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Thermoelectric e¤ect on charged colloids in the Hückel limit

Julien Morthomas and Alois Würger
CPMOH, Université Bordeaux 1 & CNRS, 351 cours de la Libération, 33405 Talence, France

We study the thermophoretic coe¢ cient DT of a charged colloid. The non-uniform electrolyte
is characterized in terms of densities and di¤usion currents of mobile ions. The hydrodynamic
treatment in the vicinity of a solute particle relies on the Hückel approximation, which is valid for
particles smaller than the Debye length, a � �. To leading order in the parameter a=�, we �nd
that the coe¢ cient DT consists of two contributions, a dielectrophoretic term proportional to the
permittivity derivative d"=dT , and a Seebeck term , i.e., the macroscopic electric �eld induced by the
thermal gradient in the electrolyte solution. Depending on the particle valency, these terms may take
opposite signs, and their temperature dependence may result in a change of sign of thermophoresis,
as observed in several recent experiments.

PACS numbers: 66.10.C, 82.70.-y, 47.57.J-

I. INTRODUCTION.

Micro�uidic devices and their applications rely to a
large extent on the possibility to precisely control trans-
port phenomena in colloidal suspensions [1]. Besides elec-
trophoresis, which is the best known and widely used
physical mechanism [2], a suspended particle may be
driven by a concentration gradient of an ionic or mole-
cular solute, or a non-uniform temperature. In charged
colloids, transport is essentially due to the coupling of
the applied external �eld to the electric double layer at
the particle-�uid interface [3].
The forces underlying electrophoresis and di¤usio-

phoresis are described in a simple physical picture [3, 4],
and their dependence on the properties of solvent and
solute is rather well understood. A more complex situa-
tion occurs for motion driven by thermal forces, where a
temperature gradient results in the single-particle veloc-
ity

u = �DTrT: (1)

Typical values of the coe¢ cient DT are of the order of a
few �m2K�1s�1 [5�7]. Thermal di¤usion in dielectric bi-
nary or ternary molecular liquids [8�10] is determined by
the competition of entropy and short-ranged dispersion
forces; with appropriately chosen atom-atom potentials,
numerical simulations of the molecular dynamics account
for several observed dependencies [10�12] and in partic-
ular permit to separate the chemical contribution [11].
Transport in charged colloidal systems involves elec-

tric forces operating on the scale of the Debye screening
length, which takes values between one and hundreds of
nanometers. If electrophoresis is readily obtained from
an external �eld acting on the electric-double layer [3],
and di¤usiophoresis from the osmotic pressure in a con-
centration gradient, the physical origin of the thermal
forces is less obvious. In fact, Eq. (1) arises from the su-
perposition of several contributions of comparable mag-
nitude. Besides the temperature gradient, any solvent
parameter that depends on temperature, such as Debye
screening length, permittivity, or salinity, may a¤ect the
thermally driven motion.

In the last few years, a host of experimental data pro-
vided clear evidence that the thermophoretic coe¢ cient
DT of charged colloids may change its sign upon a vari-
ation of temperture or salinity. This was �rst observed
for an aqueous solutions of lysozyme protein, where the
macromolecular solute di¤uses to the warm at low tem-
peratures, and to the cold at higher T [13]. The trans-
port coe¢ cient goes through zero at T �, which is close to
room temperature and depends weakly on salinity. Later
on, this behavior was con�rmed for polystyrene beads
[14�17], micelles of ionic surfactants [16], DNA [18], and
coated Ludox particles [19], with cross-over temperatures
T � ranging from 5 to 40 �C.
Similar observations were reported upon changing the

electrolyte composition. The thermophoretic mobility of
latex nanoparticles was shown to depend on the quantity
of added salt and in particular on the pH value of the
electrolyte solution [14]. For lysozyme protein solution
at room temperature, a change of sign of DT occured
when increasing the NaCl content [13].
As �rst suggested in [14], the negative sign of ther-

mophoretic coe¢ cient of colloidal suspensions is related
to a Seebeck or thermoelectric e¤ect: The thermal gra-
dient results in a non-uniform di¤usion of positive and
negative ions, depending on their heat of transport, or
ionic Soret coe¢ cient; this induces a macroscopic electric
�eld E1 that drives the suspended particles in one di-
rection or in the other, depending on their surface charge
and on the sign E1. The temperature dependence of
the thermal transport coe¢ cient and its change of sign
have been explained in terms of the competition of this
Seebeck e¤ect with that of the non-uniform salinity and
dielectrophoresis [20].
Transport coe¢ cients describe the linear response to

a non-equilibrium situation created by an applied �eld
[21]. For a charged colloid, their explicit calculation re-
lies on evaluating how the external �eld a¤ects the cloud
of counterions that screens the surface charge of a sus-
pended particle. We brie�y recall the basic results for
the electrophoretic mobility � = u=Eext , where u is the
particle velocity u and Eext the applied electric �eld [22].
If the particle size a exceeds the Debye length �, the
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Helmholtz-Smoluchowski relation " 0=� gives the mobil-
ity as the ratio of the surface potential  0 and the solvent
permittivity " and viscosity �. In the opposite case of
small particles, the Hückel limit results in � = 2

3" 0=�,
which di¤ers merely by a factor 23 . It turns out instructive
to rewrite the mobility in terms of the surface charge den-
sity � = Q=4�a2. In the weak-coupling or Debye-Hückel
limit, the surface potential  0 = (�=�")a=(a + �) is a
linear function of � but depends on the ratio of screening
length and particle size. Inserting in the above expres-
sions for the mobility,

� =
�

�
�
�

� for �� a;
2
3a for a� �;

(2)

one �nds that � is proportional to the shorter of the
lengths � and a.
The variation of the thermophoretic coe¢ cient DT

with the solvent and solute parameters, and in partic-
ular with particle size and Debye length [6, 18, 19, 23],
has been intensely debated in recent years. Theoreti-
cal work mostly relies on low-Reynolds number hydro-
dynamics [24�31]. Except for Ref. [31], these works
rely on the boundary-layer approximation, valid in the
limit of large particles � � a, and which is the usual
basis for describing capillary �ow and colloidal trans-
port [3]. Derjaguin et al. considered thermoosmosis in
terms of the enthalpy �ow close to the wall of a pore
[24]. By adapting the Helmholtz-Smoluchowski elec-
trophoretic mobility and using the picture of a thermal
Marangoni force at the particle surface, Ruckenstein ar-
gued that the thermophoretic coe¢ cient should be pro-
portional to the square of the surface potential [25]; for
weak coupling this implies that DT is quadratic in the
Debye length and independent of a. This was con�rmed
by explicitly solving Stokes�s equation for a thermal force
with no-slip boundary conditions [26�29], whereas hydro-
dynamic slippage results in a linear law [7, 30]. As an
alternative to the hydrodynamic approach, the phenom-
enological charging-energy model was studied by several
authors [18, 32�35].
The small-particle limit a� � has so far attracted lit-

tle attention, although it is relevant for molecular solutes
and for nanoparticles in weak electrolytes where the De-
bye length may attain hundreds of nanometers. Extend-
ing our previous work [20], the present paper deals with
thermophoresis of small particles, by paying particular
attention to the role of the non-uniform electrolyte. In
Sect. 2 we give the densites and currents of salt ions and
particles; for small Peclet numbers the coupled di¤usion
equations reduce to the �uid �ow around a suspended
particle. This hydrodynamic problem is addressed in
Sect. 3; we derive the force density exerted by a sus-
pended particle on the surrounding �uid and determine
the �uid velocity. In Sect. 4 the transport coe¢ cientDT is
evaluated in weak-coupling or Debye-Hückel approxima-
tion. Finally we discuss several aspects of small-particle
thermophoresis and compare our results with recent ex-
periments.

II. DIFFUSION IN NON-EQUILIBRIUM
SYSTEMS

On a fundamental level, thermal di¤usion is driven by
the principle of minimum entropy production [21]. The
resulting phenomenological equations provide a complete
description for the heat and particle currents; they do
not, however, relate the transport coe¢ cients to the phys-
ical and chemical properties of the system. In order to
express thermally driven transport in terms of the system
parameters, one needs to start from the di¤usion equa-
tions for the components and to derive the forces from
their interactions potentials.
In principle heat and particule currents are coupled.

Since heat di¤usion is much faster than particle motion,
the temperature follows instantaneously and takes in a
given pro�le �T (r) around the particle. Local tempera-
ture modulations occur if the heat conductivities of solute
and solvent di¤er signi�cantly [26]. Except for metal par-
ticles, this e¤ect is of little relevance and will be discarded
here. Throughout this paper we assume a constant tem-
perature gradient

rT = Txex

along the x-axis.

A. Electrolyte solution

We start with a discussion of an electrolyte solution
of monovalent ions of charge qi = zie with number den-
sities ni. Their current densities comprise normal dif-
fusion, thermal di¤usion, and a term accounting for a
macroscopic electric �eld [36�38],

Ji = �Di

�
rni + ni

Q�i
kBT 2

rT � ni
qiE1
kBT

�
; (3)

where the Einstein coe¢ cients Di = kBT=(6��ai) are
de�ned by Fick�s law �Dirni, and the thermal di¤usion
current depends on the heat of transport Q�i . The latter
determine the thermoelectric �eld E1, as derived below.
We discuss the stationary state Ji = 0, where the cur-

rents vanish and the electric �eld has reached a constant
value. For later convenience we de�ne the salinity

n0 =
1

2

X
i

ni; (4)

the reduced ionic Soret coe¢ cient in terms of the heat of
transport

�i =
Q�i
2kBT

; (5)

and the reduced Soret and Seebeck coe¢ cients of the
electrolyte solution, as the mean values of �i and zi�i,
weighted with the number densities ni,

� =
X
i

�i
ni
n0
; �� =

X
i

zi�i
ni
n0
: (6)
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The macroscopic charge separation reads as

�1 =
X
i

qini:

The stationary state implies overall conditions of zero
particle current

P
i Ji = 0 and zero charge currentP

i qiJi = 0; inserting the above quanities and using the
valencies zi = �1 for positive and negative ions, we ob-
tain the relations

0 = rn0 + �n0
rT
T

� E1
2kBT

�1;

0 =
r�1
2e

+

�
��
rT
T

� eE1
kBT

�
n0:

The salinity gradient rn0 and the thermoelectric �eld
E1 arise from the tendency of the ions to di¤use to
cold or warm regions of the solution, as expressed by
the relative values of their heat of transport Q�i . Both
rn0 and E1 are macroscopic quantities that are inde-
pendent of the system size. The charge density �1, how-
ever, vanishes throughout a macroscopic system, except
for a screening layer at the boundaries.
Setting �1 = 0 relates the salinity gradient and the

thermoelectric �eld E1 to the thermal gradient,

rn0
n0

= ��rT
T

;
eE1
kBT

= ��
rT
T

; (7)

and points out the physical meaning of the reduced Soret
and Seebeck coe¢ cients � and ��. With typical values
for the ionic heat of transfer Q�i � a few kJ/Mol [39], one
�nds that the dimensionless quantities � and �� are of
the order of unity.
There is a close analogy to the thermoelectric e¤ect

of charge carriers in solid-state physics, where the See-
beck coe¢ cient is de�ned as the ratio of the induced
voltage and the temperature di¤erence S = � =�T ;
for an electrolyte solution this ratio takes the value
E1=Tx = ��kB=e � 10�4 V/K. This implies that the
macroscopic electrostatic potential e� of a single ion is
much small than its thermal energy.

B. Charged colloidal suspensions

Now we add particles to the electrolyte solution. Their
charge Q is screened by a cloud of counterions and a de-
pletion of co-ions within one Debye length; the spher-
ical symmetry of this screening cloud is broken by the
non-uniform temperature, salinity n0(T ), and permittiv-
ity "(T ). The gradients of these macroscopic parameters
and the thermoelectric �eld E1 result in thermal forces
on the charged �uid and in a �ow �eld v(r) around each
particle.
The ion densities are subject to the electric �eld

E = �r of the particle; in principle we have to con-
sider the superposition of local and macroscopic �elds

E + E1. The surface potential of the particle is of the
order  � kBT=e and decays on the scale of the Debye
length �, resulting in E � kBT=e�. A rough estimate
shows that the local �eld E � 107 V/m is by serveral
orders of magnitude larger than the thermoelectric �eld
E1 � kBTx=e, which attains 102 V/m for a thermal gra-
dient Tx = 1 K/micron. A similar argument shows that
the salinity gradient is much smaller than the change in
ion densities occuring in the boundary layer.
As a consequence, the Seebeck and Soret e¤ects are

insigni�cant on short scales, and the thermoelectric �eld
and the salinity gradient may be neglected when dis-
cussing the ion densities close to the particle. Thus the
ion currents in the boundary layer comprise a convection
term due to the �uid �ow v(r), and di¤usion in the local
electric �eld,

�Ji = �niv �Di

�
r�ni � �ni

qiE

kBT

�
; (8)

where the �ni are the excess ion densities with respect to
their values ni in the pure electrolyte discussed above.
In principle, the ion densities and currents are obtained

from the coupled di¤usion equation for �ni and the hy-
drodynamic equation for v. A detailed study of the op-
posite case Pe > 1 has been given for particles driven by
the strong concentration gradient of an adsorbing neutral
solvent [4]. In the present case, however, convection is
neglegible, and the problem simpli�es signi�cantly. The
reason is that, even for large thermal gradients, ther-
mophoretic transport velocities are at most of the order
10�6 m/s; the corresponding Peclet number for ion dif-
fusion, Pe = v�=Di, hardly attains values of 10�3. This
means that convection is much slower than di¤usion and
does not a¤ect the ion densities,
Thus we neglect convection e¤ects and assume that the

ion distributions follow instantaneously the particle and
motion. To zeroth order in the thermal perturbation,
that is when neglecting the temperature gradient, the
ion densities are obtained from r�ni� �niqiE=kBT = 0,
which is readily integrated,

�ni = ni(e
�qi =kBT � 1): (9)

At distances beyond a few Debye lengths from the parti-
cle, its potential  vanishes due to screening, and so does
�ni. The �uid �ow carries a net ion current

�Ji = �niv:

For a negatively charged colloidal particles one has  < 0,
resulting in an excess density of positive ions and a deple-
tion of negative ones, �n+ > 0 > �n�. As a consequence,
the e¤ective convection currents take opposite directions,
thus carrying in the vicinity of the particle permanently
charge along the thermal gradient. At larger distances
they decay rapidly; the charge current

P
i qi�Ji is equi-

librated by di¤usion, as expressed by the small Peclet
number.
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C. Particle di¤usion

According to Eq. (1) the thermally driven particle
current of a colloidal suspension of number density N(r)
reads Nu = �NDTrT . Adding normal di¤usion with
Fick�s law �DrN results in

J = �DrN �NDTrT: (10)

The drift velocity of the particle is given by the �uid �ow
at its surface,

u = vjr=a:

Thus calculation of the thermal di¤usion coe¢ cient DT

reduces to solving the �uid �ow driven by thermal forces.

III. HYDRODYNAMICS

Transport in colloidal suspensions is described by re-
lating the particle velocity to the applied forces; the co-
e¢ cients are calculated by equilibrating the driving force
and the hydrodynamic stress of the �uid [22]. Station-
ary states and mechanical equilibrium of inhomogeneous
systems are discussed in Chapter V of [21].
Like in most micron-scale �ows, the Reynolds number

of thermally driven motion is small, and the stationary
�uid velocity in the vicinity of the particle is determined
by Stokes�equation

�r2v =r (P0 + nkBT )� f0; (11)

where � is the solvent viscosity and the right-hand side
depends on ion densities (9). We have separated the hy-
drostatic pressure P0 of the pure electrolyte and the pres-
sure of the excess density of mobile ions,

n =
X
i

�ni:

A. Double-layer forces

The electric force density f0 acting on the charged �uid
comprises two independent parts [40, 41],

f0 =r � T + �E1;

the divergence of the Maxwell stress tensor T describes
the force exerted by the charged particle surface, and
the second term accounts for the coupling of the charge
density � to an external electric �eld E1. With known
properties of the gradient E = �r of the particle�s elec-
trostatic potential [40, 41], the divergence of the Maxwell
tensor can be written as

r � T = �1
2
E2r"+ �E;

where " is the solvent permittivity and where

� =
X
i

qi�ni

is a shorthand notation for the charge density of mobile
ions in the screening cloud. Because of E1 � E, the con-
tribution of the macrospopic �eld to the dielectrophoretic
term is negligible.
It turns out convenient to add the osmotic pressure to

the electric forces,

f = �1
2
E2r"+ �E�r(nkBT ) + �E1; (12)

resulting in

�r2v =rP0 � f : (13)

A somewhat di¤erent route is taken in studies on dif-
fusiophoresis [3], i.e., for neutral solutes adsorbing on the
particle surface, where the right-hand side of (13) is writ-
ten in terms of the total pressure P = P0+nkBT and the
force f0 = �r� arising from the particle-solute van der
Waals attraction �. A thermal gradient, however, gives
rise to a rather intricate force density (12), that com-
prises terms of di¤erent physical origin and that does
not derive from a potential. The screened electrostatic
potential  is an e¤ective quantity that depends on the
entropy of the mobile ions; thus it is in any case impos-
sible to distinguish potential and entropic forces, and we
�nd it more convenient to include the osmotic pressure
gradient in the force density f .
Eq. (12) gives the force density as a function of the

quantities describing the electric double-layer and of the
the thermoelectric �eld. In a uniform electrolyte, the
Poisson-Boltzmann mean-�eld expression (9) results in
f = 0. Treating the thermal gradient as a perturbation,
we insert the unperturbed ion distribution function (9) in
the expression for f and expand all terms to linear order
in the gradients of the slowly varying solvent parameters.
We start with the particle�s electric �eld and the ion

pressure, �E�r(nkBT ). The Poisson-Boltzmann mean-
�eld expressions (9) give � = �2en0 sinh  ̂ and n =

2n0(cosh  ̂�1), with the reduced potential  ̂ = e =kBT .
Spelling out the pressure gradient we �nd

r(nkBT ) = nkBrT + nkBT
rn0
n0

+ � 
rT
T

� �r :

The last term cancels its counterpart �E = � �r in
(12), and we are left with

f = � (� + nkBT )
rT
T

�E
2

2
r"+ nkBT

rn0
n0

+ �E1: (14)

Note that the gradient of the electrostatic potential r 
has disappeared.



5

λ

T∇

f

F

FIG. 1: Schematic view of a charged particle of radius a, and
its screening cloud with Debye length �� a. Except for the
immediate vicinity of the particle, the force �eld f exerted by
the particle on the �uid is parallel to the thermal gradient.
The Hückel approximation relies on the counterforce F on the
particle

Eq. (14) constitutes the general expression for the
force density in an non-uniform elecrolyte, consisting of
the external electric �eld E1 and the gradients of the
slowly varying quantities temperature, permittivity, and
salinity. It relies on Poisson-Boltzmann mean-�eld theory
and linear-response approximation; the latter assumes a
su¢ ciently weak electric �eld, �E1 � kBT=a, and that
the solvent parameters T , ", n0 vary little on the scale
of the particle, r lnT � 1=a, etc. These conditions are
satis�ed in all experimental situations.
Now we turn to the dielectric force proportional to the

permittivity gradient r". With the logarithmic deriva-
tive

� = � d ln "

d lnT
(15)

one has

�1
2
E2r" = �

2
E2rT:

The remaining contributions to Eq. (14) describe the
Soret and Seebeck e¤ects of the electrolyte solution. The
former accounts for a non-uniform salinity n0, and the
latter for a charge separation that occurs if the thermal
di¤usion strengths of positive and negative ions are not
the same [36, 39, 42]. Inserting the dimensionless quan-
tities � ; �; �� in (12) we obtain the force density on the
�uid as a linear function of the thermal gradient,

f =

�
�"E2

2kBT
� � 

kBT
+ (�� 1)n+ ���

e

�
kBrT: (16)

This force arises from the interactions at the solid-�uid
interface. As a consequence, the total force on the col-
loidal particle and its screening cloud vanishes, and there

is a counterforce

F = �
Z
dV f (17)

exerted by the charged �uid on the particle.

B. Fluid velocity

Stokes�equation (13) with the force density (16) can-
not be solved as it stands. For small particles,

a� �;

the velocity �eld can be obtained in two particular cases,
(i) at short distances close to the particle surface, r�a�
�; (ii) at large distances well beyond the Debye length
r � �. These approximations rely on the fact that the
force density is spread over an interaction volume of the
order �3, much larger than the particle volume.
(i) At distances much shorter than the Debye length,

the velocity is determined by the counter-force F acting
on the particle [22]. This corresponds to the Hückel limit
of electrophoresis; the solution is given by [43]

v(r) =
1

8��r

�
(1 +Pr) +

a2

r2

�
1

3
�Pr

��
� F; (18)

with the projection Pr = r̂r̂ on the radial direction r̂ =
r=r. Note that this result is valid for r� a� � only. On
the particle surface r = a, the terms in Pr cancel each
other, and u = vjr=a takes the value

u =
F

6��a
: (19)

For no-slip boundary conditions, the velocity �eld is con-
tinuous at the interface, and u is the particle velocity.
Eq. (19) could be obtained equally well by equilibrating
the force F on the particle with the Stokes drag �6��au.
(ii) At distances well beyond the Debye length, r � �,

the size of the particle and the boundary conditions at
its surface are irrelevant. Thus the �uid velocity may
be written as the superposition of the �ow engendered
by the point force F and that on the mobile ions in the
screening cloud,

v(r) = G(r) � F�
Z
dV 0G(r� r0) � f(r0);

where the Oseen tensor

G(r) =
1

8��r
(1 +Pr)

plays the role of a Green function associated with Stokes�
equation [44]. This expression provides a basis for ex-
panding the velocity �eld in inverse powers of the dis-
tance r. At lowest order we replace the Oseen tensor with
G(r); then the surface and volume terms cancel and we



6

FIG. 2: Schematic view of the �uid velocity v(r) around a
particle moving to the left. The Debye length is indicated by
the dashed line; the �ow pattern (18) in the interaction vol-
ume (r < �) di¤ers signi�cantly from that at large distances,
as given by Eq. (20).

�nd that there is no velocity contribution v � 1=r. The
leading correction is obtained by expanding G(r� r0) to
third order in 1=r; the �uid �ow reads

v(r) =
R2

8��r3

�
Pr �

1

3

�
F; (r � �); (20)

where the quantity R2 is de�ned through the integral

R2 =
1

F

Z
dV r2f(r);

with f(r) = f(r)ex and F = Fex.
Fig. 2 gives a schematic view of the �uid velocity re-

sulting from Eqs. (18) and (20). At distances within one
Debye length, the particle drags the �uid with a velocity
v � 1=r similar to what happens in sedimentation. At
larger distances, the �uid close to the symmetry plane
moves in the opposite direction; its velocity decays as
v � 1=r3.
The �ow pattern v(r) is of limited interest for ther-

mophoresis of spherical particles, where the transport
velocity is given by Eq. (19). For macromolecules, how-
ever, the drag �ow (20) within one Debye length results in
hydrodynamic interactions between nearby units, which
may signi�cantly enhance the transport coe¢ cient.

IV. TRANSPORT COEFFICIENT

For arbitrary surface charge density, the electrostatic
potential  cannot be given in closed form. Thus we eval-
uate the force F in Debye-Hückel approximation, where

 =
Ze

4�"r

e�(r�a)=�

1 + a=�
:

This weak-coupling expression is valid as long as the elec-
trostatic potential e of an ion is smaller than the ther-
mal energy. Expanding the charge density and the ex-
cess ion density to quadratic order in  , and using the
Debye length �2 = 1=(8�n0`B) with the Bjerrum length
`B = e2=(4�"kBT ), we obtain

� = �" 
�2
; n =

" 2

2�2kBT
:

Then the force acting on the particle is given by

F

kBTx
=

Z
dV

�
�"E2

2kBT
+
(�+ 1)" 2

2�2kBT
� ��" 

e�2

�
: (21)

Evaluating the electric �eld E = �d =dr, de�ning the
surface potential  0 =  (a), and changing to the variable
� = (r � a)=a, the volume integral is readily performed,

F = 2�a" 20

�
� + (� + �+ 1)

a

2�

� Tx
T

�4�a" 0��
�
1 +

a

�

� kBTx
e

; (22)

Finally we calculate the quantity R2 that determines the
�uid velocity at large distances. If the Seebeck coe¢ cient
is small, one has R2 = a�( 12 +(�+1)=�), whereas in the
opposite case we �nd R2 = 6�2.
Eqs. (12) and (19) relate the thermophoretic coe¢ -

cient to the force on the particle,

DT =
F

6��aTx
:

Inserting the explicit form (22) we have

DT =
"

3�T

n
 20

�
� +

a

2�
(� + �+ 1)

�
�  0

2kBT

e
��
�
1 +

a

�

��
; (23)

with the coe¢ cients � and �� as de�ned in (15) and (6).
When retaining only leading terms in a=�, one has

DT =
"

3�T

�
� 20 � 2��

kBT

e
 0

�
(a� �):

Inserting the surface potential of small particles  0 =
Ze=4�"a, we obtain the coe¢ cient as a function of the
valency,

DT =
kB
12��a

�
�Z2

`B
a
� 2��Z

�
: (24)

As a most striking feature, DT is independent of the
Debye length. The only terms contributing to ther-
mally driven transport are the dielectrophoretic force
and the thermoelectric �eld, that are proportional to
� = �(T=")d"=dT and to ��, respectively. For water,
the permittivity derivative takes the value � = 1:4 at
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FIG. 3: Thermophoretic mobility as a function of the valency
Z for �� = 1; 0;�3. We have used `B = 0:7 nm, a = 3 nm,
� = 1:4, and � = 10�3 Pa s.

room temperature. Thus the dielectrophoretic contribu-
tion to DT is positive. The Seebeck term may be positive
or negative, depending on the signs of the thermoelectric
coe¢ cient �� and the valency Z. In Fig. 3 we plot the
thermophoretic mobility as a function of Z for di¤erent
values of ��. For comparision we give values for dif-
ferent electrolyte solutions, as calculated from measured
ion Soret coe¢ cients: �� = 0:6 for NaCl, �� = �2:7 for
NaOH, and �� = 2:6 for HCl [20]. The curves of Fig. 3
show a qualitative behavior similar to that reported in
[20] for large particles. Due to the weaker charges, the
absolute values of DT shown here are by about one order
of magnitude smaller.

V. DISCUSSION

A. Approximations

The coe¢ cient DT in the present work has been de-
rived in Debye-Hückel approximation, contrary to our
previous analysis based on boundary-layer approxima-
tion [20]. This additional approximation is imposed by
the fact that in the small-particle or Hückel limit (a� �),
the screened electrostatic potential  can not be calcu-
lated for arbitrary charge. Thus Eq. (24) relies on the
weak-coupling assumption for the ratio of the electrosta-
tic potential of an elementary charge and the thermal
energy,

e 0
4kBT

=
Z`B
4a

=
Z

Z�
< 1; (25)

i.e., the weak-coupling approach is justi�ed as long as the
valency is smaller than the e¤ective value Z� = 4a=`B

[45]. The relation to the dimensionless coupling parame-
ter �̂ = 2���`B introduced in [20] is given by �̂ = 2Z=Z�.
Highly charged macroions of nanometer size do not nec-
essarily satisfy the weak-coupling assumption, e.g., for
coated Ludox particles (a = 12 nm, Z = 50:::100) [19]
one �nds the ratio Z=Z� � 1, and for micelles of the
ionic surfactant SDS (a = 3 nm, Z � 40) [6] one has
Z=Z� � 2:5.
Static properties of strongly charged particles (Z >

a=`B) are well described by Debye-Hückel theory with
the e¤ective valency Z� and a corresponding potential  �

[45]. This does not necessarily hold true for the transport
properties. Close to the particle the electric �eld varies
as E � 1=r2; thus the volume integral (21) of the force
F is dominated by the range close to the particle surface
r � a, where the e¤ective-valency potential  � works less
well. Still, all quantities are smooth functions of the ratio
Z=Z�; thus one expects that the present results describe
the qualitative behavior even for Z > Z�.
The non-uniform electrolyte properties are treated in

linear perturbation theory. In particular, the force den-
sity (12) has been evaluated by inserting the isotropic ion
distribution (9). In most experiments the thermal gra-
dient is very weak indeed. Finally, the hydrodynamics
have been solved in the Hückel limit a � �. A com-
parison with the results from the opposite case of large
particles is given below.

B. Comparison with the case �� a

The present work deals with the small-particle limit
a � �. In order to compare with the opposite case we
write the weak-coupling result of [20] in terms of the sur-
face potential  0 = e��=",

DT =
"

3�T

�
� + �+ 1

4
 20 � 3��

kBT

e
 0

�
: (26)

Formally, Eqs. (23) and (26) are rather similar and di¤er
merely in prefactors.
The relative factor 23 of the Seebeck e¤ect has the same

origin as that of the electrophoretic mobility in (2). In
physical terms, it arises from the distortion of the elec-
tric �eld by the permittivity jump at the particle-liquid
interface. In the boundary layer close to large particles
(� � a), the permittivity contrast "="P � 1 enhances
the parallel electric �eld by a factor 3"=(2" + "P ) � 3

2 .
In the present case (� � a), however, this distortion
is irrelevant in most of the interaction volume � 4

3��
3

and the electric �eld is well approximated by its macro-
scopic value E1. By the same token, we have neglected
the discontinuity of thermal conductivity at the particle-
�uid interface, which modi�es the normal and parallel
components of the thermal gradient [26].
Regarding the term in (26) that is quadratic in the

surface potential, the factor 14 (�+�+1) indicates that the
dielectrophoretic term � � , the electrolyte Soret e¤ect �
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�, and the charge term, contribute equally to the thermal
force. For the case considered in the present work, a �
�, the dielectrophoretic contribution dominates in (21).
This is due to the fact that, close to the particle surface,
the electric �eld is of the order E �  =a, resulting in
E2 �  2=a2 which is much larger than the charge and
pressure terms � �  2=�2 and kBTn �  2=�2.

C. Variation with particle size

The present work deals with the small-particle limit
(a� �) and thus completes previous work relying on the
boundary layer approximation that is valid for large par-
ticles [20, 24�29]. As a function of the surface potential,
the electrophoretic mobility di¤ers merely by a numerical
factor 2

3 . The corresponding weak-coupling expressions
for the thermophoretic coe¢ cients, Eqs. (23) and (26),
show a similar structure. Signi�cnant discrepancies arise,
however, when considering the dependence of the surface
potential on Debye length and particle size.
Since in many instances particles of di¤erent size but

equal surface charge charge density � = Z=(4�a2) are
considered, we rewrite the Debye-Hückel surface poten-
tial as

 0 =
Q

4�"a(1 + a=�)
=
�e

"

a�

a+ �
: (27)

For small particles this form reduces to  0 = �ea=" and
results in the thermophoretic coe¢ cient

DT =
1

3�T

�
�
(�ea)2

"
� 2��kBT�a

�
; (a� �):

Thus at constant � the dielectrophoretic term varies with
the square of the particle size, whereas the thermoelectric
one is linear in a. In the opposite case of large particles
the surface potential  0 = �e�=" is independent of the
particle size, and so is the transport coe¢ cient DT .
We summarize the variation of the two contributions

to (26) with particle size and Debye length, by splitting
the thermophoretic coe¢ cient as DT = C0 + CS . The
thermoelectric or Seebeck contribution shows a linear de-
pendence on the smaller of the two lengths a; �,

CS = �
2��kB�

3�
�
�

a for a� �;
3
2� for �� a:

(28)

This behavior is identical to that of the electrophoretic
mobility � given in (2). This does not come as a sur-
prise, since the Seebeck e¤ect describes the electric �eld
induced by the charge separation of the electrolyte solu-
tion.
The remainder, that is the dielectrophoretic, osmotic,

and charge terms vary with the square of the smaller
length scale,

C0 /
�2e2

3�"T
�
�
a2 for a� �;
�2 for �� a;

(29)

with numerical prefactors of the order unity.
Eqs. (28) and (29) reveal a rather di¤erent behavior in

the limiting cases of large and small particles. The dif-
ference arises from the fact the thermoelectric e¤ect, like
electrophoresis, is linear in the surface potential, whereas
the dielectric and Soret contributions to thermophoresis
vary with its square.

D. Comparison with previous work

The stationary state of a non-uniform system is de-
termined by requiring mechanical equilibrium [21]. Yet
this general principle is not readily applied to complex
systems with multiple interactions, where the transport
coe¢ cient shows subtle dependencies on the physical pa-
rameters of solute and solvent. If mesoscopic solutes in-
duce local �ows of the solvent, the stationary state is
determined by requring that viscous and thermal forces
cancel. The main di¢ culty resides in properly determin-
ing the thermal forces that act on the solute particle.
Recent theoretical studies took two di¤erent ap-

proaches. The �rst one relies on solving Stokes�equation
in the vicinity of a solute particle, with a force �eld com-
prising the pressure and electric forces on the �uid; the
formal framework is analogous to the common treatment
of electrophoresis and similar phenomena [3]. This route
has been taken in Refs. [20, 24�31] mostly for (� � a);
the present work deals with small particles (a� �), cor-
responding to the Hückel limit of electrophoresis [22].
The recent Ref. [31] derives an expression that is valid in
both limiits; in the Hückel limit, the result for the trans-
port velocity corresponds to our Eq. (23) for �� = 0, i.e.,
without the thermoelectric e¤ect. Finally we note that
the �rst term �(� + nkBT )r lnT of the force density
(14) is proportional to the enthalpy �ow carried by the
charged �uid, which has �rst been considered by Der-
jaguin et al. [24] in their study of thermoosmotic trans-
port through a pore.
In a second approach, the thermal force is obtained

as the gradient of a single-particle Gibbs potential, or
charging energy [18, 32�35],

U =
1

2
Q 0 =

Q2

8�"a(1 + a=�)
; (30)

where we used (27) and the total charge Q = Ze. Its
spatial variation arises from the implicit dependence on
the temperature gradient, and is used to de�ne the force

Fc = �rU = �
dU

dT
rT:

The thermophoretic velocity is obtained by equilibrating
the driving force with the Stokes drag, Fc + 6��au =
0. The resulting Soret coe¢ cient ST = (dU=dT )=kBT
had been evaluated by several authors [18, 32�35]; the
complete temperature derivative has been calculated only
recently [34, 35].
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In order to facilitate comparison with our Eq. (23),
we rewrite the Soret coe¢ cient ST = �DT =D given in
[34, 35] in our notation, use D = kTB=6��a, and expand
in powers of a=�,

�DT =
" 20
3�T

�
� +

a

2�
(1� 3�) + 2d lnQ

d lnT

�
:

The leading term in � is identical to that of (23); there
is a slight di¤erence in the linear correction, whereas the
charge derivative d lnQ=d lnT is absent both in the force
density (14) and in the transport coe¢ cient (23). Thus
the present approach con�rms the leading dielectric con-
tribution �DT = (" 20=3�T )� obtained previously from
the charging-energy model [34, 35].

E. Temperature dependence

As a most striking �nding, recent experiments revealed
a strong temperature dependence of the thermophoretic
coe¢ cient and, in several cases, a change of sign from
negative DT at lower T to positive values at higher tem-
perautres. We discuss the parameters appearing in Eqs.
(23) and (24) in view of these experimental �ndings.
Seebeck and Soret coe¢ cients. Both coe¢ cients � and

�� are given by the di¤erence of the ionic Soret strengths
�i, which in turn are determined by heat of transport Q�

of the charge carriers [36, 39]. Typical values are of the
order of a few kJ/Mol. A particularly strong e¤ect occurs
for acids and protonated solvents, the heat of transfer of
protons Q�H+ = 13:3 kJ/M or hydroxide Q�OH� = 17:2
kJ/Mol being signi�cantly larger than that of most salt
ions [39, 42]. The value of Q�H+ corresponds to a heat of
transfer per proton of about 5kBT or 100 meV.
The heat of transfer Q� accounts for the energy carried

by the mobile ions and their interactions with the solvent
molecules; speci�c-ion and hydration e¤ects result in an
intricate temperature and concentration dependence, the
theroetical comprehension of which is far from satisfac-
tory. Partly because of the relevance for large-scale ther-
mohaline circulation, there are a number of experimental
studies on the Soret coe¢ cients � of solutions of alkali
halides and salts of divalent cations as calcium and mag-
nesium [46�51]. At standard pressure, measured values
are in the range �1 < � < 3. For alkali chlorides, � is
negative at low T and goes through zero at a temper-
ature T0 that lies between 0 and 25 �C, depending on
concentration and the size of the cation. In this temper-
ature range the slope of the Soret coe¢ cient takes the
value d�=dT � 0:03 K�1; a stronger variation has been
reported for solutions of Na2SO4 and CaCl2 [49].
Several recent experimental studies on thermophore-

sis �x the acidity of the solution by adding bu¤ers like
Tris/HCl, CAPS/NaOH, or NaAcO [13�18]. The few
available data suggest that these molecular ions show a
strong thermoelectric e¤ect, possibly due to the protons
of their aliphatic parts; the data of Ref. [14] illustrate

the crucial role of the electrolyte composition for ther-
mally driven transport.
Permittivity. The logarithmic derivative of the permit-

tivity varies from � = 1:25 at 0 �C to � = 1:5 at 50 �C
[53]. Its temperature derivative d�=dT � 0:003 K�1 is by
one order of magnitude smaller than that of the Soret
coe¢ cient of alkali chlorides.
Viscosity. The viscosity of water decreases from � =

1:3 � 10�3 Pa�s at 10 �C to 0:55 � 10�3 Pa�s at 50 �C
[53]. Since the thermophoretic coe¢ cient is proportional
to the inverse viscosity, one expects an increase of DT

with rising temperature; this is con�rmed by numerical
simulations for nanoparticles [12]. The logarithmic deriv-
ative at 25 �C takes the value d ln �=dT � �0:02 K�1.
Thermal expansion of the solvent. Above the melting

point, the density % of water decreases, goes through a
minimum at T = 4 �C, and increases monotonically at
higher temperature. The Soret coe¢ cient of aqueous al-
kali chloride solution is strongly correlated with the ther-
mal expansivity of the solvent [48], and similar observa-
tions have been made for the thermophoretic mobility of
colloidal suspensions [16, 52]. The present work suggests
that the correlation of DT with the thermal expansion of
water originates from the thermoelectric e¤ect. Indeed,
according to Eq. (23) DT depends through �� linearly
on the ionic Soret parameters.
Comparison of the permittivity derivative d�=dT �

0:003 K�1 with that of the Soret coe¢ cient of alkali
halides, d�=dT � 0:03 K�1, strongly suggest that ion
transport is much more sensitive to temperature than
the thermal expansion and the dielectric properties of
the solvent. Assuming �(T ) and ��(T ) to show simi-
lar slopes with respect to T , one is led to the conclusion
that the Seebeck e¤ect is most likely responsible for the
change of sign reported for several colloids. Although the
temperature dependence of the viscosity is of the same
order of magnitude, it provides an overall factor and thus
cannot a¤ect the sign of DT .

VI. SUMMARY

Recent experiments on suspensions of macromolecules
and nanoparticles [13�18] reported a strong temperature
dependence and a change of sign of the coe¢ cient DT .
The role of the thermoelectric e¤ect has been pointed out
in Ref. [14], and a quantitative study of the dielectric,
Soret, and Seebeck contributions to DT has been given
in [20] for the case of large particles. The present work
deals with the opposite case, that is the Hückel limit.
As the most striking feature, thermally driven motion
results from the competition of several terms; the strong
temperature dependence of the electrolyte coe¢ cients �
and �� may cause a change of sign. We summarize the
main results of the present work.
(i) The thermal force Eq. (14) comprises the osmotic

pressure and the enthalpy carried by the charged �uid,
the dielectric force proportional to the permittivity gradi-
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ent, a chemiphoretic term involving the salinity gradient,
and the Seebeck contribution. Thus thermophoresis is
driven by the gradients of the solvent parameters (tem-
perature, permittivity, salinity) and the thermoelectric
�eld E1, all of which can be related to the thermal gra-
dient. Note that derivatives of the particle�s charge or of
the viscosity do not appear in (14).
(ii) According to Eq. (23) thermophoresis of small par-

ticles does not depend on the Soret coe¢ cient � of the
electrolyte solution, but is entirely determined by the log-
arithmic derivative � of the permittivity and the thermo-
electric coe¢ cient ��. The leading corrections O(a=�)
are proportional to (1+ � +�) and ��. For �� = 0 these
results con�rm those of Ref. [31].
(iii) The dielectric and Seebeck contributions to DT

are of the same order of magnitude. With the permit-
tivity derivative � = 1:4 of water at room temperature
[53] and typical values for the thermoelectric coe¢ cient
of the order �� � 1, the relative magnitude of the two
terms in Eq. (24) is given by the the ratio Z`B=a. For
nanoparticles this quantity is often of the order of unity;

then the two terms in Eq. (24) are comparable.
(iv) The Seebeck term takes opposite signs for positive

and negative colloidal charges. Most macromolecules and
nanoparticles carry negative valency Z < 0; then one
expects normal thermophoresis (DT > 0) for a positive
Seebeck coe¢ cient �� > 0, whereas a negative �� favors
an inverse e¤ect (DT < 0).
(v) Regarding the temperature dependence, no data

seem to be available for the Seebeck coe¢ cient ��(T ).
Still, measured values for the derivative d�=dT of the
Soret coe¢ cient provide evidence for the thermal vari-
ation of the electrolyte properties, and strongly suggest
that the Seebeck e¤ect is responsible for the change of
sign reported for several colloids.
(vi) The viscosity of water varies with temperature ac-

cording to d ln �=dT � �0:02 K�1, and thus may sig-
ni�cantly contribute to the T dependence of the ther-
mophoretic coe¢ cient. Since the viscosity is an overall
factor, it does not a¤ect the sign of DT .
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