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We study the thermophoretic coe¢ cient DT of a charged colloid. The non-uniform electrolyte is characterized in terms of densities and di¤usion currents of mobile ions. The hydrodynamic treatment in the vicinity of a solute particle relies on the Hückel approximation, which is valid for particles smaller than the Debye length, a . To leading order in the parameter a= , we …nd that the coe¢ cient DT consists of two contributions, a dielectrophoretic term proportional to the permittivity derivative d"=dT , and a Seebeck term , i.e., the macroscopic electric …eld induced by the thermal gradient in the electrolyte solution. Depending on the particle valency, these terms may take opposite signs, and their temperature dependence may result in a change of sign of thermophoresis, as observed in several recent experiments.

I. INTRODUCTION.

Micro ‡uidic devices and their applications rely to a large extent on the possibility to precisely control transport phenomena in colloidal suspensions [1]. Besides electrophoresis, which is the best known and widely used physical mechanism [2], a suspended particle may be driven by a concentration gradient of an ionic or molecular solute, or a non-uniform temperature. In charged colloids, transport is essentially due to the coupling of the applied external …eld to the electric double layer at the particle- ‡uid interface [3].

The forces underlying electrophoresis and di¤usiophoresis are described in a simple physical picture [3,4], and their dependence on the properties of solvent and solute is rather well understood. A more complex situation occurs for motion driven by thermal forces, where a temperature gradient results in the single-particle velocity u = D T rT:

(

Typical values of the coe¢ cient D T are of the order of a few m 2 K 1 s 1 [START_REF]Thermal Nonequilibrium Phenomena in Fluid Mixtures[END_REF][START_REF] Piazza | [END_REF][7]. Thermal di¤usion in dielectric binary or ternary molecular liquids [8][9][10] is determined by the competition of entropy and short-ranged dispersion forces; with appropriately chosen atom-atom potentials, numerical simulations of the molecular dynamics account for several observed dependencies [10][11][12] and in particular permit to separate the chemical contribution [11].

Transport in charged colloidal systems involves electric forces operating on the scale of the Debye screening length, which takes values between one and hundreds of nanometers. If electrophoresis is readily obtained from an external …eld acting on the electric-double layer [3], and di¤usiophoresis from the osmotic pressure in a concentration gradient, the physical origin of the thermal forces is less obvious. In fact, Eq. (1) arises from the superposition of several contributions of comparable magnitude. Besides the temperature gradient, any solvent parameter that depends on temperature, such as Debye screening length, permittivity, or salinity, may a¤ect the thermally driven motion.

In the last few years, a host of experimental data provided clear evidence that the thermophoretic coe¢ cient D T of charged colloids may change its sign upon a variation of temperture or salinity. This was …rst observed for an aqueous solutions of lysozyme protein, where the macromolecular solute di¤uses to the warm at low temperatures, and to the cold at higher T [13]. The transport coe¢ cient goes through zero at T , which is close to room temperature and depends weakly on salinity. Later on, this behavior was con…rmed for polystyrene beads [14][15][16][17], micelles of ionic surfactants [16], DNA [18], and coated Ludox particles [19], with cross-over temperatures T ranging from 5 to 40 C.

Similar observations were reported upon changing the electrolyte composition. The thermophoretic mobility of latex nanoparticles was shown to depend on the quantity of added salt and in particular on the pH value of the electrolyte solution [14]. For lysozyme protein solution at room temperature, a change of sign of D T occured when increasing the NaCl content [13].

As …rst suggested in [14], the negative sign of thermophoretic coe¢ cient of colloidal suspensions is related to a Seebeck or thermoelectric e¤ect: The thermal gradient results in a non-uniform di¤usion of positive and negative ions, depending on their heat of transport, or ionic Soret coe¢ cient; this induces a macroscopic electric …eld E 1 that drives the suspended particles in one direction or in the other, depending on their surface charge and on the sign E 1 . The temperature dependence of the thermal transport coe¢ cient and its change of sign have been explained in terms of the competition of this Seebeck e¤ect with that of the non-uniform salinity and dielectrophoresis [20].

Transport coe¢ cients describe the linear response to a non-equilibrium situation created by an applied …eld [START_REF] De Groot | Non-equlibrium Thermodynamics[END_REF]. For a charged colloid, their explicit calculation relies on evaluating how the external …eld a¤ects the cloud of counterions that screens the surface charge of a suspended particle. We brie ‡y recall the basic results for the electrophoretic mobility = u=E ext , where u is the particle velocity u and E ext the applied electric …eld [START_REF] Hiemenz | Principles of Colloid and Surface Chemistry[END_REF]. If the particle size a exceeds the Debye length , the Helmholtz-Smoluchowski relation " 0 = gives the mobility as the ratio of the surface potential 0 and the solvent permittivity " and viscosity . In the opposite case of small particles, the Hückel limit results in = 2 3 " 0 = , which di¤ers merely by a factor 2 3 . It turns out instructive to rewrite the mobility in terms of the surface charge density = Q=4 a 2 . In the weak-coupling or Debye-Hückel limit, the surface potential 0 = ( = ")a=(a + ) is a linear function of but depends on the ratio of screening length and particle size. Inserting in the above expressions for the mobility,

= for a; 2 3 a for a ; (2) 
one …nds that is proportional to the shorter of the lengths and a.

The variation of the thermophoretic coe¢ cient D T with the solvent and solute parameters, and in particular with particle size and Debye length [START_REF] Piazza | [END_REF]18,19,[START_REF] Vigolo | [END_REF], has been intensely debated in recent years. Theoretical work mostly relies on low-Reynolds number hydrodynamics [START_REF] Derjaguin | Surface Forces[END_REF][START_REF] Ruckenstein | [END_REF][26][27][28][29][30][31]. Except for Ref. [31], these works rely on the boundary-layer approximation, valid in the limit of large particles a, and which is the usual basis for describing capillary ‡ow and colloidal transport [3]. Derjaguin et al. considered thermoosmosis in terms of the enthalpy ‡ow close to the wall of a pore [START_REF] Derjaguin | Surface Forces[END_REF]. By adapting the Helmholtz-Smoluchowski electrophoretic mobility and using the picture of a thermal Marangoni force at the particle surface, Ruckenstein argued that the thermophoretic coe¢ cient should be proportional to the square of the surface potential [START_REF] Ruckenstein | [END_REF]; for weak coupling this implies that D T is quadratic in the Debye length and independent of a. This was con…rmed by explicitly solving Stokes's equation for a thermal force with no-slip boundary conditions [26][27][28][29], whereas hydrodynamic slippage results in a linear law [7,30]. As an alternative to the hydrodynamic approach, the phenomenological charging-energy model was studied by several authors [18,[32][33][34][35]].

The small-particle limit a has so far attracted little attention, although it is relevant for molecular solutes and for nanoparticles in weak electrolytes where the Debye length may attain hundreds of nanometers. Extending our previous work [20], the present paper deals with thermophoresis of small particles, by paying particular attention to the role of the non-uniform electrolyte. In Sect. 2 we give the densites and currents of salt ions and particles; for small Peclet numbers the coupled di¤usion equations reduce to the ‡uid ‡ow around a suspended particle. This hydrodynamic problem is addressed in Sect. 3; we derive the force density exerted by a suspended particle on the surrounding ‡uid and determine the ‡uid velocity. In Sect. 4 the transport coe¢ cient D T is evaluated in weak-coupling or Debye-Hückel approximation. Finally we discuss several aspects of small-particle thermophoresis and compare our results with recent experiments.

II. DIFFUSION IN NON-EQUILIBRIUM SYSTEMS

On a fundamental level, thermal di¤usion is driven by the principle of minimum entropy production [START_REF] De Groot | Non-equlibrium Thermodynamics[END_REF]. The resulting phenomenological equations provide a complete description for the heat and particle currents; they do not, however, relate the transport coe¢ cients to the physical and chemical properties of the system. In order to express thermally driven transport in terms of the system parameters, one needs to start from the di¤usion equations for the components and to derive the forces from their interactions potentials.

In principle heat and particule currents are coupled. Since heat di¤usion is much faster than particle motion, the temperature follows instantaneously and takes in a given pro…le T (r) around the particle. Local temperature modulations occur if the heat conductivities of solute and solvent di¤er signi…cantly [26]. Except for metal particles, this e¤ect is of little relevance and will be discarded here. Throughout this paper we assume a constant temperature gradient rT = T x e x along the x-axis.

A. Electrolyte solution

We start with a discussion of an electrolyte solution of monovalent ions of charge q i = z i e with number densities n i . Their current densities comprise normal diffusion, thermal di¤usion, and a term accounting for a macroscopic electric …eld [36][37][38],

J i = D i rn i + n i Q i k B T 2 rT n i q i E 1 k B T ; (3) 
where the Einstein coe¢ cients D i = k B T =(6 a i ) are de…ned by Fick's law D i rn i , and the thermal di¤usion current depends on the heat of transport Q i . The latter determine the thermoelectric …eld E 1 , as derived below.

We discuss the stationary state J i = 0, where the currents vanish and the electric …eld has reached a constant value. For later convenience we de…ne the salinity

n 0 = 1 2 X i n i ; (4) 
the reduced ionic Soret coe¢ cient in terms of the heat of transport

i = Q i 2k B T ; (5) 
and the reduced Soret and Seebeck coe¢ cients of the electrolyte solution, as the mean values of i and z i i , weighted with the number densities n i ,

= X i i n i n 0 ; = X i z i i n i n 0 : (6) 
The macroscopic charge separation reads as

1 = X i q i n i :
The stationary state implies overall conditions of zero particle current P i J i = 0 and zero charge current P i q i J i = 0; inserting the above quanities and using the valencies z i = 1 for positive and negative ions, we obtain the relations

0 = rn 0 + n 0 rT T E 1 2k B T 1 ; 0 = r 1 2e + rT T eE 1 k B T n 0 :
The salinity gradient rn 0 and the thermoelectric …eld E 1 arise from the tendency of the ions to di¤use to cold or warm regions of the solution, as expressed by the relative values of their heat of transport Q i . Both rn 0 and E 1 are macroscopic quantities that are independent of the system size. The charge density 1 , however, vanishes throughout a macroscopic system, except for a screening layer at the boundaries. Setting 1 = 0 relates the salinity gradient and the thermoelectric …eld E 1 to the thermal gradient,

rn 0 n 0 = rT T ; eE 1 k B T = rT T ; (7) 
and points out the physical meaning of the reduced Soret and Seebeck coe¢ cients and . With typical values for the ionic heat of transfer Q i a few kJ/Mol [39], one …nds that the dimensionless quantities and are of the order of unity.

There is a close analogy to the thermoelectric e¤ect of charge carriers in solid-state physics, where the Seebeck coe¢ cient is de…ned as the ratio of the induced voltage and the temperature di¤erence S = = T ; for an electrolyte solution this ratio takes the value

E 1 =T x = k B =e 10 4 V/K
. This implies that the macroscopic electrostatic potential e of a single ion is much small than its thermal energy.

B. Charged colloidal suspensions

Now we add particles to the electrolyte solution. Their charge Q is screened by a cloud of counterions and a depletion of co-ions within one Debye length; the spherical symmetry of this screening cloud is broken by the non-uniform temperature, salinity n 0 (T ), and permittivity "(T ). The gradients of these macroscopic parameters and the thermoelectric …eld E 1 result in thermal forces on the charged ‡uid and in a ‡ow …eld v(r) around each particle.

The ion densities are subject to the electric …eld E = r of the particle; in principle we have to consider the superposition of local and macroscopic …elds E + E 1 . The surface potential of the particle is of the order k B T =e and decays on the scale of the Debye length , resulting in E k B T =e . A rough estimate shows that the local …eld E 10 7 V/m is by serveral orders of magnitude larger than the thermoelectric …eld E 1 k B T x =e, which attains 10 2 V/m for a thermal gradient T x = 1 K/micron. A similar argument shows that the salinity gradient is much smaller than the change in ion densities occuring in the boundary layer.

As a consequence, the Seebeck and Soret e¤ects are insigni…cant on short scales, and the thermoelectric …eld and the salinity gradient may be neglected when discussing the ion densities close to the particle. Thus the ion currents in the boundary layer comprise a convection term due to the ‡uid ‡ow v(r), and di¤usion in the local electric …eld,

J i = n i v D i r n i n i q i E k B T ; (8) 
where the n i are the excess ion densities with respect to their values n i in the pure electrolyte discussed above.

In principle, the ion densities and currents are obtained from the coupled di¤usion equation for n i and the hydrodynamic equation for v. A detailed study of the opposite case Pe > 1 has been given for particles driven by the strong concentration gradient of an adsorbing neutral solvent [4]. In the present case, however, convection is neglegible, and the problem simpli…es signi…cantly. The reason is that, even for large thermal gradients, thermophoretic transport velocities are at most of the order 10 6 m/s; the corresponding Peclet number for ion diffusion, Pe = v =D i , hardly attains values of 10 3 . This means that convection is much slower than di¤usion and does not a¤ect the ion densities, Thus we neglect convection e¤ects and assume that the ion distributions follow instantaneously the particle and motion. To zeroth order in the thermal perturbation, that is when neglecting the temperature gradient, the ion densities are obtained from r n i n i q i E=k B T = 0, which is readily integrated,

n i = n i (e qi =k B T 1): (9) 
At distances beyond a few Debye lengths from the particle, its potential vanishes due to screening, and so does n i . The ‡uid ‡ow carries a net ion current

J i = n i v:
For a negatively charged colloidal particles one has < 0, resulting in an excess density of positive ions and a depletion of negative ones, n + > 0 > n . As a consequence, the e¤ective convection currents take opposite directions, thus carrying in the vicinity of the particle permanently charge along the thermal gradient. At larger distances they decay rapidly; the charge current P i q i J i is equilibrated by di¤usion, as expressed by the small Peclet number.

C. Particle di¤usion

According to Eq. (1) the thermally driven particle current of a colloidal suspension of number density N (r) reads N u = N D T rT . Adding normal di¤usion with Fick's law DrN results in

J = DrN N D T rT: (10) 
The drift velocity of the particle is given by the ‡uid ‡ow at its surface, u = vj r=a :

Thus calculation of the thermal di¤usion coe¢ cient D T reduces to solving the ‡uid ‡ow driven by thermal forces.

III. HYDRODYNAMICS

Transport in colloidal suspensions is described by relating the particle velocity to the applied forces; the co-e¢ cients are calculated by equilibrating the driving force and the hydrodynamic stress of the ‡uid [START_REF] Hiemenz | Principles of Colloid and Surface Chemistry[END_REF]. Stationary states and mechanical equilibrium of inhomogeneous systems are discussed in Chapter V of [START_REF] De Groot | Non-equlibrium Thermodynamics[END_REF].

Like in most micron-scale ‡ows, the Reynolds number of thermally driven motion is small, and the stationary ‡uid velocity in the vicinity of the particle is determined by Stokes'equation

r 2 v = r (P 0 + nk B T ) f 0 ; (11) 
where is the solvent viscosity and the right-hand side depends on ion densities (9). We have separated the hydrostatic pressure P 0 of the pure electrolyte and the pressure of the excess density of mobile ions,

n = X i n i : A. Double-layer forces
The electric force density f 0 acting on the charged ‡uid comprises two independent parts [START_REF] Stratton | Electromagnetic Theory[END_REF][START_REF] Landau | Electrodynamics of Continuous Media[END_REF],

f 0 = r T + E 1 ;
the divergence of the Maxwell stress tensor T describes the force exerted by the charged particle surface, and the second term accounts for the coupling of the charge density to an external electric …eld E 1 . With known properties of the gradient E = r of the particle's electrostatic potential [START_REF] Stratton | Electromagnetic Theory[END_REF][START_REF] Landau | Electrodynamics of Continuous Media[END_REF], the divergence of the Maxwell tensor can be written as

r T = 1 2 E 2 r" + E;
where " is the solvent permittivity and where

= X i q i n i
is a shorthand notation for the charge density of mobile ions in the screening cloud. Because of E 1 E, the contribution of the macrospopic …eld to the dielectrophoretic term is negligible.

It turns out convenient to add the osmotic pressure to the electric forces,

f = 1 2 E 2 r" + E r(nk B T ) + E 1 ; (12) 
resulting in

r 2 v = rP 0 f : (13) 
A somewhat di¤erent route is taken in studies on diffusiophoresis [3], i.e., for neutral solutes adsorbing on the particle surface, where the right-hand side of ( 13) is written in terms of the total pressure P = P 0 +nk B T and the force f 0 = r arising from the particle-solute van der Waals attraction . A thermal gradient, however, gives rise to a rather intricate force density (12), that comprises terms of di¤erent physical origin and that does not derive from a potential. The screened electrostatic potential is an e¤ective quantity that depends on the entropy of the mobile ions; thus it is in any case impossible to distinguish potential and entropic forces, and we …nd it more convenient to include the osmotic pressure gradient in the force density f . Eq. ( 12) gives the force density as a function of the quantities describing the electric double-layer and of the the thermoelectric …eld. In a uniform electrolyte, the Poisson-Boltzmann mean-…eld expression (9) results in f = 0. Treating the thermal gradient as a perturbation, we insert the unperturbed ion distribution function (9) in the expression for f and expand all terms to linear order in the gradients of the slowly varying solvent parameters.

We start with the particle's electric …eld and the ion pressure, E r(nk B T ). The Poisson-Boltzmann mean-…eld expressions (9) give = 2en 0 sinh ^ and n = 2n 0 (cosh ^ 1), with the reduced potential ^ = e =k B T . Spelling out the pressure gradient we …nd

r(nk B T ) = nk B rT + nk B T rn 0 n 0 + rT T r :
The last term cancels its counterpart E = r in (12), and we are left with

f = ( + nk B T ) rT T E 2 2 r" + nk B T rn 0 n 0 + E 1 : (14) 
Note that the gradient of the electrostatic potential r has disappeared.
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1: Schematic view of a charged particle of radius a, and its screening cloud with Debye length a. Except for the immediate vicinity of the particle, the force …eld f exerted by the particle on the ‡uid is parallel to the thermal gradient. The Hückel approximation relies on the counterforce F on the particle Eq. ( 14) constitutes the general expression for the force density in an non-uniform elecrolyte, consisting of the external electric …eld E 1 and the gradients of the slowly varying quantities temperature, permittivity, and salinity. It relies on Poisson-Boltzmann mean-…eld theory and linear-response approximation; the latter assumes a su¢ ciently weak electric …eld, E 1 k B T =a, and that the solvent parameters T , ", n 0 vary little on the scale of the particle, r ln T 1=a, etc. These conditions are satis…ed in all experimental situations. Now we turn to the dielectric force proportional to the permittivity gradient r". With the logarithmic derivative

= d ln " d ln T (15) 
one has

1 2 E 2 r" = 2 E 2 rT:
The remaining contributions to Eq. ( 14) describe the Soret and Seebeck e¤ects of the electrolyte solution. The former accounts for a non-uniform salinity n 0 , and the latter for a charge separation that occurs if the thermal di¤usion strengths of positive and negative ions are not the same [36,39,[START_REF] Sokolov | [END_REF]. Inserting the dimensionless quantities ; ;

in (12) we obtain the force density on the ‡uid as a linear function of the thermal gradient,

f = "E 2 2k B T k B T + ( 1)n + e k B rT: (16) 
This force arises from the interactions at the solid- ‡uid interface. As a consequence, the total force on the colloidal particle and its screening cloud vanishes, and there is a counterforce

F = Z dV f (17) 
exerted by the charged ‡uid on the particle.

B. Fluid velocity

Stokes'equation (13) with the force density ( 16) cannot be solved as it stands. For small particles, a ;

the velocity …eld can be obtained in two particular cases, (i) at short distances close to the particle surface, r a ; (ii) at large distances well beyond the Debye length r . These approximations rely on the fact that the force density is spread over an interaction volume of the order 3 , much larger than the particle volume.

(i) At distances much shorter than the Debye length, the velocity is determined by the counter-force F acting on the particle [START_REF] Hiemenz | Principles of Colloid and Surface Chemistry[END_REF]. This corresponds to the Hückel limit of electrophoresis; the solution is given by [43] 

v(r) = 1 8 r (1 + P r ) + a 2 r 2 1 3 P r F; (18) 
with the projection P r = rr on the radial direction r = r=r. Note that this result is valid for r a only. On the particle surface r = a, the terms in P r cancel each other, and u = vj r=a takes the value

u = F 6 a : (19) 
For no-slip boundary conditions, the velocity …eld is continuous at the interface, and u is the particle velocity. Eq. ( 19) could be obtained equally well by equilibrating the force F on the particle with the Stokes drag 6 au.

(ii) At distances well beyond the Debye length, r , the size of the particle and the boundary conditions at its surface are irrelevant. Thus the ‡uid velocity may be written as the superposition of the ‡ow engendered by the point force F and that on the mobile ions in the screening cloud,

v(r) = G(r) F Z dV 0 G(r r 0 ) f (r 0 );
where the Oseen tensor

G(r) = 1 8 r (1 + P r )
plays the role of a Green function associated with Stokes' equation [START_REF] Kim | Microhydrodynamics: Principles and Selected Applications[END_REF]. This expression provides a basis for expanding the velocity …eld in inverse powers of the distance r. At lowest order we replace the Oseen tensor with G(r); then the surface and volume terms cancel and we FIG. 2: Schematic view of the ‡uid velocity v(r) around a particle moving to the left. The Debye length is indicated by the dashed line; the ‡ow pattern (18) in the interaction volume (r < ) di¤ers signi…cantly from that at large distances, as given by Eq. ( 20).

…nd that there is no velocity contribution v 1=r. The leading correction is obtained by expanding G(r r 0 ) to third order in 1=r; the ‡uid ‡ow reads

v(r) = R 2 8 r 3 P r 1 3 F; (r ); (20) 
where the quantity R 2 is de…ned through the integral

R 2 = 1 F Z dV r 2 f (r);
with f (r) = f (r)e x and F = F e x . Fig. 2 gives a schematic view of the ‡uid velocity resulting from Eqs. (18) and (20). At distances within one Debye length, the particle drags the ‡uid with a velocity v 1=r similar to what happens in sedimentation. At larger distances, the ‡uid close to the symmetry plane moves in the opposite direction; its velocity decays as v 1=r 3 .

The ‡ow pattern v(r) is of limited interest for thermophoresis of spherical particles, where the transport velocity is given by Eq. (19). For macromolecules, however, the drag ‡ow (20) within one Debye length results in hydrodynamic interactions between nearby units, which may signi…cantly enhance the transport coe¢ cient.

IV. TRANSPORT COEFFICIENT

For arbitrary surface charge density, the electrostatic potential cannot be given in closed form. Thus we evaluate the force F in Debye-Hückel approximation, where = Ze 4 "r e (r a)= 1 + a= :

This weak-coupling expression is valid as long as the electrostatic potential e of an ion is smaller than the thermal energy. Expanding the charge density and the excess ion density to quadratic order in , and using the Debye length 2 = 1=(8 n 0 `B) with the Bjerrum length `B = e 2 =(4 "k B T ), we obtain

= " 2 ; n = " 2 2 2 k B T :
Then the force acting on the particle is given by

F k B T x = Z dV "E 2 2k B T + ( + 1)" 2 2 2 k B T " e 2 : (21)
Evaluating the electric …eld E = d =dr, de…ning the surface potential 0 = (a), and changing to the variable = (r a)=a, the volume integral is readily performed,

F = 2 a" 2 0 + ( + + 1) a 2 T x T 4 a" 0 1 + a k B T x e ; (22) 
Finally we calculate the quantity R 2 that determines the ‡uid velocity at large distances. If the Seebeck coe¢ cient is small, one has R 2 = a ( 1 2 + ( + 1)= ), whereas in the opposite case we …nd R 2 = 6 2 .

Eqs. ( 12) and ( 19) relate the thermophoretic coe¢cient to the force on the particle,

D T = F 6 aT x :
Inserting the explicit form [START_REF] Hiemenz | Principles of Colloid and Surface Chemistry[END_REF] we have

D T = " 3 T n 2 0 + a 2 ( + + 1) 0 2k B T e 1 + a ; (23) 
with the coe¢ cients and as de…ned in ( 15) and ( 6). When retaining only leading terms in a= , one has

D T = " 3 T 2 0 2 k B T e 0 (a ):
Inserting the surface potential of small particles 0 = Ze=4 "a, we obtain the coe¢ cient as a function of the valency,

D T = k B 12 a Z 2 `B a 2 Z : (24) 
As a most striking feature, D T is independent of the Debye length. The only terms contributing to thermally driven transport are the dielectrophoretic force and the thermoelectric …eld, that are proportional to = (T =")d"=dT and to , respectively. For water, the permittivity derivative takes the value = 1:4 at room temperature. Thus the dielectrophoretic contribution to D T is positive. The Seebeck term may be positive or negative, depending on the signs of the thermoelectric coe¢ cient and the valency Z. In Fig. 3 we plot the thermophoretic mobility as a function of Z for di¤erent values of . For comparision we give values for different electrolyte solutions, as calculated from measured ion Soret coe¢ cients: = 0:6 for NaCl, = 2:7 for NaOH, and = 2:6 for HCl [20]. The curves of Fig. 3 show a qualitative behavior similar to that reported in [20] for large particles. Due to the weaker charges, the absolute values of D T shown here are by about one order of magnitude smaller.

V. DISCUSSION

A. Approximations

The coe¢ cient D T in the present work has been derived in Debye-Hückel approximation, contrary to our previous analysis based on boundary-layer approximation [20]. This additional approximation is imposed by the fact that in the small-particle or Hückel limit (a

), the screened electrostatic potential can not be calculated for arbitrary charge. Thus Eq. ( 24) relies on the weak-coupling assumption for the ratio of the electrostatic potential of an elementary charge and the thermal energy,

e 0 4k B T = Z`B 4a = Z Z < 1; (25) 
i.e., the weak-coupling approach is justi…ed as long as the valency is smaller than the e¤ective value Z = 4a=`B [START_REF] Bocquet | [END_REF]. The relation to the dimensionless coupling parameter ^ = 2 `B introduced in [20] is given by ^ = 2Z=Z . Highly charged macroions of nanometer size do not necessarily satisfy the weak-coupling assumption, e.g., for coated Ludox particles (a = 12 nm, Z = 50:::100) [19] one …nds the ratio Z=Z 1, and for micelles of the ionic surfactant SDS (a = 3 nm, Z 40) [START_REF] Piazza | [END_REF] one has Z=Z 2:5. Static properties of strongly charged particles (Z > a=`B) are well described by Debye-Hückel theory with the e¤ective valency Z and a corresponding potential [START_REF] Bocquet | [END_REF]. This does not necessarily hold true for the transport properties. Close to the particle the electric …eld varies as E 1=r 2 ; thus the volume integral [START_REF] De Groot | Non-equlibrium Thermodynamics[END_REF] of the force F is dominated by the range close to the particle surface r a, where the e¤ective-valency potential works less well. Still, all quantities are smooth functions of the ratio Z=Z ; thus one expects that the present results describe the qualitative behavior even for Z > Z .

The non-uniform electrolyte properties are treated in linear perturbation theory. In particular, the force density (12) has been evaluated by inserting the isotropic ion distribution (9). In most experiments the thermal gradient is very weak indeed. Finally, the hydrodynamics have been solved in the Hückel limit a

. A comparison with the results from the opposite case of large particles is given below.

B. Comparison with the case a

The present work deals with the small-particle limit a

. In order to compare with the opposite case we write the weak-coupling result of [20] in terms of the surface potential 0 = e =",

D T = " 3 T + + 1 4 2 0 3 k B T e 0 : (26) 
Formally, Eqs. ( 23) and ( 26) are rather similar and di¤er merely in prefactors. The relative factor 2 3 of the Seebeck e¤ect has the same origin as that of the electrophoretic mobility in (2). In physical terms, it arises from the distortion of the electric …eld by the permittivity jump at the particle-liquid interface. In the boundary layer close to large particles ( a), the permittivity contrast "=" P 1 enhances the parallel electric …eld by a factor 3"=(2" + " P ) 3 2 . In the present case ( a), however, this distortion is irrelevant in most of the interaction volume 4 3 3 and the electric …eld is well approximated by its macroscopic value E 1 . By the same token, we have neglected the discontinuity of thermal conductivity at the particle- ‡uid interface, which modi…es the normal and parallel components of the thermal gradient [26].

Regarding the term in (26) that is quadratic in the surface potential, the factor 1 4 ( + +1) indicates that the dielectrophoretic term , the electrolyte Soret e¤ect , and the charge term, contribute equally to the thermal force. For the case considered in the present work, a , the dielectrophoretic contribution dominates in [START_REF] De Groot | Non-equlibrium Thermodynamics[END_REF]. This is due to the fact that, close to the particle surface, the electric …eld is of the order E =a, resulting in E 2 2 =a 2 which is much larger than the charge and pressure terms 2 = 2 and k B T n 2 = 2 .

C. Variation with particle size

The present work deals with the small-particle limit (a ) and thus completes previous work relying on the boundary layer approximation that is valid for large particles [20,[START_REF] Derjaguin | Surface Forces[END_REF][START_REF] Ruckenstein | [END_REF][26][27][28][29]. As a function of the surface potential, the electrophoretic mobility di¤ers merely by a numerical factor 2 3 . The corresponding weak-coupling expressions for the thermophoretic coe¢ cients, Eqs. ( 23) and ( 26), show a similar structure. Signi…cnant discrepancies arise, however, when considering the dependence of the surface potential on Debye length and particle size.

Since in many instances particles of di¤erent size but equal surface charge charge density = Z=(4 a 2 ) are considered, we rewrite the Debye-Hückel surface potential as

0 = Q 4 "a(1 + a= ) = e " a a + : (27) 
For small particles this form reduces to 0 = ea=" and results in the thermophoretic coe¢ cient

D T = 1 3 T ( ea) 2 " 2 k B T a ; (a ):
Thus at constant the dielectrophoretic term varies with the square of the particle size, whereas the thermoelectric one is linear in a. In the opposite case of large particles the surface potential 0 = e =" is independent of the particle size, and so is the transport coe¢ cient D T . We summarize the variation of the two contributions to (26) with particle size and Debye length, by splitting the thermophoretic coe¢ cient as D T = C 0 + C S . The thermoelectric or Seebeck contribution shows a linear dependence on the smaller of the two lengths a; ,

C S = 2 k B 3 a for a ; 3 2
for a:

This behavior is identical to that of the electrophoretic mobility given in (2). This does not come as a surprise, since the Seebeck e¤ect describes the electric …eld induced by the charge separation of the electrolyte solution.

The remainder, that is the dielectrophoretic, osmotic, and charge terms vary with the square of the smaller length scale,

C 0 / 2 e 2
3 "T a 2 for a ; 2 for a; (29) with numerical prefactors of the order unity. Eqs. ( 28) and ( 29) reveal a rather di¤erent behavior in the limiting cases of large and small particles. The difference arises from the fact the thermoelectric e¤ect, like electrophoresis, is linear in the surface potential, whereas the dielectric and Soret contributions to thermophoresis vary with its square.

D. Comparison with previous work

The stationary state of a non-uniform system is determined by requiring mechanical equilibrium [START_REF] De Groot | Non-equlibrium Thermodynamics[END_REF]. Yet this general principle is not readily applied to complex systems with multiple interactions, where the transport coe¢ cient shows subtle dependencies on the physical parameters of solute and solvent. If mesoscopic solutes induce local ‡ows of the solvent, the stationary state is determined by requring that viscous and thermal forces cancel. The main di¢ culty resides in properly determining the thermal forces that act on the solute particle.

Recent theoretical studies took two di¤erent approaches. The …rst one relies on solving Stokes'equation in the vicinity of a solute particle, with a force …eld comprising the pressure and electric forces on the ‡uid; the formal framework is analogous to the common treatment of electrophoresis and similar phenomena [3]. This route has taken in Refs. [20,[START_REF] Derjaguin | Surface Forces[END_REF][START_REF] Ruckenstein | [END_REF][26][27][28][29][30][31] mostly for ( a); the present work deals with small particles (a ), corresponding to the Hückel limit of electrophoresis [START_REF] Hiemenz | Principles of Colloid and Surface Chemistry[END_REF]. The recent Ref. [31] derives an expression that is valid in both limiits; in the Hückel limit, the result for the transport velocity corresponds to our Eq. ( 23) for = 0, i.e., without the thermoelectric e¤ect. Finally we note that the …rst term ( + nk B T )r ln T of the force density ( 14) is proportional to the enthalpy ‡ow carried by the charged ‡uid, which has …rst been considered by Derjaguin et al. [START_REF] Derjaguin | Surface Forces[END_REF] in their study of thermoosmotic transport through a pore.

In a second approach, the thermal force is obtained as the gradient of a single-particle Gibbs potential, or charging energy [18,[32][33][34][35],

U = 1 2 Q 0 = Q 2 8 "a(1 + a= ) ; (30) 
where we used (27) and the total charge Q = Ze. Its spatial variation arises from the implicit dependence on the temperature gradient, and is used to de…ne the force

F c = rU = dU dT rT:
The thermophoretic velocity is obtained by equilibrating the driving force with the Stokes drag, F c + 6 au = 0. The resulting Soret coe¢ cient S T = (dU=dT )=k B T had been evaluated by several authors [18,[32][33][34][35]; the complete temperature derivative has been calculated only recently [34,35].

In order to facilitate comparison with our Eq. ( 23), we rewrite the Soret coe¢ cient S T = D T =D given in [34,35] in our notation, use D = kT B =6 a, and expand in powers of a= ,

D T = " 2 0 3 T + a 2 (1 3 ) + 2 d ln Q d ln T :
The leading term in is identical to that of [START_REF] Vigolo | [END_REF]; there is a slight di¤erence in the linear correction, whereas the charge derivative d ln Q=d ln T is absent both in the force density (14) and in the transport coe¢ cient [START_REF] Vigolo | [END_REF]. Thus the present approach con…rms the leading dielectric contribution D T = (" 2 0 =3 T ) obtained previously from the charging-energy model [34,35].

E. Temperature dependence

As a most striking …nding, recent experiments revealed a strong temperature dependence of the thermophoretic coe¢ cient and, in several cases, a change of sign from negative D T at lower T to positive values at higher temperautres. We discuss the parameters appearing in Eqs. ( 23) and ( 24) in view of these experimental …ndings.

Seebeck and Soret coe¢ cients. Both coe¢ cients and are given by the di¤erence of the ionic Soret strengths i , which in turn are determined by heat of transport Q of the charge carriers [36,39]. Typical values are of the order of a few kJ/Mol. A particularly strong e¤ect occurs for acids and protonated solvents, the heat of transfer of protons Q H + = 13:3 kJ/M or hydroxide Q OH = 17:2 kJ/Mol being signi…cantly larger than that of most salt ions [39,[START_REF] Sokolov | [END_REF]. The value of Q H + corresponds to a heat of transfer per proton of about 5k B T or 100 meV.

The heat of transfer Q accounts for the energy carried by the mobile ions and their interactions with the solvent molecules; speci…c-ion and hydration e¤ects result in an intricate temperature and concentration dependence, the theroetical comprehension of which is far from satisfactory. Partly because of the relevance for large-scale thermohaline circulation, there are a number of experimental studies on the Soret coe¢ cients of solutions of alkali halides and salts of divalent cations as calcium and magnesium [46][47][48][49][50][51]. At standard pressure, measured values are in the range 1 < < 3. For alkali chlorides, is negative at low T and goes through zero at a temperature T 0 that lies between 0 and 25 C, depending on concentration and the size of the cation. In this temperature range the slope of the Soret coe¢ cient takes the value d =dT 0:03 K 1 ; a stronger variation has been reported for solutions of Na 2 SO 4 and CaCl 2 [49].

Several recent experimental studies on thermophoresis …x the acidity of the solution by adding bu¤ers like Tris/HCl, CAPS/NaOH, or NaAcO [13][14][15][16][17][18]. The few available data suggest that these molecular ions show a strong thermoelectric e¤ect, possibly due to the protons of their aliphatic parts; the data of Ref. [14] illustrate the crucial role of the electrolyte composition for thermally driven transport.

Permittivity. The logarithmic derivative of the permittivity varies from = 1:25 at 0 C to = 1:5 at 50 C [START_REF]Handbook of Chemistry and Physics[END_REF]. Its temperature derivative d =dT 0:003 K 1 is by one order of magnitude smaller than that of the Soret coe¢ cient of alkali chlorides.

Viscosity. The viscosity of water decreases from = 1:3 10 3 Pa s at 10 C to 0:55 10 3 Pa s at 50 C [START_REF]Handbook of Chemistry and Physics[END_REF]. Since the thermophoretic coe¢ cient is proportional to the inverse viscosity, one expects an increase of D T with rising temperature; this is con…rmed by numerical simulations for nanoparticles [12]. The logarithmic derivative at 25 C takes the value d ln =dT 0:02 K 1 . Thermal expansion of the solvent. Above the melting point, the density % of water decreases, goes through a minimum at T = 4 C, and increases monotonically at higher temperature. The Soret coe¢ cient of aqueous alkali chloride solution is strongly correlated with the thermal expansivity of the solvent [48], and similar observations have been made for the thermophoretic mobility of colloidal suspensions [16,52]. The present work suggests that the correlation of D T with the thermal expansion of water originates from the thermoelectric e¤ect. Indeed, according to Eq. ( 23) D T depends through linearly on the ionic Soret parameters.

Comparison of the permittivity derivative d =dT 0:003 K 1 with that of the Soret coe¢ cient of alkali halides, d =dT 0:03 K 1 , strongly suggest that ion transport is much more sensitive to temperature than the thermal expansion and the dielectric properties of the solvent. Assuming (T ) and (T ) to show similar slopes with respect to T , one is led to the conclusion that the Seebeck e¤ect is most likely responsible for the change of sign reported for several colloids. Although the temperature dependence of the viscosity is of the same order of magnitude, it provides an overall factor and thus cannot a¤ect the sign of D T .

VI. SUMMARY

Recent experiments on suspensions of macromolecules and nanoparticles [13][14][15][16][17][18] reported a strong temperature dependence and a change of sign of the coe¢ cient D T . The role of the thermoelectric e¤ect has been pointed out in Ref. [14], and a quantitative study of the dielectric, Soret, and Seebeck contributions to D T has been given in [20] for the case of large particles. The present work deals with the opposite case, that is the Hückel limit. As the most striking feature, thermally driven motion results from the competition of several terms; the strong temperature dependence of the electrolyte coe¢ cients and may cause a change of sign. We summarize the main results of the present work.

(i) The thermal force Eq. ( 14) comprises the osmotic pressure and the enthalpy carried by the charged ‡uid, the dielectric force proportional to the permittivity gradi-ent, a chemiphoretic term involving the salinity gradient, and the Seebeck contribution. Thus thermophoresis is driven by the gradients of the solvent parameters (temperature, permittivity, salinity) and the thermoelectric …eld E 1 , all of which can be related to the thermal gradient. Note that derivatives of the particle's charge or of the viscosity do not appear in (14).

(ii) According to Eq. ( 23) thermophoresis of small particles does not depend on the Soret coe¢ cient of the electrolyte solution, but is entirely determined by the logarithmic derivative of the permittivity and the thermoelectric coe¢ cient . The leading corrections O(a= ) are proportional to (1 + + ) and . For = 0 these results con…rm those of Ref. [31].

(iii) The dielectric and Seebeck contributions to D T are of the same order of magnitude. With the permittivity derivative = 1:4 of water at room temperature [START_REF]Handbook of Chemistry and Physics[END_REF] and typical values for the thermoelectric coe¢ cient of the order 1, the relative magnitude of the two terms in Eq. ( 24) is given by the the ratio Z`B=a. For nanoparticles this quantity is often of the order of unity; then the two terms in Eq. ( 24) are comparable.

(iv) The Seebeck term takes opposite signs for positive and negative colloidal charges. Most macromolecules and nanoparticles carry negative valency Z < 0; then one expects normal thermophoresis (D T > 0) for a positive Seebeck coe¢ cient > 0, whereas a negative favors an inverse e¤ect (D T < 0).

(v) Regarding the temperature dependence, no data seem to be available for the Seebeck coe¢ cient (T ). Still, measured values for the derivative d =dT of the Soret coe¢ cient provide evidence for the thermal variation of the electrolyte properties, and strongly suggest that the Seebeck e¤ect is responsible for the change of sign reported for several colloids.

(vi) The viscosity of water varies with temperature according to d ln =dT 0:02 K 1 , and thus may sig-ni…cantly contribute to the T dependence of the thermophoretic coe¢ cient. Since the viscosity is an overall factor, it does not a¤ect the sign of D T .

FIG. 3 :

 3 FIG.3: Thermophoretic mobility as a function of the valency Z for = 1; 0; 3. We have used `B = 0:7 nm, a = 3 nm, = 1:4, and = 10 3 Pa s.
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