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By matching boundary layer hydrodynamics with slippage to the force-free ‡ow at larger distances, we obtain the thermophoretic mobility of charged particles as a function of the Navier slip length b. A moderate value of b augments Ruckenstein's result by a term 2b= where is the Debye length. If b exceeds the particle size a, the enhancement coe¢ cient a= is independent of b but proportional to the particle size. Similar e¤ects occur for transport driven by a salinity gradient or by an electric …eld.

In recent years the thermally driven motion of charged colloids has attracted much attention, and a variety of surprising phenomena have been observed [START_REF]Thermal Nonequilibrium Phenomena in Fluid Mixtures[END_REF][START_REF] Piazza | [END_REF]. The Soret e¤ect of a micellar solution was shown to vary with the surfactant concentration [3], and unexpected dependencies on temperature and electrolyte composition were reported for suspensions of nanoparticles and macromolecular solutions [4][5][6][7][8][9][10][11][12][13]. A thermal gradient has been used as a trap for DNA in a microchannel with ambiant ‡ow [14].

Transport of charged colloids arises from a generalized external force acting on the electric double layer at a particle- ‡uid interface. The thermophoretic mobility is de…ned through the drift velocity of the solute induced by a temperature gradient in the solvent ‡uid, u = D T rT:

(1)

There are two di¤erent routes to calculating the transport coe¢ cient D T ; the …rst one relies on low-Reynolds number hydrodynamics and the thermal force density on the ‡uid in the boundary layer [15][16][17][18][19][20][21], whereas the second one expresses the velocity u through the particle mobility and a force that is given by the gradient of the double-layer energy [22][23][24]. Most parameters of a charged colloid depend on temperature, such as the solute surface potential and the solvent permittivity, viscosity, and salinity. Thus in most cases, it is not obvious to single out the physical mechanism underlying the observed dependencies. For example, the transport coe¢ cient D T changes sign as a function of temperature and electrolyte composition; increasing temperatures and high pH values favor an inverse Soret e¤ect D T < 0. It was realized only recently that the thermoelectric …eld of the electrolyte solution plays a major role in thermophoresis and often determines the sign and magnitude of D T [6,20].

The size dependence of D T has been much debated in the last years. Experiments on polystyrene beads in aqueous solution reported a linear variation D T / a with the particle radius over almost two orders of magnitude [7]; on the other hand, a constant D T was found for droplets in microemulsions, and polystyrene beads [9,11,12].

From low-Reynolds number hydrodynamics with noslip boundary condition at the particle- ‡uid interface, it is well known that any transport coe¢ cient is constant with respect to the particle size, as long as the latter is larger than the Debye length [25]. At moderate electrolyte strength, takes typical values of a few nanometers, thus satisfying a. Accordingly, Ruckenstein obtained a constant D T [15]; this result was con…rmed by several authors [16][17][18][19][20]. As a possible explanation for the experimental …ndings of Ref. [7], we noted in a previous paper that hydrodynamic slippage at the particle surface would give rise to linear dependence of D T on the particle size [21].

In the present work, we derive the thermophoretic mobility as a function of the particle size a, the Debye length , and the slip length b. We discuss the dependence on these di¤erent length scales and, in particular, recover the above mentioned limiting cases of constant D T and D T / a. In Sect. 2 we obtain the general expression for the velocity change through the boundary layer. In Sect. 3 we show how a …nite slip length modi…es thermophoresis due to temperature and permittivity gradients; Sect. 4 discusses similar e¤ects in a non-uniform electrolyte. We conclude with a discussion of the main results.

II. BOUNDARY LAYER HYDRODYNAMICS.

The boundary conditions at a solid- ‡uid interface have been debated since the early days of ‡uid mechanics; Navier proposed that a sheared ‡uid could slip along the surface, with the velocity jump being proportional to the applied shear rate. At a macroscopic scale, the ‡uid sticks to the solid surface, suggesting continuity of the velocity …eld. On the scale of microns or even nanometers, however, various measurements provide evidence for the occurrence of hydrodynamic slippage [26,[START_REF] Lauga | Handbook of Experimental Fluid Dynamics[END_REF]. On a molecular level, slip has been explained in terms of the weak adherence of the solvent to the solid surface. Simulations of the molecular dynamics at a charged interface related the slip length to van der Waals force parameters of the non-wetting ‡uid and to ion-speci…c interactions [START_REF] Joly | [END_REF]. These simulations show that continuum hydrodynamics provide a good description of the ‡uid motion even on the scale of nanometers, and that slip occurring in a few molecular layers may signi…cantly accelerate externally driven transport, such as the ‡ow in a microchannel.

In a continuum picture, the shear stress 0 and the resulting slip velocity v 0 are related through Navier's boundary condition

v 0 = b 0 ; (2) 
where is the ‡uid viscosity and b a material speci…c constant that has the dimension of a length. The latter parameter accounts for the reduced mocular viscosity at the interface. Various experiments con…rm the linear stress-velocity relation, but others indicate a non-linear behavior, i.e., a slip length b that depends on the shear rate [26,[START_REF] Lauga | Handbook of Experimental Fluid Dynamics[END_REF].

A particle of radius a exerts on the surrounding ‡uid the e¤ective force density f x , including the excess hydrostatic pressure [19,20], which is …nite only close to the surface and vanishes at distances of the order B. The normal component of the ‡uid velocity within the boundary layer is zero, and its parallel component satis…es Stokes' equation, @ 2 z v x +f x = 0, with constant hydrostatic pressure. It turns out convenient to consider the ‡uid motion in the frame attached to the particle. The integral of @ 2 z v x + f x = 0 gives the shear stress xz = @ z v x . Its values at the surface 0 and at the outer side of the boundary layer are related by

B = 0 Z B 0 dzf x 0 : (3) 
Integrating once more gives the parallel component of the ‡uid velocity v x (z). With the …nite value at the particle surface v 0 = v x (0) we have well beyond the charged layer

v B = v 0 + 1 Z B 0 dzzf x v 0 + v: (4) 
The boundary velocity v B is the sum of two contributions of di¤erent physical origin. The intrinsic slip velocity v 0 arises if the ‡uid molecules do not fully adhere to the solid. The velocity change through the boundary layer v, sometimes referred to as apparent slip [25], is due to the forces exerted by the surface on the ‡uid in the boundary layer.

The above Eqs. (2-4) are closed by matching B and v B to the ‡uid ‡ow beyond the boundary layer. In this range, the velocity …eld is solution of the force-free Stokes equation r 2 v = 0 in three dimensions [START_REF] Happel | Low-Reynolds Number Hydrody-namics[END_REF][START_REF] Landau | Fluid Mechanics[END_REF]. For a uniform particle surface, the boundary velocity depends on the polar angle as

v B = v B sin :
The normal and tangential components of the ‡uid ‡ow beyond the boundary layer (r ã a + B) vary as v r / [1 (ã=r) 3 ] and

v t = v B 2 3 + 1 3 ã3 r 3 :
Since the normal velocity v r vanishes at r = ã, the o¤diagonal stress in spherical coordinates reads [START_REF] Landau | Fluid Mechanics[END_REF] rt = dv t dr v t r :

With ã ' a, we …nd the stress at the outer side of the boundary layer

B = 2 v B a : (5) 
For an inhomogeneous particle surface [START_REF] Golestanian | [END_REF], the tangential velocity takes a more general form v t = P n c n ( )r n and modi…es the numerical prefactor in B accordingly.

We brie ‡y discuss the role of curvature in the matching condition (5). The change through the boundary layer has been calculated with xz = @ z v x , i.e., the shear stress has been taken as the normal derivative of the tangential velocity. On the other hand, Eq. ( 5) has been obtained from the above expression rt in spherical coordinates that comprises, besides the normal derivative @ r v t , the term v t =r accounting for the …nite curvature of the interface. Indeed, outside the boundary layer, the normal derivative @ r v t of the force-free ‡ow @ r v t and the curvature term v t =r are of the same order of magnitude; thus both have to be retained. As shown in Ref. [33] for Navier's slip condtion (2), the curvature contribution to the shear stress can be written alternatively in terms of the normal derivative xz = @ z v x with an e¤ective slip length 1=b e¤ = 1=b + 1=a.

Eqs. (2-5) determine the boundary velocity v B as a function of the slip length

v B = v + b = 1 + 2b=a : (6) 
For Stokes boundary conditions with zero slip length one has v B = v, whereas the opposite limit b ! 1 leads to v B = 1 2 a = . In some aspects hydrodynamic slippage at a solid- ‡uid interface is similar to the ‡ow on a gas bubble in a viscous liquid [25,34], which is described by Hadamard-Rybczynski boundary conditions. In view of (2) the limit of zero shear stress at the interface, 0 = 0, corresponds to b ! 1 [START_REF] Happel | Low-Reynolds Number Hydrody-namics[END_REF].

So far we have considered the reference frame where the particle is immobile, that is why v r and v t are …nite at r ! 1. Transformation to the laboratory frame gives the velocity of the moving particle, u = he v v B i; the orientational average along the particle surface h:::i results in [25] 

u = 2 3 v B : (7) 
Eqs. ( 6) and ( 7) apply to any force density exerted on the ‡uid in the boundary layer. In the remainder of this paper we discuss in detail the case of thermophoresis, and then treat a non-uniform electrolyte with a salinity gradient and a spontaneaous electric …eld.

III. THERMOPHORESIS.

We discuss transport driven by a temperature gradient in an otherwise uniform electrolyte [15]. In order not to encumber the equations, we resort to the Debye-Hückel approximation. The charged particle exerts on a unit volume of the surrounding ‡uid the force density [19,20] 

f = " 2 2 2 (1 + + ) rT T ;
where = 0 e z= is the electric potential in the boundary layer and 0 the value at the surface. The logarithmic derivative = d ln "=d ln T accounts for the temperature dependence of the permittivity "(T ); in water it varies from = 1:25 at 0 C to = 1:5 at 50 C. The parameter describes the spatial variation of the salinity [18,20],

rn 0 n 0 = 0 rT T :
The reduced Soret coe¢ cient of the electrolyte solution takes values = 0:8 for NaCl and = 3:4 for NaOH.

Integrating Eqs. ( 3) and ( 4) we …nd with T x = dT =dx the changes of velocity and shear stress,

v = " 2 0 8 (1 + + ) T x T ; = " 2 0 4 (1 + + ) T x T :
Insertion in the general relation (6) gives the boundary velocity

v B = " 2 0 8 (1 + + ) 1 + 2b= 1 + 2b=a T x T :
Identi…ying u = 2 3 v B and u = D T T x we obtain the thermophoretic mobility

D T = " 2 0 12 T (1 + + ) 1 + 2b= 1 + 2b=a ; (8) 
which constitutes a main result of the present paper.

We discuss limiting cases with respect to the lengths a; b; . For zero slip b = 0 and using the surface potential 0 = =", we have

D (0) T = 2 2 12 "T (1 + + )
and thus recover the variation with the square of the Debye length obtained in [15,17,19]. In the opposite case of large slip length a b, Eq. ( 8) con…rms the relation

D T = (a= )D (0) 
T obtained previously in [START_REF] Piazza | [END_REF]21]. In the intermediate case b a, we …nd a linear law D T / , with an enhancement factor D T =D (0) T = 2b= that is twice that of the electrophoretic mobility = 0 = b= [29]. The additional factor 2 arises since the thermal force is quadratic in the surface potential 0 , whereas electrophoresis is linear in 0 .

IV. THERMOELECTRICITY

Recently it has become clear that the Soret e¤ect of charged colloids is to a large extent determined by the thermoelectric e¤ect of the electrolyte solution [6,20], that is, the macroscopic …eld induced by thermal di¤usion of the mobile ions,

E 1 = k B rT e ;
where e is the elementary charge and the reduced Seebeck coe¢ cient. Typical values are = 0:6 for NaCl and = 2:7 for NaOH [20]. This electric …eld drives the colloidal particles to the cold or to the warm, depending on the sign of and of the surface charge . Note that this e¤ect di¤ers from that studied in [START_REF] Prieve | [END_REF], with an electric …eld E ind / (D + D ) proportional to the di¤erence of di¤usion coe¢ icients of co-ions and counterions.

The thermoelectric e¤ect modi…es the thermophoretic mobility according to [20],

D T b e 0 4 `BT = D T b k B e ; (9) 
where the reduced Seebeck coe¢ cient b accounts for a …nite slip length. Eq. ( 8) shows how the …rst term depends on the slip length b. Here we derive the corresponding relation for b .

The external electric …eld E 1 exerts on the charged ‡uid in the boundary layer the force

f = E 1 ; (10) 
where = 2e sinh(e =k B T ) is the charge density in the electric double layer. The permittivity of water being much larger than that of most materials, the electric …eld hardly penetrates in the particle; close to the particle the vector E S is parallel to the surface, and its magnitude E S = 3 2 E 1 sin is enhanced by a factor 3"=(2"+" P ) 3 2 with respect to the value at in…nity E 1 . For a homogeneous surface the integrals in ( 3) and ( 4) are readily related to the electrostatic properties of the charged surface. From direct integration or comparison with known results for electrophoresis [START_REF] Hiemenz | Principles of Colloid and Surface Chemistry[END_REF], we obtain the stress and velocity changes through the boundary layer in terms of the surface charge density and the surface potential 0 ,

= E S ; v = " 0 E S : (11) 
Note that the ratio of the velocity change v and E S is identical to the Helmholtz-Smoluchowski mobility 0 = " 0 = [START_REF] Hiemenz | Principles of Colloid and Surface Chemistry[END_REF]; this does not come as a surprise, since the thermoelectric e¤ect induces a macroscopic electric …eld. Inserting these quantities in ( 6 

The overall behavior is similar to ( 8), yet with a linear correction term b= that is by a factor 2 smaller. This di¤erence is readily traced back to the fact that thermophoresis is quadratic in the surface potential, whereas the electric …eld E 1 couples linearly to 0 .

V. DISCUSSION.

According to Eqs. ( 8) and ( 12), the Soret and thermoelectric e¤ects of charged colloids show a similar dependence on a …nite slip length b. For small values of b we …nd an enhancement factor proporotional to the ratio of slip and Debye lengths b= . If b is comparable to the particle size, this linear law saturates at a constant value a= .

A recent experimental study [7] reported the thermophoretic mobility D T of charged polystyrene beads to depend on the particle size. The data show a linear variation with both particle radius and Debye length, D T / a , in the range 2nm < < 13nm and 10nm < a < 550nm. These observed dependencies are well accounted for by Eq. ( 8) with slip boundary conditions, a b, but di¤er essentially from the no-slip result D (0) T / 2 . Yet note that a …t of these data with Eq. ( 8) would require a slip length of hundreds of nanometers. Such large values are hardly realistic in view of available data [START_REF] Lauga | Handbook of Experimental Fluid Dynamics[END_REF]. Moreover, a large slip length implies high surface tension, i.e., low solubility of the particles. Thus we feel that at present there is no satisfactory explanation for the data of [7].

As a more promising system for the observation of slipenhanced thermophoresis, one could think of thermally driven ‡ow through a pore or in a microchannel. This situation is accounted for by our results when putting in the above formulae a ! 1. Then the enhancement factors in Eqs. ( 8) and ( 12) read (1+2b= ) and (1+b= ), respectively. A signi…cant enhancement is expected it the slip length b exceeds the Debye length , which is typically of the order of one nanometer.
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 1 FIG.1: Schematic view of the ‡uid velocity …eld in the boundary layer close to a particle of radius a. The external …eld acting on the electric double layer accelerates the charged ‡uid with respect to the solid. A …nite surface velocity v0 arises from hydrodynamic slip in a molecular layer (thick grey line); the slip length b is de…ned as the distance where the linear velocity pro…le would vanish. At a distance B, well beyond the electric double layer, the ‡uid attains the boundary velocity vB.

  ) we …nd the boundary velocity v B and the modi…cation of the Seebeck coe¢cient by the slip length,