
HAL Id: hal-00340775
https://hal.science/hal-00340775v2

Submitted on 28 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Offline Algorithmic Techniques for Several Content
Delivery Problems in Some Restricted Types of

Distributed Systems
Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Offline Algorithmic Techniques for Several Content Delivery
Problems in Some Restricted Types of Distributed Systems. International Workshop on High Perfor-
mance Grid Middleware (HiPerGrid), Nov 2008, Bucharest, Romania. pp.65-72. �hal-00340775v2�

https://hal.science/hal-00340775v2
https://hal.archives-ouvertes.fr

Offline Algorithmic Techniques for Several Content Delivery Problems in

Some Restricted Types of Distributed Systems

Mugurel Ionuț Andreica, Nicolae Țăpuş

Politehnica University of Bucharest, Computer Science Department, Bucharest, Romania

{mugurel.andreica, nicolae.tapus}@cs.pub.ro

Abstract

In this paper we consider several content delivery

problems (broadcast and multicast, in particular) in

some restricted types of distributed systems (e.g.

optical Grids and wireless sensor networks with tree-

like topologies). For each problem we provide efficient

algorithmic techniques for computing optimal content

delivery strategies. The techniques we present are

offline, which means that they can be used only when

full information is available and the problem

parameters do not fluctuate too much.

Keywords-content delivery, Grid, optical networks,

tree networks, wireless sensor networks.

1. Introduction

The problem of efficient content delivery is crucial

for obtaining good performance in running applications

which transfer large volumes of data in Grids and other

distributed systems. Although Grids put together many

types and large amounts of resources, the problem of

managing them efficiently is very difficult, both from a

theoretical and a practical perspective. Content delivery

problems require efficient and intelligent management

of the network resources existing in distributed systems

(e.g. network links, switches, routers, available

bandwidth and even computing nodes). In this paper

we consider several content delivery problems in some

restricted types of distributed systems (e.g. optical

Grids with tree topologies and wireless sensor

networks). For each problem we provide a

mathematical definition, as well as efficient algorithms

for computing optimal offline content delivery

strategies. Although the real challenge is to develop

efficient online strategies, the first step towards this

goal is to develop and understand offline strategies.

This paper is structured as follows. In Section 2 we

reconsider a classical problem, regarding minimum

time broadcasting in directed optical tree networks. In

Section 3 we consider the problem of minimum-cost

multicasting in a wireless sensor network, where the

cost is given by the frequency conversions. In Section 4

we consider several packet scheduling and ordering

problems. In Sections 5 and 6 we consider problems

regarding rechargeable resources, while in Sections 7

and 8 we consider the time-constrained bottleneck path

and multicast tree problems. In Section 9 we present

related work and in Section 10 we conclude.

2. Minimum Broadcast Time Strategy in

Directed Optical Tree Networks

In this section we consider an optical directed

(rooted) tree network with n vertices. Before going

further, we introduce the following notations: We

define parent(i) as the parent of vertex i and ns(i) as the

number of sons of vertex i. For a leaf vertex i, ns(i)=0

and for the root r, parent(r) is undefined. The sons of a

vertex i will be denoted by s(i,j) (1≤j≤ns(i)). A vertex j

is a descendant of vertex i if (parent(j)=i) or parent(j)

is also a descendant of vertex i. We denote by T(i) the

subtree rooted at vertex i, composed of vertex i and its

descendants (together with the edges connecting them).

The root vertex wants to send a message to all the

other vertices of the network, considering the following

constraints. At each moment t, the vertices can be

partitioned into two sets At and Bt. The vertices in the

set At have already received the message, while those in

the set Bt did not. Each vertex u in the set At can send

the piece of content to at most one vertex v belonging

to the set T(u) Bt. Transmitting the message takes

one time unit. When sending the message from a vertex

u to a vertex v, only vertex v receives the message; the

other vertices on the path from u to v only forward the

message and do not store a copy of the message.

Furthermore, at each time moment t, the tree paths

along which the message is transmitted at that moment

must be vertex disjoint. Assuming that the vertices

receiving the content sent at time t form the set Rt, at

time moment t+1 we have: At+1=At Rt and

Bt+1=Bt\Rt. Initially (at t=0), A0={root} and B0=

{1,2,…,n}\{root}. The first time moment Topt when

ATopt={1,2,…,n} and BTopt= is equal to the duration

after which every vertex of the tree receives the piece

of content (the broadcast time). Obviously, Topt

depends on the sets Rt (t=0,1,…,Topt-1), chosen by the

broadcast strategy. We are interested in finding a

broadcast strategy with a minimum broadcast time.

This problem has previously been considered in [3].

We present here a similar algorithm for computing the

optimal broadcast strategy, which has the advantage of

being easier to understand than the one in [3]. We will

consider the tree vertices in a bottom-up fashion, from

the leaves towards the root. For each vertex u of the

tree, the optimal strategy of broadcasting the message

in T(u) (starting from u) consists of a number of

nsteps(u) steps (time moments). During each of these

nsteps(u) steps, vertex u sends the message to a vertex

v in T(u). It does not make sense to not send a message

during a time moment t and then send a message during

the next time moment t+1. After the nsteps(u) time

moments, vertex u will not send any more messages. If,

at a time moment t, vertex u sends a message to a

vertex v, then it will not send the message to any vertex

v’ in T(v) at any moment t’>t. If it did that, vertex v

could not send the message during that time moment

(because of the vertex-disjointness property of the

message transmission paths); thus, we could allow

vertex v to send the message to v’ and let vertex u send

the message to a different vertex. After a vertex v

received the message from the vertex u, we can

consider that the subtree T(v) has been chopped off

from the subtree T(u). We will compute the values

Tmin(u, step)=the minimum time required to broadcast

the message in T(u)\(T(snd(u,1))  T(snd(u,2))  …

 T(snd(u, step))), considering that the first step steps

from the optimal strategy of broadcasting the message

in T(u) (starting from u) have been performed; snd(u,i)

denotes the vertex which receives the message from

vertex u at step i in the optimal strategy of broadcasting

the message in T(u) (starting from u). For

step=nsteps(u), we have Tmin(u, nsteps(u))=0. For

step=0, we always have that Tmin(u, 0)≥Tmin(s(u,j), 0),

1≤j≤ns(u). This is obvious, because T(s(u,j)) is

included in T(u). We will binary search the value

Tmin(u,0) in the interval [max{Tmin(s(u,j), 0)|1≤j≤ns(u)},

n-1]. Let’s assume that we chose the value Tcand within

the binary search. We now need to check if the

message can be broadcasted in at most Tcand time units.

We will initialize a remaining time counter T to Tcand.

We associate to each son of u, s(u,j), a state

state(s(u,j)), which is initially set to 0. We will

repeatedly consider the son s(u,x) with the largest value

Tmin(s(u,x), state(s(u,x))). If there are several sons with

the same maximum value, we will choose the son s(u,x)

among them, for which the sequence Tmin(s(u,x),

state(s(u,x))), Tmin(s(u,x), state(s(u,x))+1), …,

Tmin(s(u,x), nsteps(s(u,x))) is lexicographically largest.

If T>Tmin(s(u,x), state(s(u,x)), then we send the

message to the vertex s(u,x) and decrease T by 1. After

this, we will not consider the vertex s(u,x) anymore. If,

however, we have T=Tmin(s(u,x), state(s(u,x))), then

vertex u must send the message to vertex snd(s(u,x),

state(s(u,x))). It is clear that vertex u must send the

message to a vertex in T(s(u,x)); otherwise, at the next

time step, T will be smaller than Tmin(s(u,x),

state(s(u,x))). However, this case is identical to the

situation in which vertex s(u,x) must send the message

to a vertex in its subtree and the first state(s(u,x)) steps

of s(u,x)’s optimal broadcast strategy were performed.

Obviously, this vertex is snd(s(u,x), state(s(u,x))).

After sending the message, we increase the value of

state(s(u,x)) by 1 and decrease T by 1. If, at some

point, T<Tmin(s(u,x), state(s(u,x))) or T becomes zero

and there are still some sons of vertex u which did not

receive the message from u, then we need to consider a

larger value Tcand in the binary search; otherwise, we

consider a smaller one. After computing Tmin(u, j≥0),

we store in snd(u, j+1) the vertex to which vertex u

sends the message at the (j+1)
th

 step. When we try to

compute the Tmin(u, j>0), all the values snd(u, 1), …,

snd(u, j) are known. We first set the states of each of

vertex u’s sons, s(u,j), to state(s(u,j))=0 and then

modify their states accordingly, by performing the

message transmissions to the vertices snd(u, 0), …,

snd(u, j-1) (in this order), starting the remaining time T

counter at Tmin(u,0). Then, in order to compute Tmin(u,

j), we binary search the candidate value Tcand and use

the same algorithm described above, starting from the

current states of vertex u’s sons (and ignoring the sons

which have already received the message from u). The

total number of steps in the optimal strategy of

broadcasting in T(u) (starting from u) is determined by

computing the values Tmin(u, j) for increasing values of

j (starting from j=0) and stopping when the last son of

vertex u receives the message from u. The time

complexity of the solution is O(n
3
·log(n)), but it can be

improved to O(n
3
) if the binary search is replaced with

a linear search (starting from the lower value of the

interval and increasing the candidate value by 1 until

we reach the first feasible candidate time value). The

broadcast strategy can be easily determined from the

values snd(u, j) we computed.

3. Minimizing Frequency Conversion Costs

in Wireless Sensor Networks Multicasts

Data dissemination and gathering in wireless sensor

networks is often performed by establishing broadcast

trees, just like in many other types of networks. In this

section we consider a wireless sensor network

composed of n sensor nodes, interconnected in a tree

topology. We will consider two problems. In the first

problem, we are given a source node which needs to

send a message to the leaf nodes in the network (i.e.

those nodes having only one neighbor). Each non-leaf

sensor node can receive the message on any frequency

and can send it further on the same frequency or it can

convert it to another frequency. For each non-leaf

sensor node u, the cost of converting the message to a

frequency fr different than the one on which it was

received is c(u, fr). Each leaf sensor node v can receive

the message on only one specific frequency f(v).

Considering that the frequencies are natural numbers

from the set {1,…,k}, we are interested in finding a

multicast strategy which minimizes the costs employed

with frequency conversion at the non-leaf sensor nodes.

The source vertex can start sending the message on any

frequency. The non-leaf nodes send the message to all

of their sons, with the same frequency. In the second

problem, we will want to find a source vertex for which

the minimum cost multicast strategy is minimum

among all the other vertices. Of course, we will be able

to do this by repeating O(n) times the algorithm

developed for the first problem. However, we will

show how we can do better than this.

In order to solve the first problem, we will root the

tree at the source vertex src, thus defining parent-son

relationships. Using a bottom-up approach, we will

compute for each node u several values: Cmin(u, b,

fr)=the minimum total cost for disseminating the data

from u in its subtree T(u), considering that:

 if b=true, then the message’s frequency is

converted at vertex u; otherwise, the frequency is

not converted.

 fr is the frequency with which the message is sent

further by the vertex u to its sons.

For a leaf node u, we have Cmin(u, false, f(u))=0 and

Cmin(u, false, fr≠f(u))=Cmin(u, true, *)=+∞. For every

node u we will also compute Cbest(u), where:

)},,({min)(
min

1

frtrueuCuC
kfr

best


 (1)

For a non-leaf node u, we have:

))},((),,),,((min{

),(),,(

)(

1 min

min

jusCfrfalsejusC

frucfrtrueuC

uns

j best 


 (2)

 Cmin(u, false, fr)=Cmin(u, true, fr) - c(u, fr) (3)

We can compute the value Cbest(u) in O(k) time for

each node u, after having computed all the values

Cmin(u, true, *). Thus, when computing the values

Cmin(u,*,*) for a non-leaf node u, all the values

Cbest(s(u,j)) of the sons s(u,j), 1≤j≤ns(u), are already

known. Overall, the time complexity of the algorithm is

O(n·k). The minimum cost of a multicast strategy is

min{Cmin(src, *, *)} and the actual strategy can be

derived from the Cmin values we computed.

In order to solve the second problem, we could

consider every node u as the source node and run the

algorithm described above for every node. However,

this would take O(n
2
·k) time. We can maintain the

O(n·k) complexity in the following way. First, we root

the tree at an arbitrary vertex r and then run the

algorithm described previously. Afterwards, we will

compute for each vertex u the values Croot(u, b, fr),

having the same meaning as Cmin(u, b, fr), in the

situation in which u is the root vertex of the tree. For

the node r, we have Croot(r,*,*)=Cmin(r,*,*), where Cmin

was computed by the algorithm described previously.

We will also compute for each vertex the values

Cminaux(*,*,*) and Cbestaux(*,*,*), which are initialized to

the corresponding Cmin(*,*,*) and Cbest(*,*,*) values.

The pseudocode below describes this part:

TopDownAlgorithm(i):
if (i≠r) then

 remove vertex i from the list of sons of parent(i)

add parent(parent(i)) to the list of sons of parent(i) (if

parent(i) ≠r)

compute Cminaux(parent(i),*,*) and Cbestaux(parent(i),*,*) by

replacing Cmin by Cminaux and Cbest by Cbestaux in eq. (1)-(3)

add parent(i) to the list of sons of vertex i

compute Cminaux(i,*,*) and Cbestaux(i,*,*) by replacing Cmin

by Cminaux and Cbest by Cbestaux in eq. (1)-(3)

set Croot(i,*,*) to Cminaux(i,*,*)

restore the original list of sons of parent(i)

restore the original list of sons of i

for j=1 to ns(i) do

TopDownAlgorithm(s(i,j))

reset Cminaux(i,*,*) and Cbestaux(i,*,*) to Cmin(i,*,*) and

Cbest(i,*,*)

With these changes, we can compute all the values

Croot(*,*,*) in O(n·k) time. We can augment the two

problems to the case when, for each node u, there exists

a cost c(u, fin, fout) of converting the message from the

frequency fin to the frequency fout (in this case, we

may have c(u,f,f)=0, although it does not have to be

so). The main idea of the algorithm remains the same,

except that the values Cmin(u, b, fr) are turned into

Cmin(u, fin, fout)=the minimum total cost for

disseminating the data from u in T(u), if u receives the

message on frequency fin and sends the message

further on frequency fout. We also replace Cbest(u) by

Cbest(u,fin) and Croot(u,b,fr) by Croot(u,fin,fout).

Equations (1)-(3) are replaced by:

)},,({min),(
min

1

frfinuCfinuC
kfr

best


 (4)

)}),,((

),,(),,(

)(

1

min

foutjusC

foutfinucfoutfinuC

uns

j best 


 (5)

The minimum cost of a multicast strategy is

min{Cmin(src, *, *)}. We can also use a slightly

modified version of the TopDownAlgorithm to solve

the second problem, if we change Cminaux and Cbestaux the

way we changed Cmin and Cbest. The time complexity of

both problems becomes O(n·k
2
) in this case.

4. Packet Scheduling and Ordering

4.1. Outgoing Packet Scheduling over Multiple

Parallel TCP Streams

In this section we consider the problem of optimally

scheduling the sending of m (identical) data packets on

the outgoing network interface, when multiple (n) TCP

streams are open from the sender to the receiver. We

consider the following model: During every time unit,

we can send data on at most one TCP stream. TCP

stream i (1≤i≤n) can send at most Ai≥1 packets per time

unit. After using the network for one time unit, TCP

stream i must wait for Bi≥0 time units before being able

to use the network interface again (for instance, it waits

for enough buffer space or/and for receiving the ACKs

for the packets that were just sent). We want to

schedule the sending of the m packets over the n TCP

streams, such that the time after which all the packets

are sent is minimized.

We will present a dynamic programming solution

for this problem, for the case when all the parameters

are integer numbers and the values of Bi or n are small.

We will compute a table Tmin(k, t1, t2, …, tn)=the

minimum time after which k packets are sent and each

TCP stream i must still wait for ti (0≤ti≤Bi) time units

before being able to use the outgoing network interface

again (1≤i≤n). We have Tmin(0, 0, …, 0)=0 and Tmin(0,

t1, …, tn)=+∞ (if there exist at least one ti>0). We will

initialize all the other values Tmin(k>0, *, …, *) to +∞.

Afterwards, we will traverse all the states (k, t1, …, tn)

in increasing order of k and, for each k, in reverse

lexicographic order of the sequences (t1, …, tn). For

each state (k, t1, …, tn), we have several choices. The

first one is to wait one more time unit without doing

anything. In this case, we set Tmin(k, max{t1-1,0}, …,

max{tN-1,0}) to the minimum among its current value

and the value (1+Tmin(k, t1, …, tN)). The other choices

consist of considering every TCP stream i with ti=0

and sending Ai packets on this stream. In this case, we

set the value of Tmin(min{k+Ai,m}, t1’=max{t1-1,0}, …,

ti-1’=max{ti-1-1, 0}, ti’=Bi, ti+1’=max{ti+1-1, 0}, …,

tn’=max{tn-1,0}) to the minimum among its current

value and the value (1+Tmin(k, t1, …, tn)).

The time complexity of this solution is O(m·

(1+max{Bi})
n
·n) and uses O(m·(1+max{Bi})

n
) memory.

We will now consider a different definition of the state.

We denote the maximum value of Bi by BM. We will

compute Tmin(k, c0, …, cBM-1)=the minimum time of

sending k packets and the TCP stream used from (i+1)

time units ago until i time units ago was ci (0≤i≤BM-1).

Any TCP stream which was used more than BM units

ago can be used without any restrictions during the next

time moment. If ci=0, then no TCP stream was used for

sending packets i time units ago. We have Tmin(0, 0, 0,

…, 0)=0 and Tmin(0, S)=+∞ for any sequence S with

BM-1 elements, S≠(0, 0, …, 0). Like in the previous

case, we will initialize every entry Tmin(k>0, *, .., *) to

+∞ and then traverse every state (k, c0, …, cBM-1) in

increasing order of k and, for each k, in reverse

lexicographic order of the sequences (c0, …, cBM-1). For

each state we have several choices. One of them is to

do nothing. In this case, we set the value of Tmin(k,

c0’=0, c1’=c0, …, ci+1’=ci, …, cBM-1’=cBM-2) to the

minimum among its current value and the value

(1+Tmin(k, c0, …, cBM-1)). For the other choices, we

consider every TCP stream i (1≤i≤n) and compute the

smallest value ti, such that the stream was used between

(ti+1) and ti time units ago. If the stream i does not

belong to the set {c0, …, cBM-1}, then ti=BM. If ti≥Bi,

then we can use TCP stream i in order to send Ai

packets during the current time unit. We set Tmin(

min{k+Ai,m}, c0’=i, c1’=c0, c2’=c1, …, cBM-1’=cBM-2) to

the minimum among its current value and the value

(1+Tmin(k, c0, …, cBM-1)). The time complexity is

O(m·(n+1)
BM

·n), with O(m·(n+1)
BM

) memory.

In both cases, the minimum time after which all the

m packets can be sent is min{Tmin(m, *, …, *)} and the

sending strategy can be determined by tracing back the

way the Tmin(*, …, *) values were computed. For both

approaches, we can reduce the memory storage by a

m/(AM+1) factor, where AM=max{Ai|1≤i≤n}. This is

because every value Tmin(k, *, .., *) is referenced only

from states (k’, *, …, *), with k-AM≤k’≤k. Thus, we

can store a table T with only (AM+1) entries for the

first parameter of Tmin and store an entry Tmin(k, *, …,

*) at T(k mod (AM+1), *, …, *).

We compared the dynamic programming solution

against the following greedy algorithm: At each time

moment, select the TCP stream i which is available (i.e.

it is not in the waiting period) and has the largest value

Ai; in case of ties, we choose the available TCP stream

with the smallest (largest) value Bi, among those

available and having the largest Ai. If no TCP stream

was available, the algorithm waits until the next time

moment, when it tries to send data again. This greedy

algorithm is the most likely to be used in practice. As

practical application, let’s consider a data transfer on

multiple parallel TCP streams. Most programming

languages provide a select() mechanism which allows

the application to choose among the (TCP) sockets on

which data can be written. Assuming that we maintain

statistical information about using the sockets, the Ai

values could be the average amount of data that can be

written in the socket buffer with one write() call and the

Bi values can be the average time duration between two

consecutive time moments at which the socket is

writable. The testing scenarios consisted of n=3 TCP

streams and m=100 packets. The parameters Ai were

integer numbers ranging from 1 to 7 and the parameters

Bi were integers ranging from 0 to 4. Out of the 42,875

possibilities, the dynamic programming solution

obtained a schedule with a smaller duration than the

greedy algorithm in 6,990 (10,227) cases. In the other

35,885 (32,648) cases, both algorithms obtained

schedules with the same duration. The dynamic

programming solutions are difficult to use in real-time

settings, but they did provide insights that the greedy

algorithm used in practice may not be the best choice at

all times.

4.2. Minimum Cost Packet Reordering

Let’s consider that the n packets belonging to a

communication flow were received out of order and are

stored in the receiving buffer in the order p(1), p(2), …,

p(n) (their correct order should be 1, 2, …, n). From

the receiving buffer, they must be moved in the

application buffer in the correct order. We assume that

both the receiving buffer (B1) and the application buffer

(B2) are implemented as linked-lists. As a consequence,

the reordering process consists of n steps. At each step

i (1≤i≤n), a new packet j is removed from B1 and added

at the beginning or the end of B2. The cost of such a

move is given by a function c(i, pos(j, i-1)), where

pos(j,i) denotes the position of packet j in B1 after i

steps were performed. The positions are numbered

starting from 1 and we must consider the fact that the

position of each packet a in B1 decreases by 1

whenever a packet b which was stored before a in B1 is

removed from B1 and moved to B2. The total cost of the

reordering process is given by an aggregation function

cagg, which can be, for instance, sum or max. We are

interested in determining a strategy with minimum total

(aggregate) cost.

We first notice that, due to the restrictions imposed,

the packets in B2 always have consecutive numbers

(although they might not always start from 1). This

suggests using the following approach. We will

compute a table Cmin(i,j)=the minimum aggregate cost

of obtaining in B2 the sequence of packets j, j+1, …,

j+i-1 after i steps. We have Cmin(1,j)=c(1, pA(0,j)) and

Cmin(i>1,1≤j≤n-i+1)=min{cagg(Cmin(i-1,j+1), c(i, pA(i-

1, j)), cagg(Cmin(i-1, j), c(i, pB(i-1, j+i-1))}. pA(i,j) is

the position of packet j in B1, after removing all the

packets with numbers in the interval [j+1,j+i]; pB(i,j)

is the same thing as pA(i,j), except that we remove all

the packets with numbers in the interval [j-i,j-1]. The

two options in the computation of Cmin(i,j) correspond

to adding the packet j or packet j+i-1 at step i.

We need an efficient method of computing the

values pA(*,*) and pB(*,*). For i=0, we traverse the

packets in B1 and set pA(0,p(i))=pB(0,p(i))=i. For i>0,

we have the following cases. If (j+i≤n) and

(pA(0,j+i)<pA(0,j)) then pA(i,j)=pA(i-1,j)-1; otherwise,

pA(i,j)=pA(i-1,j). In a similar manner, if (j-i≥1) and

(pB(0,j-i)<pB(0,j)) then pB(i,j)=pB(i-1,j)-1; otherwise,

pB(i,j)=pB(i-1,j).

It is obvious that we can compute the pA and pB

tables in O(n
2
) time. Once these values are computed,

we can compute the Cmin table in O(n
2
) time, too. The

value Cmin(n,1) represents the minimum cost of the

reordering process. The actions composing the process

can be determined by tracing back the way the

Cmin(*,*) values were computed. Although it seems that

we require O(n
2
) memory storage, we can reduce it to

O(n). For each i (1≤i≤n) we only need the values

Cmin(i-1,*), pA(i-1,*), pB(i-1,*) in the computation of

Cmin(i,*), pA(i,*), pB(i,*) and, thus, we can maintain

these values only for the two most recent values of i.

However, if we reduce the memory, we need to use

some special techniques in order to be able to trace

back the way the Cmin(*,*) values were computed.

4.3. Ordering Packets to Influence the Total

Processing Time

Let’s consider a communication flow which is

composed of n packets. Each packet i (1≤i≤n) has

sz(i)>0 bytes. During each of the next n time units, one

packet has to be sent towards the destination. For each

time unit j (1≤j≤n), the processing effort per byte

p(j)>0 is known. The processing effort may be

different from a time moment to the next, because the

system may be more or less loaded as time passes.

Since we consider the offline setting, we assume that

we know the processing efforts per byte in advance.

The total processing time TPT is defined as:

 


n

i
iqszipTPT

1
))(()((6)

q is a permutation with n elements which defines the

order of the packets. Minimizing the total processing

time is easy. We first sort the packets, such that

sz(op(1))≥sz(op(2))≥…≥sz(op(n)). Then, we sort the time

moments, such that p(ot(1))≤…≤p(ot(n)). We obtain the

minimum total processing time if we send the packet

op(i) at the time moment ot(i) (1≤i≤n), i.e. the minimum

TPT is the sum of the values sz(op(i))·p(ot(i)).

Another interesting question that we raise is whether

there exists a permutation q of the packets such that the

total processing time is a given value TPT. In order to

answer this question, we will consider the time

moments ordered as before, according to the

permutation op (in increasing order of the processing

time) and we will begin with a permutation r of the

packets, which has the property: sz(r(1))≤…≤sz(r(n)). If

we send the packet r(i) at time ot(i) (1≤i≤n), then we

obtain the largest possible total processing time. We

initialize a variable T with the value of the total

processing time given by the permutation r. We will

then repeatedly swap elements of the permutation r, in

order to bring the value of T as close as possible to

TPT, as described by the pseudocode below:

SwapAndDecrease():
initialize the permutation r and the value of T

nsteps=0

while (T≠TPT) do

nsteps=nsteps+1; swapped=false

find a suitable pair of positions (i,j) (1≤i<j≤n)

if (pair (i,j) was found) then

 dif=(sz(r(i))·p(ot(i))+sz(r(j))·p(ot(j)))-

 (sz(r(i))·p(ot(j))+sz(r(j))·p(ot(i)))

 vaux=r(i); r(i)=r(j); r(j)=vaux

 T=T-dif; swapped=true

if (not swapped) then break // the while cycle

if (T=TPT) then return r

else return “no permutation found”

As can be noticed, the algorithm performs

successive swaps in the permutation r of the packets.

The core of the algorithm is the finding of a suitable

pair (i,j) to swap. We considered several possibilities

for the selection function: (a) choose the pair (i,j)

which decreases the value of T the most, but not below

TPT (this pair was chosen by considering all the O(n
2
)

possibilities); (b) choose the pair (i,j) which minimizes

the absolute difference between the (new) value of T

and TPT (thus, T may become both smaller and larger

than TPT, but the absolute difference decreases at each

step) – we consider all the O(n
2
) possibilities; (c)

choose any pair of positions (i,j), as long as the value

of T decreases, but not below TPT; (d) choose any pair

(i,j) that decreases the absolute difference between the

(new) value of T and TPT. For subcases (c) and (d) we

considered several sub-cases: traversing the pairs in

decreasing/increasing/random order of i (j) and, for

each i (j), considering the argument j (i) in decreasing/

increasing/random order (18 sub-cases overall). We

also considered generating random pairs of values (i,j)

(this is different from randomly generating the value of

i (j) and then randomly traversing all the values of j (i)).

Of course, as soon as a suitable pair was found, we

would stop considering the subsequent pairs (and, thus,

we would not consider all the pairs). We tested all of

these possibilities and noticed that cases (c) and (d)

worked definitely faster than cases (a) and (b).

Although the number of steps before which T reached

TPT was larger than in cases (a) and (b) (where T

converged quicker), the processing time per step was

lower for cases (c) and (d). Then, we considered case

(e), in which we could choose more than one suitable

pair per step. In order to do this, we traversed all the

O(n
2
) pairs according to the traversal modes of cases

(c) and (d), but we would continue the traversal after

finding a suitable pair and swapping it. Case (e)

worked even faster than cases (c) and (d), because we

performed more than one swap per step.

5. Unconstrained Path using a Minimum

Cost Rechargeable Resource

We are given a directed graph with n vertices and m

edges. Each directed edge (u,v) has an associated

resource consumption rc(u,v). We need to find a

feasible path from a source vertex s to a destination

vertex t. In this case, a rechargeable resource is carried

within the delivered content (e.g. signal power in

wireless networks or some kind of Time-to-Live which

can also be increased in certain situations). Thus,

before determining the path, we must choose one of the

K types of rechargeable resources. Each type i (1≤i≤K)

has a capacity cap(i) and a cost cost(i). We have cap(1)

≤cap(2)≤...≤cap(K) and cost(1)≤cost(2)≤...≤cost(K).

Whenever we traverse an edge (u,v), the capacity of the

chosen resource decreases by rc(u,v). A path is feasible

if the resource’s capacity never drops below zero. We

want to choose the resource with the minimum cost for

which a feasible path exists. In the absence of other

problem parameters, this problem is easily solved by

computing the smallest total resource consumption

TRC from s to t (using Dijkstra’s algorithm) and

choosing the resource i with the smallest index, such

that cap(i)≥TRC. We extend the problem by allowing

some of the vertices to be charging points and the

chosen resource to be rechargeable. We have a function

charging_point(i) which returns true only if the

resource can be recharged when reaching vertex i. The

resource can be recharged all the way up to its

maximum capacity in zero time. In order to find a

feasible path, we will binary search the index i of the

resource and try to find whether a feasible path using a

resource of type i exists. If the capacity of the resource

and the resource consumption values of the edges are

all integers, we will compute the values

reachable(u,w)=true, if we can reach the vertex u

having w units of resource remaining (or false,

otherwise). The pairs (u,w) (0≤w≤cap(i)) are vertices of

an expanded graph EG. We will have a directed edge

between a pair (u1, w1) and (u2, w2), meaning that if the

state (u1, w1) is reachable, then the state (u2, w2) is also

reachable, in the following situations:

 there exists an edge (u1,u2) and w2=w1-rc(u1,u2).

 charging_point(u1)=true, u2=u1, w2>w1.

We have reachable(s,cap(i))=true. We need to

verify if a state (t, w) is reachable from the initial state

(s, cap(i)). We only need to perform a DFS or BFS in

the expanded graph in order to test the reachability

property. The time complexity of the feasibility test is

O((n+m)·cap(i)+n·cap
2
(i)). If, instead, we change the

second condition for having an edge between two states

and always consider full recharges (i.e., if

charging_point(u1)=true, then there exists a directed

edge from (u1,w1) to (u1,cap(i)) and not to all the

intermediate capacities w2, such that w1<w2<cap(i)),

the time complexity becomes O((n+m)·cap(i)).

6. Time Constrained Path using a

Minimum Cost Rechargeable Resource

We now consider a problem similar to the one in the

previous section. Each edge (u,v) additionally has a

duration t(u,v) and we want to find a feasible path,

whose total duration is at most a given value Tmax, by

choosing a minimum cost resource type. As an

extension of the problem, if charging_point(u)=true,

the time required to charge the resource from capacity

c1 to capacity c2>c1 is tcharge(u, c1, c2). We will binary

search the smallest index i of a feasible resource and

define the same expanded graph as before. Each edge

of the expanded graph has a duration; if it corresponds

to an edge of the original graph, its duration is equal to

that of the original edge. The feasibility test consists of

finding a shortest path from (s,cap(i)) to a pair (t,w). If

the duration of this path (the sum of the durations of the

edges composing the path) is at most Tmax, we will test

a smaller resource index; otherwise, we test a larger

one. The time complexity of the feasibility test is

O(((n+m)·cap(i)+n·cap
2
(i))·log(n·cap(i))) (if we use

Dijkstra’s algorithm with a priority queue).

7. Constrained Bottleneck Path (Tree)

We are given a directed graph with n vertices and m

edges. Each edge (u,v) has a capacity c(u,v) and a

duration t(u,v). The Time-Constrained Maximum

Capacity Path problem asks for a maximum capacity

path from s to t, given an upper limit Tmax on the

duration of the path. A path from s to x is a sequence of

vertices v1, v2, ..., vq (q>0), where v1=s, vq=x and there

exists an edge between any two consecutive vertices vi

and vi+1 (1≤i≤q-1). The duration of a path is the sum of

the t(u,v) values of the edges (u,v) composing the path

and the capacity of a path is the minimum capacity of

an edge of the path. We can binary search the capacity

of the path Cpath. The feasibility test consists of

checking if a path with a duration smaller than or equal

to Tmax exists, where the capacity of each edge is larger

than or equal to Cpath. We ignore all the edges with

capacities smaller than Cpath and then run Dijkstra's

algorithm for computing tmin(i)=the minimum duration

of a path from the vertex s to vertex i (using only the

edges which are not ignored). If tmin(t)≤Tmax, we can

test a larger value of Cpath; otherwise, we test a

smaller value. The time complexity of the feasibility

test is O(m·log(n)) (or O(n
2
)); we multiply this by

log(m), if we sort all the edges initially (according to

their capacities) and then we choose the value Cpath

from the set of edge capacities, or log(CAPMAX), if we

binary search the capacity in the interval [0,CAPMAX],

where CAPMAX is the maximum capacity of an edge

(in this case, if the capacities are not integer numbers,

we will stop the binary search when the search interval

becomes smaller than a constant ε>0).

In the tree version of the problem, we need to find a

maximum capacity multicast tree MT from a source

vertex s to a set D={d1, d2, ..., dK} of destinations, such

that the value of the function TreeTime(MT) is at most

equal to an upper limit Tmax. The capacity of a tree is

equal to the minimum capacity of an edge in the tree.

We can define TreeTime(MT) in two ways: a) the

duration of the longest path in MT from s to a

destination ; b) the sum of the durations of the edges

composing the tree. Both versions can be solved by

binary searching the capacity Ctree of the tree. We

ignore all the edges with capacity smaller than Ctree

and with the remaining edges we perform a feasibility

test. For case a), the feasibility test consists of running

Dijkstra's algorithm starting from vertex s and letting

TreeTime(MT) be max{tmin(d(j))|1≤j≤K}. For case b),

we can use a minimum spanning tree algorithm, like

Prim or Kruskal (with the weight of an edge being

equal to its duration). If TreeTime(MT) exceeds Tmax,

we choose a smaller value of Ctree; otherwise, we

choose a larger value. The time complexity of the

feasibility test is O(m·log(n)) for case a) and

O(m·log*(n)) for case b) (in this case, we must also sort

the edges before performing the binary search, thus

adding an O(m·log(m)) term to the overall complexity).

8. Constrained Bottleneck Path (Tree) with

Monotonically Non-Increasing Capacities

We consider the same problem as in the previous

section, except that the capacity of an edge is not

constant. Each edge (u,v) has an associated

monotonically non-increasing function cap(u,v,t),

which denotes its capacity at time t (cap(u,v,t1)≥

cap(u,v,t2), for t1<t2). In order to find the maximum

capacity path, we binary search the maximum capacity

Cpath and then perform a feasibility test which consists

of running Dijkstra's algorithm on the entire graph and

computing the same values tmin(i). When we need to

perform an update during the algorithm, by considering

a move from a vertex u (at time tmin(u)) to a vertex v

(at time tmin(u)+t(u,v)), we check that cap(u,v,tmin(u)

+t(u,v))≥Cpath; if the condition is false, edge (u,v) is

ignored. For the case of a multicast tree with an upper

limit on the longest path in the tree, we binary search

for the maximum capacity of the tree, run the modified

Dijkstra’s algorithm described before, compute TT=

max{tmin(d(j))|1≤j≤K} and compare TT to Tmax.

9. Related Work

Content delivery in distributed systems is a subject

of high practical and theoretical interest and is studied

from multiple perspectives. Communication scheduling

in networks with tree topologies was considered in

many papers (e.g. [6,7]) and the optimization of

content delivery trees (multicast trees) was studied in

[8]. Optimal broadcast in trees in the single-port model

have been studied in [1,5]. In [2], the problem was

enhanced with non uniform edge transmission times

and an O(n·log(n)) algorithm was proposed. In [9],

sending and receiving time constraints were considered

for the single-port tree broadcast problem. A dynamic

programming algorithm was presented in [3] for the

minimum time broadcast in directed trees, under the

single port line model. Efficient algorithms for the

maximum reliability k-hop multicast strategy in

directed trees, as well as exact, exponential algorithms

for minimum time multicast in directed graphs have

been presented in [4].

10. Conclusions and Future Work

In this paper we presented several algorithmic

techniques for offline content delivery problems in

some restricted types of distributed systems, like

optical Grids and wireless sensor networks with tree

topologies. Moreover, we also studied some problems

regarding the optimal scheduling and ordering of the

packets of a communication flow. In this paper we also

introduced the concept of rechargeable resources and

presented some algorithms for computing optimal paths

in the context of these resources. In the final part of the

paper we presented efficient algorithms for computing

time-constrained bottleneck paths and multicast trees.

All of the presented techniques are offline, meaning

that they require full, stable, information regarding the

parameters of the distributed system. Because of this,

they cannot be used directly in a real-time setting.

However, developing optimal offline content delivery

strategies and understanding their characteristics are

the first steps towards developing efficient online

techniques.

11. References

[1] P.J. Slater, E.J. Cockayne, and S.T. Hedetniemi,

“Information Dissemination in Trees”, SIAM J. on

Computing, vol. 10, 1981, pp. 692-701.

[2] J. Koh, and D. Tcha, “Information Dissemination in

Trees with Nonuniform Edge Transmission Times”, IEEE

Trans. on Computers, vol. 40 (10), 1991, pp. 1174-1177.

[3] B. D. Birchler, A.-H. Esfahanian, and E. K. Torng,

“Information Dissemination in Restricted Routing

Networks”, Proc. of the International Symposium on

Combinatorics and Applications, 1996, pp. 33-44.

[4] M. I. Andreica, and N. Țăpuș, “Maximum Reliability K-

Hop Multicast Strategy in Tree Networks”, Proc. of the IEEE

International Symp. on Consumer Electronics, 2008.

[5] J. Cohen, P. Fraginaud, and M. Mitjana, “Polynomial-

Time Algorithms for Minimum-Time Broadcast in Trees”,

Theory Comput. Syst., vol. 35 (6), 2002, pp. 641-665.
[6] T. Erlebach, and K. Jansen, “Call Scheduling in Trees,

Rings and Meshes”, Proc. of the 30th Hawaii Intl. Conf. on

System Sci.: Soft. Tech. and Architecture, pp. 221-222, 1997.

[7] M. R. Henzinger, and S. Leonardi, “Scheduling

multicasts on unit-capacity trees and meshes”, J. of Comp.

and Syst. Sci., vol. 66 (3), pp. 567-611, 2003.

[8] Y. Cui, Y. Xue, and K. Nahrstedt, “Maxmin overlay

multicast: rate allocation and tree construction”, Proc. of the

12th IEEE Workshop on Quality of Service (IWQOS), pp.

221-231, 2004.

[9] M. I. Andreica, and N. Țăpuș, “Constrained Content

Distribution and Communication Scheduling for Several

Restricted Classes of Graphs”, Proc. of the IEEE Intl. Symp.

on Symbolic and Numeric Algorithms for Scientific

Computing (SYNASC), 2008. To appear.

