
HAL Id: hal-00340680
https://hal.science/hal-00340680

Submitted on 21 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient generation and representation of failure lists
out of an information flux model for modeling safety

critical systems
Michael Pock, Hicham Belhadaoui, Olaf Malassé, Max Walter

To cite this version:
Michael Pock, Hicham Belhadaoui, Olaf Malassé, Max Walter. Efficient generation and representation
of failure lists out of an information flux model for modeling safety critical systems. The European
Safety and Reliability Conference, ESREL 2008, Sep 2008, Valencia, Spain. pp.1829-1837. �hal-
00340680�

https://hal.science/hal-00340680
https://hal.archives-ouvertes.fr


Efficient Generation and Representation of Failure Lists out of an
Information Flux Model for Modeling Safety Critical Systems

Michael Pock1,2,4, Hicham Belhadaoui1,3,4, Olaf Malasśe1 & Max Walter2
1) Arts et Ḿetiers Paristech, Metz
2) Technische Universität München
3) ENSEM Casablanca
4) Centre de Recherche en Automatique de Nancy

ABSTRACT: This article presents a novel way to model safety critical systems hierarchically. An information
flow diagram as high level and finite automatons as low level model are combined. With these models, scenarios
leading to dangerous failures as well as spurious shutdownscan be generated. Furthermore, we will show how to
extract the different scenarios out of the model in a very efficient way using different BDD-techniques. Finally,
we will present some related work.

1 INTRODUCTION

A serious problem for the design and evaluation of
safety critical systems, for example used in the au-
tomation domain, is to forecast the safety of the sys-
tem. It’s not possible to measure it for two reasons.
At first, normally these accidents should occur very
rarely, so that a system has to run for a very long
time to get reasonable results. Furthermore, it is very
questionable to run a safety-critical system which can
cause a lot of harm without knowing anything about
its dependability. So the only solution is to use a
model to evaluate the safety of the system.
Another problem are unspecificated activations of
safety functions, the so called spurious trips. They can
lead to the unavailability of the system and cause ex-
tra costs. Furthermore, too many spurious trips can be
dangerous as well. If there are too many false alarms
or shutdowns, the operators and surrounding people
could start to ignore the alarms or try to prevent the
shutdowns, even if there is a dangerous situation this
time.
There are in general two problems for the evaluation.
The first one is to get all scenarios leading to failures
of the System. Such a qualitive analysis is normally
done with methods like FEMA. For complex systems,
this can be quite difficult as there are a lot of fail-
ure propagations and common causes possible which
have to be included in the result. Often these are not
obvious, a very detailed analysis of the whole system
is necessary to find them.

The second problem is the quantitive solution. Cur-
rently, mainly standard models like fault trees (FTs)
(Lee et al. 1985) and Petri nets (PNs) (Leveson and
Stolzy 1987) are used. Fault trees are easy to use, but
they have several limitations. At first, components in
safety critical systems often have more than one fail-
ure mode. They can create dangerous failures or spu-
rious trips itself and propagate these to other com-
ponents. They even can prevent specific failures of
other components. For example, an unwanted shut-
down will prevent any accident. But Fault Trees are
just boolean models, every event or component can
only have two modes. Furthermore they cannot model
dependencies directly which will occur between dif-
ferent kind of failures. The only possibility to use fault
trees for safety-critical systems is by defining several
basic events for single components. As these events
are stochastically dependent, extensions of fault trees
like non-monotonous FTs have to be used. In gen-
eral, the trees can get very complicated and very
large for complex systems. There are also at least two
unwanted events for safety-critical systems, whereas
fault trees are just capable to model single events. So
it would be necessary to create multiple models with
a lot of common components and events.
Petri Nets in contrary are more powerful. There is no
limitation to the number of states of a component, and
it is possible to calculate several events in one PN.
But they are not very intuitive. They also cannot be
created hierarchically, as a small change in one com-

1



ponent will affect the whole PN.
This is the reason that we will present a powerful
high-level model which can handle all these specific
problems for safety-critical systems, based on the the-
oretical work of Karim Hamidi (Hamidi 2005) in sec-
tion 3. With this model it is much easier to find all
scenarios leading to a failure of the system. An effi-
cient solution method will follow in section 4. At the
moment, there is no implementation of the presented
algorithms, though. So it is not possible to present
measurements yet.

2 AN EMERGENCY STOP SYSTEM

Figure 1: A emergency stop system of the chemical
reactor

To illustrate the presented model, the emergency
stop system of a chemical reactor (Figure 1) will be
used which is described in this section. This system
should stop the reaction if the temperature in the re-
actor is getting too high by stopping the inflow of the
chemicals.
The sensorsS1 andS2 measure the current temper-
ature of the chemicals in the tank and transport their
results to the controller. The controller reads this re-
sult via his inputsIn1 andIn2 and will store these
values for synchronization in its memory. (St1, St2).
To avoid a loss of information, the watchdogsWd1
andWd2 supervise the inputs. If an input is lost or
arrives to late, the watchdog will pass a default value
to theV oter. Afterwards, theV oter decides, if there
is a dangerous situation. If after the voting process
the control unitCU decides to shut down the system,
this information is proceeded to the output modules
Out1 andOut2 and passed to the motorsM1 andM2
which get the order to close the valvesV 1 andV 2. If
at least one of these valves is closed, the shutdown
was successful.
For this system, there are two possible kinds of fail-
ures in general. Either the emergency system is not
available (dangerous failure), or it shuts down the sys-
tem in a safe state leading to a unneccessary unavail-
ability of the whole reactor (spurious shutdown).
A failure of the whole emergency system can be
caused by several different failures of its components.

We will classify these failures as dangerous(D), non-
dangerous(S) or omission(I), which means that the
component does not have an output.
The sensors can either measure a value which is too
high (S), too low (D), or return no value at all(I).
The input modules can either lose the data of the
sensors(I) or change it to a higher(S) or lower
(D) value. In the memory the stored data can be dis-
torted by a bitflip in either a dangerous(D) or non-
dangerous(S) way. It can happen that the watchdogs
do not detect a missing input(D), or that they report
such a missing input although there was one(S). The
control unit can decide to start a shutdown in a safe
state(S) or to not start a shutdown in a dangerous
state(D). The output modules can fail to give the or-
ders to their motors to close the valves(D), while the
motors can fail to start(D). Finally, the valves can be
blocked in an open(D) or closed(S) position.
It is possible to discriminate the single components
further, but in this section we will limit our explana-
tion on the general outline of the system.
A fault tree for the dangerous failure is shown in Fig-
ure 2. The names of the basic events are composed
of the failed component and the kind of failure. For a
more detailed analysis, the basic events could be re-
placed with subtrees.
This fault tree has some problems though. At first,
some basic events for the same components, but for
different failure modes are stochastically dependent,
for exampleS1D andS1I . Furthermore, some com-
ponent failures will prevent a dangerous failure of
the whole system, for example a blocked valve in its
closed state. These effects can not be included directly
in the fault tree. Finally, creating several fault trees to
model different disjunct failure modes of one system
can lead to inconsestencies. If the system is large, it
is very probable that there are combinations of faults
which will lead to a failure in two or more fault trees.

3 THE INFORMATION FLOW MODEL
We are mainly interested in two different events of the
system:

• Dangerous incidents which could lead to acci-
dents

• Non-dangerous spurious trips

We want to extract all scenarios leading to one of
these two undesired events of the whole system. Espe-
cially interessant are single point of failures, common
cause failures and failure propagation. These kind of
failures are often not obvious, so they can be easily
forgotten in a direct attempt to create a fault tree. This
problem will be solved by a hierarchical approach.
We use a directed block diagram representing the in-
formation flow through the system for high level and

2



Figure 2: The fault tree for the dangerous failure of the emergency stop system

finite state automatons and rules for low level mod-
elling. This information flow diagram (IFD) and the
automatons are generalized versions of the diagrams
and automatons presented in (Hamidi 2005).

3.1 Information Flow Diagram
For the IFD, we use different kinds of blocks which
represent different functional entities. We distinguish:

• WD-blocks for watch dogs

• SRC-blocks as sources of information

• DEC-blocks for logical decisions

• ST-blocks for all other functions (storage of in-
formation, transformation of information, self-
tests etc.)

Blocks of the type WD are used specially for control
units with a watch dog. They have one input and one
output and can detect the absence of sensible informa-
tion in order to react accordingly afterwards by for-
warding default or special error values. SRC-blocks
create the information which flows through the dia-
gram. They represent the sensors in the system and
have only one output. ST-blocks (standard blocks) are
the most versatile blocks. They have one in- and one

output, and they are used for all functional entities
which cannot be represented by the other blocks, e.g.
the storage or the transformation of information. The
last type of blocks are DEC-blocks. They represent
logical decision entities. They have several inputs and
one output, and describe the behavior of multiple in-
terconnected sources of information. They do not de-
scribe any physical entities. The components which
make this decision have to be included by adding a
successing ST-block.
One block in the diagram, normally a ST- or DEC-
block, can be marked as final block. This block has
no output and is used to generate the failure scenarios
which will be described in Section 3.4. An example of
an IFD for the given example in section 2 is shown in
Figure 3. There are blocks for the different modules
of the system, and some extra decision blocks.Lost1
andLost2 decide, if the signal of the sensor is lost,
CD decides if the voter will get the necessary inputs
for a correct voting andSafe is used for the final de-
cision if there is a dangerous failure or a spurious trip.
The information flows from the source blocks to the
final block in one general time stept. In the source
blocks, the sensors create the information which will
flow through our diagram. This information proceeds
to the successing blocks where it is processed and pro-
ceeded further. The exchange between the blocks al-

3



Figure 3: The IFD for the emergency stop system

ways works faultless. While processing the data in the
blocks, faults can occur or be detected. This means,
that the state of signal can change within a block. We
distinguish three different erreonous states for the sig-
nals:

• A non-existent failure has been detected. (Safe
failure stateS)

• An existent failure has not been detected. (Dan-
gerous failure stateD)

• The signal is lost. (Inhabitant failure stateI).

3.2 Finite automatons
After modeling the information flow it is necessary
to specify the state changes of the information. For
non-DEC-blocks finite, acyclic state automatons are
used to represent a mapping function. A determinis-
tic finite automaton (Brookshear 1989) is a quintuple
(S,Σ, δ, x0, F ) with

• a finite set of statesS

• an input alphabetΣ

• a transition functionδ : S ×Σ → S

• an initial statex0 ∈ S

• a set of final statesF ⊂ S

For our example, we have one predefined initial state
x0 and three predefined final statesxS, xD, andxI

which represent the three faulty states of information.
The used alphabet in these automatons are symbols
which represent different kind of failures. They are
denoted as follows:

• init(i) with i ∈ {S,D, I} (For ST- and WD-
blocks)

• d(x, y) with x as a hardware resource andy ∈
{0, S,D, I}

• bf(e) with e as bitflip resource

• tf(f) with f as testing resource

Figure 4: The Automaton for the block Store1

• The empty wordǫ

The advantage of the automatons for our purpose is
that they are able to include different kinds of failures
and several failure modes. Furthermore they are very
intuitive and can be deduced quite easily for small
subsystems.
An example, the automaton for the blockStore1, is
shown in Figure 4. While storing the results, differ-
ent failures can occur. At first, the memorymem can
be damaged physically, so that there are several bits
which are locked to one(S), locked to zero(S) or the
memory is not available at all(I). There is also the
possibility of a bitflip in the memory, changing the
value of the stored data.
init(i) is used for the fault propagation of the pre-
decessor block. It only occurs at the initial statex0.
The possible values fori depend on the type of the
current block. In ST-blocks,i can only beS or D as
ST-blocks aren’t capable of handling lost information.
By contrast, WD-blocks only containinit(I).
For hardware failures, the symbold(x, y) is used.y
indicates the state of the hardware resourcex: work-
ing correctly (0), non-dangerous failure (S), potential
dangerous failure (D) or no output (I). bf(e) repre-
sents environmental errors like bit flips of a resource
e. ft(f) indicates that a testing resourcef has not
detected an error. To simplify the calculation, we as-
sume that the state of a hardware-, bit flip- or fault
test-resource is always the same in one time step.

4



Note that all three final states are not always needed.
Only final states which can be detected by the inits of
the successor blocks have an influence on the result
and are necessary. This will be explained in more de-
tail in the next subsection.
The automatons define a language which describes
all scenarios leading to the different failures of the
block. We can distinguish three different sub lan-
guages for non-dangerous failures, potential danger-
ous failures and failures with no output. These lan-
guages can be extracted and are saved in the three lists
LS(B), LD(B), andLI(B) for the blockB. The au-
tomaton in Figure 4 defines the following languages:
LS(Store1) = {d(mem,S); init(S)d(mem,0);
init(D)d(mem,0)bf(m)}
LD(Store1) = {d(mem,D); init(D)d(mem,0);
init(S)d(mem,0)bf(m)}
LI(Store1) = {d(mem,I)}

3.3 Rules of DEC-blocks
Decision blocks use another low level model to de-
scribe their behavior. For this purpose, boolean rules
are introduced. These rules use the state of the signals
(eitherS, I or D) of each input. There are three rules,
they represents the listsLS, LD andLI . If we take a
look at the final block of the IFD shown in 3, the fol-
lowing rules are chosen:
S : V 1 = S ∨ V 2 = S
D : V 1 = D ∧ V 2 = D
I : false
So, the final block will create a spurious trip if at least
one of the two valves will create one. A dangerous
failure will only occur if both valves will fail danger-
ously. As we are searching a complete list, we have to
define how to extract it. Disjunctions in the rules will
be handled by unifying two lists, Conjunctions will
be handled by set products. For the given example we
can conclude:
LS(Safe) = LS(V 1)∪LS(V 2)
LD(Safe) = LD(V 1)×LD(V 2)
LI(Safe) = {}

3.4 Generation of the global lists
The main interest is to generate all scenarios for dan-
gerous failures and spurious trips of a final block.
They will be stored in the listsLD and LS. To get
these lists, the listsLD(Bf ) andLS(Bf) of the final
blockBf are created in order to connect them with the
local lists of the other blocks. It’s necessary to distin-
guish two cases: DEC-blocks and non-DEC-blocks.
For DEC-blocks, the method presented in the previ-
ous subsection to connect the blocks is used. For non-
DEC-blocks, allinit(i) in the list are substituted re-
cursively. The sequence after aninit(i) is combined
with all sequences of a local listLi(B) of the prede-
cessing blockB by a set product. To illustrate this, the

Figure 5: The reduction rules for ZBEDs

three following lists are used:
LS(Bf ) = {init(S)d(x,S)d(y,D); init(D)d(y,0)}
LS(B) = {init(S)d(v,0); init(D)d(v,S)d(w,D)}
LD(B) = {init(D)d(v,D); init(S)d(w,D)}
If init(S) andinit(D) is substituted withLS(B) and
LD(B), we obtain:
LS(Bf ) = {init(S)d(v,0)d(x,S)d(y,D);
init(D)d(v,S)d(w,D)d(x,S)d(y,D);
init(D)d(v,D)d(y,0);
init(S)d(w,D)d(y,0)}
It is quite obvious that using this method directly will
lead to an exponential growth of the list. This is a se-
vere problem as it will limit the usability of the pro-
posed model. Therefore the size of the created list has
to be reduced. In order to reach this aimBinary Deci-
sion Diagrams(BDDs) are used to control the combi-
natorial explosion.

4 THE BINARY DECISION DIAGRAM
In this section we will show how BDD-techniques can
be adapted to this problem. BDDs in general were in-
troduced by Bryant. (Brace et al. 1990) For this spe-
cial problem, two extensions of BDDs are used:Zero-
suppressed Binary Decision Diagrams(ZBDDs) (Mi-
nato 1993) will be combined withBinary Expression
Diagrams (BEDs) (Andersen and Hulgaard 1997).
The combination will be calledZero-surpressed Bi-
nary Expression Diagrams(ZBEDs). These ZBEDs
can be reduced to normal ZBDDs by applying the re-
duction rules of BEDs.
In zero-suppressed BDDs, all 1-edges leading to the
terminal 0-node will be deleted while nodes with the
same 1- and 0-successor will remain. For this appli-
cation, the usage of ZBDDs will reduce the size of
the diagram significantly as there are many edges like
this.
BEDs are similar to BDDs, but they also contain
nodes for the boolean operators∨ and∧. They can be
reduced to a regular BDDs with a complexity equiva-
lent to the creation of a normal BDD by pushing down
the operator nodes until they reach the leaves of the
BED. The two reduction rules specially for ZBEDs
are illustrated in Figure 5. While the first rule is the

5



Figure 6: The ZBED for the listLS(Store1)

same as for standard BEDs, the second one had to be
modified to be compatible with ZBDDs.
But first, a boolean interpretation of the lists is given
which is necessary to use BDDs in general. After-
wards we will explain how to create a ZBED for sin-
gle blocks, simple serial IFDs, and general IFDs.

4.1 Boolean interpretation of the lists
As BDDs are an alternative representation of boolean
expressions, the lists have to be interpreted as the
latter. Bit flip- and fault test-resources can have two
states, so it is no problem to see them as sim-
ple boolean variables. Hardware resources have four
states, though. But this is not such a big problem as
three different boolean variables (For examplexS, xD,
andx0) can be defined for every resourcex. Note that
three variables are enough, a variablexI is not nec-
essary. Asx can only be in one state at one time, the
value of xI can be deduced from the values of the
other three variables.
Sequences can be interpreted as conjunctions of their
comprised resources. For example,d(x,S)bf(e) is in-
terpreted asxS ∧ e. A whole list is seen as a disjunc-
tion of all sequences.{d(x,S)bf(e);d(x,D)d(y,0)}
is interpreted as(xS ∧ e)∨ (xD ∧ y0).
Init(i) is used as abbreviation to the whole expres-
sion of the listLi of the predecessor block and will be
used like any other variable.

4.2 ZBEDs for non-DEC-blocks
At first, we have to create a ZBED for each local list
LS(B), LD(B) andLI(B) of every non-DEC-block
B. The ZBED is created by a simple decomposition
of the list. As example the listLS(Store1) is used. The
original list is:
LS(Store1) = {init(S)d(mem,0);d(mem,S);
init(D)d(mem,0)bf(m)}
This is interpreted as:
(init(S)∧mem0)∨memS ∨ (init(D)∧mem0 ∧m)
Now we can take one of the variables and set its value.
We will begin withmem. For example, its value is set
to 0 which meansmem0 is set to true andmemD and
memS are set to false. This leads to the following re-

duced list:
init(S) ∨ (init(D) ∧m)
There are similar results for settingmem to 0, I or D.
The decomposition process can be continued recur-
sively with the other variables until onlyinit-values
or boolean constants remain. We can represent this
decomposition process graphically. For this example,
we receive the diagram in Figure 6. Equivalent subex-
pressions are shared to reduce the combinatorial ex-
plosion. Furthermore, there are at most three non-
trivial leaves (init(S), init(D), init(S) ∧ init(D))
for standard blocks and one non-trivial (init(I)) leaf
for WD-blocks possible. These leaves are also called
temporal leaves as they will be replaced later on.

4.3 ZBEDs for DEC-blocks
As DEC-blocks are defined by boolean expressions,
it would be possible to use a normal decomposition
to create the ZBED. The only problem is that the ex-
pressions use the lists of several predecessor blocks
and that these lists can be combined with set products,
too. This leads too much more possible permutations
of init-values than for serial diagrams.
The solution to this problem is to use ZBEDs as they
can represent the rules directly. The creation of a
ZBED for a DEC-block is demonstrated with the list
LD(Safe) of the final block of the example. It is de-
fined by the following expression:(V1 = D) ∧ (V2 =
D). The listsLD(Vi) with i ∈ {1,2} are defined as
{init(D)d(vi,0);d(vi,D)}. Figure 7 shows the BED
before and after the first reduction. The reduction
stops if the or- and and-nodes disappear or if they have
one non-trivial leaf as a child. In the last case, the re-
duction of the ZBED to a ZBDD can be continued
recursively by replacing all temporal leafs with the
ZBED of the corresponding list and applying the re-
duction rules to the extended diagram until the source
nodes are reached.

4.4 ZBEDs for serial IFDs
In the next step, we assume a simple serial IFD. No
hardware-, bit flip-, and fault test-resource occurs in
more than one block. With these assumption, it is
easy to create a ZBED for an accumulated list. The
init-nodes are replaced successively with the ZBEDs
of the lists represented by these nodes. If these sub-
ZBEDs share equivalent nodes, these nodes will be
unified. This process can be continued recursively
until the source blocks without anyinit-values are
reached.
Let us have a closer look at the given ex-
ample. The following three blocks will be ag-
gregated:Store1, In1 and S1 with LS(In1) =
{init(S)d(in1,0)d(bus,0);d(in1, S);d(bus,S)},
LD(In1) = {init(D)d(in1,0)d(bus,0);d(in1,D);
d(bus,D)},LS(S1) = {d(head1, S)} andLD(S1) =

6



Figure 7: The ZBED for the listLD(Safe) in its original (left) and in its reduced (right) stage

Figure 8: The ZBED for the aggregated list
LS(Store1)

{d(head1,D)}, a ZBED for all three blocks can be
created by replacing theinit-nodes with the roots of
the ZBEDs ofIn1, where theinit-nodes are substi-
tuted with the ZBEDs ofS1. The result is shown in
Figure 8.
An interesting result is that after replacing the tem-
poral leaves of one block, there are still at most three
new temporal leaves from the predecessor block.

4.5 ZBEDs for general IFDs

In the previous section we assumed that each
hardware-, bit flip- and fault test-resources occurs
only in one block. This was necessary as the algo-
rithm just looks at one block at a time. With shared
resources, this could lead to inconsistent lists in which
one resource can be in two or more states at the same
time. But to forbid shared resources is a quite strong

limitation for the presented model, so a solution for
more general IFDs is presented in this section.
The first step is to create the local listsLS,LD, andLI

of all non-DEC-blocks. Furthermore a look-up-table
will be established which maps resources to blocks,
in which they appear. After that, the creation of the
whole ZBED can start. In general, we use the same
aggregation rules for the blocks like in section 4.3
and 4.4. There are only two differences. At first, ev-
ery node gets another attribute, a list of pointers to the
local lists which have to be used later. Furthermore,
the decomposition of a variable is started in every lo-
cal list in which it occurs. This can be easily checked
by using the look-up-table. If there are other blocks
which use the same resource, the pointers to the three
local lists are changed to the modified ones. So it will
be ensured that there are no inconsistent sequences
without having to create the whole ZBDD in one sin-
gle go.
There is an important change to the structure of
the ZBED for the case in 4.4, though. For every
shared resource, the number of non-trivial leaves can
quadruple (for HW-resources) or double (for bitflip-
or faulttest-resources) as there can be four respec-
tive two different settings for the state of the resource
which have to be taken into account in each of the
leaves.

5 RELATED WORK

There are already several approaches for the auto-
matic generation of boolean models, especially fault
trees with the help of a high level model. In this sec-
tion, some of them will be presented.

7



5.1 Generation of fault trees with Little-JIL models
In (Chen, Avrunin, Clarke, and Osterweil 2006) the
authors present a method for automatic fault tree gen-
eration based on Little-JIL models. These models
are based on the single steps of a process, which is
quite similar to the idea of the information flow. This
method was tested in the domain of medical treatment
which includes also saftey critical aspects. But this
approach does not support several failure modes for
single components or steps, though.

5.2 Generation of fault trees out of FBDs
In (Oha, Yoob, Chab, and Son 2005), a method to cre-
ate fault trees out of function block diagrams (FBDs)
is discussed. FBDs are used for programming pro-
grammable logic controllers (PLCs) especially in the
domain of safety critical systems. This method has the
advantage that the fault trees can be generated without
creating extra models which minmizes potential error
sources in the process of the fault tree generation. It is
limited on the software of PLCs, though and can not
be used for more general systems.

5.3 The FSAP/NuSMV-SA platform
This powerful platform described in (Bozzano and
Villaforiata 2003) is capable to create monoton or
non-monoton fault trees out of a formal system
model. There are plenty of possibilities like fault in-
jection and different failure modes. The system and
its requirements are modelled with a formal language.
This approach is very powerful and can be used in dif-
ferent domains, although it is not as intuitive as the
other approaches.

6 CONCLUSIONS AND OUTLOOK
The main advantage of the presented model is that it
is capable to model two undesired events in one di-
agram. With other high-level models like fault-trees
it would be necessary to create two different mod-
els with a lot of similarities. So our approach can
save a much time for the modeler. Another big ad-
vantage is that the model is hierarchic. The system
in general can be modeled with the IFD, the smaller
entities of it with finite automatons. This gives the
modeller the possibility to create a detailed but un-
derstandable model. Furthermore, we have a very ef-
ficient algorithm for creating the scenarios based on
BDD-techniques. By using local properties, we can
create a ZBED even for very general Diagrams in a
very efficient way, which can be used as compact rep-
resentation for the failure scenarios as well as a base
for a quantitative solution.
Currently, this approach does not take real-time prop-
erties into account. As these can be very important
in many safety critical systems, we have to do fur-
ther research here. Furthermore, we plan to add inter-

component dependencies and the event ordering into
the model to make it more powerful. We also will im-
plement the presented algorithm and a modeling envi-
ronment to make measurements in order to check our
theoretical results and to offer a powerful modeling
tool.

7 ACKNOWLEDGMENT
We want to thank the French-Bavarian center for co-
operation of universities (BFHZ-CCUFB) and the re-
gion Lorraine for their support of this work.

REFERENCES
Andersen, H. and H. Hulgaard (1997). Boolean

Expression Diagrams. In12th Annual IEEE
Symposium on Logic in Computer Science, pp.
88 – 111. IEEE.

Bozzano, M. and A. Villaforiata (2003). Improving
System Reliability via Model Checking: The
FSAP/NuSMV-SA Safety Analysis Platform.
Technical report, Istituto Trentino di Cultura.

Brace, K., R. Rudell, and R. Bryant (1990). Ef-
ficient Implementation of a BDD Package. In
27th ACM/IEEE Design Automation Confer-
ence, pp. 40–45. IEEE.

Brookshear, J. (1989).Theory of Computation:
Formal Languages, Automata, and Complexity.
Benjamin/Cummings Publish Company, Inc.

Chen, B., G. Avrunin, L. Clarke, and L. Osterweil
(2006). Automatic Fault Tree Derivation from
Little-JIL Process Definitions. InSPW/ProSim
2006, pp. 150–158. Springer.

Hamidi, K. (2005). Contribution à un mod̀ele
dévaluation quantitative des performances fi-
abilistes de fonctionśelectroniques et pro-
grammables d́edíeesà la śecurit́e. Ph. D. the-
sis, Institut National Polytechnique de Lor-
raine.

Lee, W., D. Grosh, F. Tillmann, and C. Lie (1985,
August). Fault tree analysis, methods, and ap-
plications - A review.IEEE Transactions on
Reliability R-34, 194 – 203.

Leveson, N. and J. Stolzy (1987, March). Safety
Analysis Using Petri Nets.IEEE Transactions
on Software Engineering SE-13, 386 – 397.

Minato, S. (1993). Zero-Surpressed BDDs for Set
Manipulation in Combinatorical Problems. In
30th ACM/IEEE Design Automation Confer-
ence, pp. 272 – 277. ACM/IEEE.

Oha, Y., J. Yoob, S. Chab, and H. Son (2005).
Software safety analysis of function block dia-
grams using fault trees.Reliability Engineering
& System Safety 88, 215 – 228.

8


