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Thermophoresis at a charged surface: the role of hydrodynamic slip

Julien Morthomas and Alois Würger
CPMOH, Université Bordeaux 1 & CNRS, 351 cours de la Libération, 33405 Talence, France

By matching boundary layer hydrodynamics with slippage to the force-free �ow at larger distances,
we obtain the thermophoretic mobility of charged particles as a function of the Navier slip length b.
A moderate value of b augments Ruckenstein�s result by a term 2b=� where � is the Debye length.
If b exceeds the particle size a, the enhancement coe¢ cient a=� is independent of b but proportional
to the particle size. Similar e¤ects occur for transport driven by a salinity gradient or by an electric
�eld.

PACS numbers: 82.45.-h, 82.70.-y, 47.61.Fg

I. INTRODUCTION.

In recent years the thermally driven motion of charged
colloids has attracted much attention, and a variety of
surprising phenomena have been observed [1, 2]. The
Soret e¤ect of a micellar solution was shown to vary with
the surfactant concentration [3], and unexpected depen-
dencies on temperature and electrolyte composition were
reported for suspensions of nanoparticles and macromole-
cular solutions [4�13]. A thermal gradient has been used
as a trap for DNA in a microchannel with ambiant �ow
[14].
Transport of charged colloids arises from a generalized

external force acting on the electric double layer at a
particle-�uid interface. The thermophoretic mobility is
de�ned through the drift velocity of the solute induced
by a temperature gradient in the solvent �uid,

u = �DTrT: (1)

There are two di¤erent routes to calculating the trans-
port coe¢ cient DT ; the �rst one relies on low-Reynolds
number hydrodynamics and the thermal force density on
the �uid in the boundary layer [15�21], whereas the sec-
ond one expresses the velocity u through the particle
mobility and a force that is given by the gradient of the
double-layer energy [22�24].
Most parameters of a charged colloid depend on tem-

perature, such as the solute surface potential and the
solvent permittivity, viscosity, and salinity. Thus in most
cases, it is not obvious to single out the physical mech-
anism underlying the observed dependencies. For exam-
ple, the transport coe¢ cient DT changes sign as a func-
tion of temperature and electrolyte composition; increas-
ing temperatures and high pH values favor an inverse
Soret e¤ect DT < 0. It was realized only recently that
the thermoelectric �eld of the electrolyte solution plays
a major role in thermophoresis and often determines the
sign and magnitude of DT [6, 20].
The size dependence of DT has been much debated

in the last years. Experiments on polystyrene beads
in aqueous solution reported a linear variation DT / a
with the particle radius over almost two orders of mag-
nitude [7]; on the other hand, a constant DT was found
for droplets in microemulsions, and polystyrene beads

[9, 11, 12].
From low-Reynolds number hydrodynamics with no-

slip boundary condition at the particle-�uid interface, it
is well known that any transport coe¢ cient is constant
with respect to the particle size, as long as the latter is
larger than the Debye length � [25]. At moderate elec-
trolyte strength, � takes typical values of a few nanome-
ters, thus satisfying � � a. Accordingly, Ruckenstein
obtained a constant DT [15]; this result was con�rmed
by several authors [16�20]. As a possible explanation for
the experimental �ndings of Ref. [7], we noted in a pre-
vious paper that hydrodynamic slippage at the particle
surface would give rise to linear dependence of DT on the
particle size [21].
In the present work, we derive the thermophoretic mo-

bility as a function of the particle size a, the Debye length
�, and the slip length b. We discuss the dependence on
these di¤erent length scales and, in particular, recover
the above mentioned limiting cases of constant DT and
DT / a. In Sect. 2 we obtain the general expression for
the velocity change through the boundary layer. In Sect.
3 we show how a �nite slip length modi�es thermophore-
sis due to temperature and permittivity gradients; Sect.
4 discusses similar e¤ects in a non-uniform electrolyte.
We conclude with a discussion of the main results.

II. BOUNDARY LAYER HYDRODYNAMICS.

The boundary conditions at a solid-�uid interface have
been debated since the early days of �uid mechanics;
Navier proposed that a sheared �uid could slip along
the surface, with the velocity jump being proportional to
the applied shear rate. At a macroscopic scale, the �uid
sticks to the solid surface, suggesting continuity of the
velocity �eld. On the scale of microns or even nanome-
ters, however, various measurements provide evidence for
the occurrence of hydrodynamic slippage [26, 27]. On a
molecular level, slip has been explained in terms of the
weak adherence of the solvent to the solid surface. Simu-
lations of the molecular dynamics at a charged interface
related the slip length to van der Waals force parameters
of the non-wetting �uid and to ion-speci�c interactions
[28]. These simulations show that continuum hydrody-
namics provide a good description of the �uid motion
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FIG. 1: Schematic view of the �uid velocity �eld in the bound-
ary layer close to a particle of radius a. The external �eld act-
ing on the electric double layer accelerates the charged �uid
with respect to the solid. A �nite surface velocity v0 arises
from hydrodynamic slip in a molecular layer (thick grey line);
the slip length b is de�ned as the distance where the linear ve-
locity pro�le would vanish. At a distance B, well beyond the
electric double layer, the �uid attains the boundary velocity
vB .

even on the scale of nanometers, and that slip occur-
ring in a few molecular layers may signi�cantly accel-
erate externally driven transport, such as the �ow in a
microchannel.

In a continuum picture, the shear stress �0 and the
resulting slip velocity v0 are related through Navier�s
boundary condition

�v0 = b�0; (2)

where � is the �uid viscosity and b a material speci�c
constant that has the dimension of a length. The lat-
ter parameter accounts for the reduced mocular viscosity
at the interface. Various experiments con�rm the linear
stress-velocity relation, but others indicate a non-linear
behavior, i.e., a slip length b that depends on the shear
rate [26, 27].

A particle of radius a exerts on the surrounding �uid
the e¤ective force density fx, including the excess hydro-
static pressure [19, 20], which is �nite only close to the
surface and vanishes at distances of the orderB. The nor-
mal component of the �uid velocity within the boundary
layer is zero, and its parallel component satis�es Stokes�
equation, �@2zvx+fx = 0, with constant hydrostatic pres-
sure. It turns out convenient to consider the �uid mo-
tion in the frame attached to the particle. The integral
of �@2zvx + fx = 0 gives the shear stress �xz = �@zvx.
Its values at the surface �0 and at the outer side of the

boundary layer are related by

�B = �0 �
Z B

0

dzfx � �0 ���: (3)

Integrating once more gives the parallel component of the
�uid velocity vx(z). With the �nite value at the particle
surface v0 = vx(0) we have well beyond the charged layer

vB = v0 +
1

�

Z B

0

dzzfx � v0 +�v: (4)

The boundary velocity vB is the sum of two contributions
of di¤erent physical origin. The intrinsic slip velocity v0
arises if the �uid molecules do not fully adhere to the
solid. The velocity change through the boundary layer
�v, sometimes referred to as apparent slip [25], is due
to the forces exerted by the surface on the �uid in the
boundary layer.
The above Eqs. (2-4) are closed by matching �B and

vB to the �uid �ow beyond the boundary layer. In this
range, the velocity �eld is solution of the force-free Stokes
equation �r2v = 0 in three dimensions [30, 31]. For a
uniform particle surface, the boundary velocity depends
on the polar angle as

vB = �vB sin �:

The normal and tangential components of the �uid �ow
beyond the boundary layer (r � ~a � a + B) vary as
vr / [1� (~a=r)3] and

vt = vB

�
2

3
+
1

3

~a3

r3

�
:

Since the normal velocity vr vanishes at r = ~a, the o¤-
diagonal stress in spherical coordinates reads [31]

�rt = �

�
dvt
dr

� vt
r

�
:

With ~a ' a, we �nd the stress at the outer side of the
boundary layer

�B = �
2�vB
a

: (5)

For an inhomogeneous particle surface [32], the tangen-
tial velocity takes a more general form vt =

P
n cn(�)r

�n

and modi�es the numerical prefactor in �B accordingly.
We brie�y discuss the role of curvature in the matching

condition (5). The change �� through the boundary
layer has been calculated with �xz = �@zvx, i.e., the
shear stress has been taken as the normal derivative of
the tangential velocity. On the other hand, Eq. (5) has
been obtained from the above expression �rt in spherical
coordinates that comprises, besides the normal derivative
@rvt, the term �vt=r accounting for the �nite curvature
of the interface. Indeed, outside the boundary layer, the
normal derivative @rvt of the force-free �ow @rvt and the
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curvature term �vt=r are of the same order of magnitude;
thus both have to be retained. As shown in Ref. [33] for
Navier�s slip condtion (2), the curvature contribution to
the shear stress can be written alternatively in terms of
the normal derivative �xz = �@zvx with an e¤ective slip
length 1=be¤ = 1=b+ 1=a.
Eqs. (2-5) determine the boundary velocity vB as a

function of the slip length

vB =
�v + b��=�

1 + 2b=a
: (6)

For Stokes boundary conditions with zero slip length one
has vB = �v, whereas the opposite limit b!1 leads to
vB =

1
2a��=�. In some aspects hydrodynamic slippage

at a solid-�uid interface is similar to the �ow on a gas
bubble in a viscous liquid [25, 34], which is described by
Hadamard-Rybczynski boundary conditions. In view of
(2) the limit of zero shear stress at the interface, �0 = 0,
corresponds to b!1 [30].
So far we have considered the reference frame where

the particle is immobile, that is why vr and vt are �-
nite at r ! 1. Transformation to the laboratory frame
gives the velocity of the moving particle, u = �hevvBi;
the orientational average along the particle surface h:::i
results in [25]

u = �2
3
�vB : (7)

Eqs. (6) and (7) apply to any force density exerted on
the �uid in the boundary layer. In the remainder of this
paper we discuss in detail the case of thermophoresis,
and then treat a non-uniform electrolyte with a salinity
gradient and a spontaneaous electric �eld.

III. THERMOPHORESIS.

We discuss transport driven by a temperature gradient
in an otherwise uniform electrolyte [15]. In order not to
encumber the equations, we resort to the Debye-Hückel
approximation. The charged particle exerts on a unit
volume of the surrounding �uid the force density [19, 20]

f =
" 2

2�2
(1 + �+ �)

rT
T

;

where  =  0e
�z=� is the electric potential in the bound-

ary layer and  0 the value at the surface. The logarith-
mic derivative � = �d ln "=d lnT accounts for the tem-
perature dependence of the permittivity "(T ); in water
it varies from � = 1:25 at 0 �C to � = 1:5 at 50 �C. The
parameter � describes the spatial variation of the salinity
[18, 20],

rn0
n0

= ��0
rT
T

:

The reduced Soret coe¢ cient � of the electrolyte solution
takes values � = 0:8 for NaCl and � = 3:4 for NaOH.

Integrating Eqs. (3) and (4) we �nd with Tx = dT=dx
the changes of velocity and shear stress,

�v =
" 20
8�
(1 + �+ �)

Tx
T
; �� =

" 20
4
(1 + �+ �)

Tx
T
:

Insertion in the general relation (6) gives the boundary
velocity

vB =
" 20
8�
(1 + �+ �)

1 + 2b=�

1 + 2b=a

Tx
T
:

Identi�ying u = � 2
3 �vB and u = �DTTx we obtain the

thermophoretic mobility

DT =
" 20
12�T

(1 + �+ �)
1 + 2b=�

1 + 2b=a
; (8)

which constitutes a main result of the present paper.
We discuss limiting cases with respect to the lengths

a; b; �. For zero slip b = 0 and using the surface potential
 0 = ��=", we have

D
(0)
T =

�2�2

12�"T
(1 + �+ �)

and thus recover the variation with the square of the
Debye length obtained in [15, 17, 19]. In the opposite
case of large slip length a � b, Eq. (8) con�rms the
relation DT = (a=�)D

(0)
T obtained previously in [2, 21].

In the intermediate case �� b� a, we �nd a linear law
DT / �, with an enhancement factor DT =D

(0)
T = 2b=�

that is twice that of the electrophoretic mobility �=�0 =
b=� [29]. The additional factor 2 arises since the thermal
force is quadratic in the surface potential  0, whereas
electrophoresis is linear in  0.

IV. THERMOELECTRICITY

Recently it has become clear that the Soret e¤ect of
charged colloids is to a large extent determined by the
thermoelectric e¤ect of the electrolyte solution [6, 20],
that is, the macroscopic �eld induced by thermal di¤u-
sion of the mobile ions,

E1 = ��
kBrT
e

;

where e is the elementary charge and �� the reduced See-
beck coe¢ cient. Typical values are �� = 0:6 for NaCl and
�� = �2:7 for NaOH [20]. This electric �eld drives the
colloidal particles to the cold or to the warm, depending
on the sign of �� and of the surface charge �. Note that
this e¤ect di¤ers from that studied in [36], with an elec-
tric �eld Eind / (D+�D�) proportional to the di¤erence
of di¤usion coe¢ icients of co-ions and counterions.
The thermoelectric e¤ect modi�es the thermophoretic

mobility according to [20],

DT � ��b
e 0

4��`BT
= DT � ��b

��kB
e

; (9)
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where the reduced Seebeck coe¢ cient ��b accounts for
a �nite slip length. Eq. (8) shows how the �rst term
depends on the slip length b. Here we derive the corre-
sponding relation for ��b.
The external electric �eld E1 exerts on the charged

�uid in the boundary layer the force

f = �E1; (10)

where � = �2e sinh(e =kBT ) is the charge density in
the electric double layer. The permittivity of water being
much larger than that of most materials, the electric �eld
hardly penetrates in the particle; close to the particle the
vector ES is parallel to the surface, and its magnitude
ES =

3
2E1 sin � is enhanced by a factor 3"=(2"+"P ) �

3
2

with respect to the value at in�nity E1. For a homo-
geneous surface the integrals in (3) and (4) are readily
related to the electrostatic properties of the charged sur-
face. From direct integration or comparison with known
results for electrophoresis [35], we obtain the stress and
velocity changes through the boundary layer in terms of
the surface charge density � and the surface potential  0,

�� = ��ES ; �v = �" 0
�
ES : (11)

Note that the ratio of the velocity change �v and ES is
identical to the Helmholtz-Smoluchowski mobility �0 =
" 0=� [35]; this does not come as a surprise, since the
thermoelectric e¤ect induces a macroscopic electric �eld.
Inserting these quantities in (6) we �nd the boundary

velocity vB and the modi�cation of the Seebeck coe¢ -
cient by the slip length,

��b = ��
1 + b=�

1 + 2b=a
: (12)

The overall behavior is similar to (8), yet with a linear
correction term b=� that is by a factor 2 smaller. This
di¤erence is readily traced back to the fact that ther-
mophoresis is quadratic in the surface potential, whereas
the electric �eld E1 couples linearly to  0.

V. DISCUSSION.

According to Eqs. (8) and (12), the Soret and ther-
moelectric e¤ects of charged colloids show a similar de-
pendence on a �nite slip length b. For small values of b
we �nd an enhancement factor proporotional to the ratio
of slip and Debye lengths b=�. If b is comparable to the
particle size, this linear law saturates at a constant value
� a=�.

A recent experimental study [7] reported the ther-
mophoretic mobility DT of charged polystyrene beads
to depend on the particle size. The data show a lin-
ear variation with both particle radius and Debye length,
DT / a�, in the range 2nm < � < 13nm and 10nm <
a < 550nm. These observed dependencies are well ac-
counted for by Eq. (8) with slip boundary conditions,
� � a � b, but di¤er essentially from the no-slip result
D
(0)
T / �2. Yet note that a �t of these data with Eq. (8)

would require a slip length of hundreds of nanometers.
Such large values are hardly realistic in view of available
data [27]. Moreover, a large slip length implies high sur-
face tension, i.e., low solubility of the particles. Thus we
feel that at present there is no satisfactory explanation
for the data of [7].

As a more promising system for the observation of slip-
enhanced thermophoresis, one could think of thermally
driven �ow through a pore or in a microchannel. This
situation is accounted for by our results when putting
in the above formulae a ! 1. Then the enhancement
factors in Eqs. (8) and (12) read (1+2b=�) and (1+b=�),
respectively. A signi�cant enhancement is expected it
the slip length b exceeds the Debye length �, which is
typically of the order of one nanometer.
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