)−1 = {f ∈ A∗ | sη[fµη] ∩ Q 6= ∅}, hence by Lemma 2.3:

R(µη)−1 = {f ∈ A∗ | sη[fµη] ∩ Q 6= ∅}
= {f ∈ A∗ | s[fµ] ∩ Qη−1 6= ∅}
= {f ∈ A∗ | fτ ∩ P 6= ∅} = Pτ−1
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3 Operations on languages

Let L1, . . . , Ln be languages of A∗
1, . . . , A∗

n, respectively and let ηi : A∗
i → Mi

be a morphism recognizing Li, for 1 ≤ i ≤ n. Then clearly

η =
∏

1≤i≤n

ηi :
∏

1≤i≤n

A∗
i →

∏

1≤i≤n

Mi

recognizes the subset L1 × · · · ×Ln of A∗
1 × · · · ×A∗

n. Then Theorem 2.1 (or
Theorem 2.4) gives the construction of a monoid recognizing (L1, . . . , Ln)ϕ
provided that ϕ satisfies the following conditions:

(1) ϕ is the inverse of a transduction τ : A∗ → A∗
1 × · · · × A∗

n.

(2) τ admits a linear matrix representation (resp. a matrix representation)

As we claimed in the introduction, these two conditions hold for a lot of
classical operations.

3.1 Inverse morphisms and inverse substitutions

In this example, conditions (1) and (2) are trivially satisfied. For example,
let σ : A∗ → B∗ be a substitution. Then by definition σ induces a morphism
A∗ → P(B∗) and uσ = 1·uσ1 for all u ∈ A∗. Thus (1, σ, 1) is a linear
matrix representation of σ. With the notations of Theorem 2.1, A∗ση is a
submonoid of P(M). Therefore we have obtained the following result proved
in [11] for rational languages.

Proposition 3.1 Let σ : A∗ → B∗ be a substitution. If L ⊂ B∗ is recog-
nized by M , then Lσ−1 is recognized by P(M). In particular, if L is rational,
Lσ−1 is rational.

In the same way, we get easily

Proposition 3.2 Let ϕ : A∗ → B∗ be a morphism. Each monoid that
recognizes L ⊂ B∗ also recognizes Lϕ−1.

3.2 Intersection and union

We note that L1 ∩ L2 = (L1 × L2)τ
−1 where τ : A∗ → A∗ × A∗ is defined

by uτ = (u × u) = (1 × 1)(u × u)(1 × 1). Thus (1 × 1, τ, 1 × 1) is a linear
matrix representation of τ . With the notations of Theorem 2.1, A∗µη is a
submonoid of M1 × M2. Thus

Proposition 3.3 (see [6]) Let L1, L2 be languages of A∗ recognized by M1,
M2 respectively. Then L1 ∩ L2 is recognized by M1 × M2.
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The case of the union is a little more involved. Indeed L1 ∪ L2 = (L1 ×
L2)τ

−1 where uτ = (u×A∗)∪(A∗×u) for all u ∈ A∗. Thus ((1, 1), µ, (1, 1)t)
where uµ =

(

u×A∗ 0
0 A∗×u

)

is a linear matrix representation of τ . Now an instant
of reflection shows that A∗µη is isomorphic to a submonoid of M1 × M2.
Therefore

Proposition 3.4 (see [6]) Let L1, L2 be languages of A∗ recognized by M1,
M2 respectively. Then L1 ∪ L2 is recognized by M1 × M2.

3.3 Left and right quotients (or derivatives)

Let P and L be languages of A∗. Then the left quotient of L by P is the
set P−1L = {f ∈ A∗ | Pf ∩L 6= ∅}. The set LP−1 is defined dually. Now if
P is fixed, P−1L = Lτ−1 where uτ = Pu for all u ∈ A∗. Clearly (P, ι, 1) —
where ι denotes the identity of A∗ — is a linear matrix representation of τ .
Thus

Proposition 3.5 (see [3]) Let L be a language of A∗ recognized by a monoid
M . Then M recognizes P−1L and LP−1 for all languages P of A∗.

Corollary 3.6 If L is rational, P−1L and LP−1 are rational for all lan-
guages P .

3.4 Concatenation product

It is easy to see that L1 · · ·Ln = (L1 ×· · · ×Ln)τ−1 where τ : A∗×· · · ×A∗

is the transduction defined by

fτ = {(f1, · · · , fn) ∈ A∗ × · · · × A∗ | f1 · · · fn = f}

Moreover τ admits the linear matrix representation (λ, µ, ν) where λ =
((1, · · · , 1), 0, · · · , 0), ν = (0, · · · , 0, (1, · · · , 1))t and µ : A∗ → P(A∗ × · · · ×
A∗)n×n is defined, for all u ∈ A∗, by

ui,j = 0 if i > j

ui,j = {(u1, · · · , un) ∈ A∗ × · · · × A∗ | u1 = . . . = ui−1

= uj+1 = . . . = un = 1 and uiui+1 · · · uj = u} if i ≤ j

In particular, τ is a rational transduction. By Theorem 2.1, L1 · · ·Ln is
recognized by the monoid A∗µη. Now A∗µη is a submonoid of the monoid of
all square matrices of size n with entries in the finite subsets of M1×· · ·×Mn

such that:

(a) P is upper triangular, that is Pi,j = 0 for i > j.

(b) The i-th entry of the diagonal is an element of Mi. More precisely,
Pi,i = {(1, . . . , 1,mi, 1, . . . , 1)} for some mi ∈ Mi.
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(c) If (m1, . . . ,mn) ∈ Pi,j, then mk = 1 for k < i and k > j.

This latter monoid is called by Straubing [16] the Schützenberger product
of M1, . . . ,Mn and is denoted ♦n(M1, . . . ,Mn). For n = 2 it can be iden-
tified with the original definition of Schützenberger (see [6]). Note that
in general the three monoids ♦2(M1,♦2(M2,M3)), ♦3(M1,M2,M3) and
♦2(♦2(M1,M2),M3) are all different.

Therefore, we have

Proposition 3.7 Let L1, . . . , Ln be languages recognized by M1, . . . ,Mn re-
spectively. Then L1 · · ·Ln is recognized by ♦n(M1, . . . ,Mn).

A slight modification of the previous construction leads to the following
result (see [10] for applications)

Proposition 3.8 If a1, . . . , an−1 are letters of A, then L1a1L2 · · · an−1Ln

is recognized by ♦n(M1, . . . ,Mn).

3.5 Shuffle, infiltration product

Given a word h = a1 · · · an ∈ A∗ (the ai’s are letters) and a subset I =
{i1, · · · , ir} of {1, . . . , n} (where i1 < . . . < ir), we denote by hI the word
ai1 · · · air . With this notation, the shuffle of two words f and g is defined
by

f ◦ g = {h ∈ A∗ | hI = f and hJ = g for some I, J such that

I ∩ J = ∅ and I ∪ J = {1, . . . , |h|}}

and the infiltration product [4] is defined by

f ↑ g = {h ∈ A∗ | hI = f and hJ = g for some I, J such that

I ∪ J = {1, . . . , |h|}}

Shuffle and infiltation product are extended as usual to languages by setting

L1 ◦ L2 =
⋃

f1∈L1,f2∈L2

f1 ◦ f2 L1 ↑ L2 =
⋃

f1∈L1,f2∈L2

f1 ↑ f2

Now L1 ◦ L2 = (L1 × L2)τ
−1 where τ : A∗ → A∗ × A∗ is defined by fτ =

{(f1, f2) ∈ A∗ × A∗ | f ∈ f1 ◦ f2}. Since τ induces a morphism A∗ →
P(A∗ × A∗), τ admits the linear matrix representation (1, τ, 1). Thus one
gets easily

Proposition 3.9 [9] Let L1 and L2 be languages of A∗ recognized by M1

and M2 respectively. Then L1◦L2 is recognized by Fin(M1×M2), the monoid
of finite subsets of M1 × M2.
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In the same way L1 ↑ L2 = (L1×L2)τ
−1 where fτ = {(f1, f2) ∈ A∗×A∗ |

f ∈ f1 ↑ f2} and by the same argument as above we obtain

Proposition 3.10 Let L1 and L2 be languages of A∗ recognized by M1 and
M2 respectively. Then L1 ↑ L2 is recognized by Fin(M1 × M2).

3.6 Morphisms

Let ϕ : A∗ → B∗ be a morphism. Then ϕ−1 = τ : B∗ → A∗ is a rational
transduction. It follows that ϕ satisfies the conditions (1) and (2) and
Theorem 2.1 can be applied. However the explicit construction of a linear
matric representation requires some machinery. We first define the petal
monoid of X∗ when X is a finite language of B∗ [8]. Let Q = {(1, 1)} ∪
{(u, v) ∈ B+ × B+ | uv ∈ X}. One associates to each letter a ∈ B a
relation as follows (for the sake of simplicity we use arrows instead of formal
definitions):

(1, 1) if a ∈ X

(1, 1) (a, v) for all v ∈ B+ such that av ∈ X

(ua, v) (u, av) for all u, v ∈ B+ such that uav ∈ X

(u, a) (1, 1) for all u, v ∈ B+ such that ua ∈ X

a

a

a

a

The relations defined by a, for a ∈ B, generate a monoid of relations that
recognizes X∗. This is precisely the petal monoid of X∗, denoted by Pet X∗.
In the sequel we shall represent in the usual way relations on Q by boolean
matrices of size Q × Q.

Next we introduce the following

Definition 3.1 Let N be a monoid of relations on a set Q and let S be a
semiring. The substitution product of S by N (denoted S ◦ N) is the set of
all matrices of size Q × Q obtained by substituting elements of S for the
non-zero entries of matrices of N .

Let us come back to our morphism ϕ : A∗ → B∗. Set X = Aϕ ∩ B∗,
I∗ = 1ϕ−1 and for all x ∈ X, C(x) = {a ∈ A | aϕ = x}. Then one can prove
— we omit the details — that ϕ−1 admits the linear matrix representation
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(λ, µ, ν) where µ : B∗ → (Rat A∗)Q×Q is defined, for all a ∈ B, by

(aµ)p,q =























1 if q 6= (1, 1) and p qa

I∗C(ua) if p = (u, a), q = (1, 1) and p (1, 1)
a

I∗C(a) if p = q = (1, 1) and (1, 1) a

0 in all other cases

λp =

{

1 if p = (1, 1)

0 if not
νp =

{

I∗ if p = (1, 1)

0 if not

Now if L is recognized by η : A∗ → M , Theorem 2.1 states that Lϕ is
recognized by B∗µη. But a straightforward verification shows that A∗µη is
a submonoid of Rat M ◦ Pet X∗. Thus

Proposition 3.11 Let ϕ : A∗ → B∗ be a morphism such that X = Aϕ ∩
B∗. If L ⊂ A∗ is recognized by a monoid M , then Lϕ is recognized by the
substitution product Rat M ◦ Pet X∗.

In the case where X is a code the substitution product turns out to be
a wreath product (in the sense of [13]). Therefore

Proposition 3.12 Let ϕ : A∗ → B∗ be a morphism and let X = Aϕ ∩ B∗

is a code. If L ⊂ A∗ is recognized by a monoid M , then Lϕ is recognized by
the wreath product RatM ◦ Pet X∗.

If ϕ is injective one can be more precise

Proposition 3.13 Let ϕ : A∗ → B∗ be an injective morphism and let
X = Aϕ. If a language L ⊂ A∗ is recognized by a monoid M , then Lϕ

is recognized by the wreath product Rat M ◦ Pet X ∗.

Finally if ϕ is litteral (= length preserving, strictly alphabetic) we could
prove the following result, obtained in [15] and [11] for rational languages.

Proposition 3.14 Let ϕ : A∗ → B∗ be a litteral morphism. If a language
L ⊂ A∗ is recognized by a monoid M , then Lϕ is recognized by FinM .

3.7 Miscellaneous

We just mention here a list of operations for which Theorem 2.1 applies:

– The longer common prefix of two words: see [5]

– The nabla operation, a cousin of the shuffle: see [1]

– Straubing’s counting: see [16]

– Inverse of rational functions: see [14]

etc.
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4 Other applications

4.1 A result on TOL-systems

We call TOL a set G = (A, {σ1, . . . , σn}) where A is an alphabet and
σ1, . . . , σn are substitutions of A∗ into A∗. Let B = {1, . . . , n}. With each
word u = i1 · · · ir of B∗ one associates the substitution σu = σi1 · · · σir (the
substitution associated with the empty word is the identity). The following
proposition is a slight extension of a result of [11].

Proposition 4.1 Let G be a TOL-system and let K,L be two rational lan-
guages of A∗. Then G(K,L) = {u ∈ B∗ | Kσu ∩ L 6= ∅} is rational.

Indeed G(K,L) = Kτ−1 where τ : B∗ → A∗ is the transduction defined
by uτ = Lσ−1

u for all u ∈ B∗. The remainder of the proof consists of
verifying that τ admits a linear matrix representation. Then one applies
Corollary 2.2.

4.2 Reduction of the free group

Let A be an alphabet, Ā a copy of A and set Ã = A∪Ā. As is well-known the
free group F (A) over A is the quotient of Ã∗ by the congruence generated
by the relations aā = 1 and āa = 1. We denote by D∗ the set of all words
congruent to 1. A word is reduced if it contains no occurrence of factors of
the form aā or āa. One can prove that every word u of A∗ is congruent to
a unique reduced word uδ. This defines a function δ : Ã∗ → Ã∗ called the
Dyck reduction. The classical result of Benois (see [2]) can be restated as
follows:

Proposition 4.2 Let R be a rational subset of Ã∗. Then Rδ is rational.

Indeed let τ : Ã∗ → Ã∗ be the transduction defined by (a1 · · · an)τ =
D∗a1D

∗ · · · anD∗ (where a1, . . . , an are letters). Then one can prove — this
is the difficult part of the proof — that τ−1 = δ. Now it is not difficult to find
a linear matrix representation for τ and the result follows from Corollary
2.2.

Of course a similar result holds for the congruence generated by aā = 1
(a ∈ A) or other variants — see [12] —
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4.3 Applications of Theorem 2.4

We first return to the example of the introduction. Let L be a language and
let n be a positive integer. Set (cf. [7] for instance)

1

2n + 1
L = {u ∈ A∗ | there exist x, y ∈ A∗ |x| = |y| = n and xuy ∈ L}

and

ζ(L) =
⋃

(2n+1) prime

1

2n + 1
L.

We shall prove the following result

Proposition 4.3 If L is recognized by a monoid M , then 1
2n+1 L (for every

n > 0) and ζ(L) are recognized by M × C where C is a one-generator
submonoid of P(M).

Corollary 4.4 If L is rational, 1
2n+1 L (for every n > 0) and ζ(L) are

rational.

Proof. Define for all n > 0, τn : A∗ → A∗ by uτn = An|u|uAn|u| and let
τ : A∗ → A∗ be defined by uτ =

⋃

(2n+1) prime uτn. Then Lτ−1
n = ζ(L).

Moreover τn admits the (non-linear) matrix representation (sn, µ) where

uµ =
(

A|u| 0
0 u

)

for all u ∈ A∗ and sn = ζn
1,1ζ2,2ζ

n
1,1. In the same way τ

admits the matrix representation (s, µ) where s =
∑

(2n+1) prime sn. Now if

L is recognized by η : A∗ → M , Theorem 2.4 shows that 1
2n+1 L and ζ(L)

are recognized by A∗µη. But A∗µη is isomorphic to a submonoid of M ×C

where C is the submonoid of P(M) generated by Aη.

Here is another example. Define
√

L = {u ∈ A∗ | u2 ∈ L}. Then√
L = Lτ−1 where uτ = u2 for all u ∈ A∗. Clearly τ admits the matrix

representation (s, µ) where uµ = u and s = ζ2. Therefore

Proposition 4.5 If a language L is recognized by a monoid M , then M

also recognizes
√

L. In particular if L is rational (resp. star-free), so is
√

L.

Finally the reader who likes more complicated examples may try to prove
that if L ⊂ {a, b}∗ is rational and if τ : A∗ → A∗ is any rational transduction,
then

L′ =
⋃

n square-free

{u ∈ A∗ | D∗ub√ncan(uτ)n!b ∩ L 6= ∅}

is rational.
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