
HAL Id: hal-00340667
https://hal.science/hal-00340667

Submitted on 21 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of important reliability parameters using
VHDL-RTL modelling and information flow approach
Mehdi Jallouli, Hicham Belhadaoui, Camille Diou, Fabrice Monteiro, Olaf

Malassé, Jean-François Aubry, Abbas Dandache, Grégory Buchheit, Hicham
Medromi

To cite this version:
Mehdi Jallouli, Hicham Belhadaoui, Camille Diou, Fabrice Monteiro, Olaf Malassé, et al.. Evaluation
of important reliability parameters using VHDL-RTL modelling and information flow approach. The
European Safety and Reliability Conference, ESREL 2008, Sep 2008, Valencia, Spain. pp.2549-2557.
�hal-00340667�

https://hal.science/hal-00340667
https://hal.archives-ouvertes.fr

Evaluation of Important Reliability Parameters using
VHDL-RTL modelling and Information Flow Approach

Mehdi JALLOULI[1], Hicham BELHADAOUI[2][4], Camille DIOU[1], Fabrice MONTEIRO[1], Olaf MALASSE[2],
Jean-François AUBRY[3], Abbas DANDACHE[1], Grégory BUCHHEIT[2] and Hicham MEDROMI[4].

[1] : Laboratoire Interfaces, Capteurs et Microélectronique, Université Paul Verlaine 7 rue Marconi, 57070 Metz, France
[2] : A3SI, ENSAM, A&M ParisTech, 4 Rue Augustin Fresnel 57078 Metz Cedex 3, France
[3] : CRAN, Nancy Université, CNRS, 2, Avenue de la forêt de Haye 54 516 Vandœuvre-lès-Nancy Cedex, France
[4] : Equipe Architecture des Systèmes, ENSEM, Route d'El Jadida, km 7 BP. 8118 Oasis Casablanca, Maroc

Abstract

Fault tolerance is an essential requirement for critical
programming systems, due to potential catastrophic
consequences of faults. Several approaches to evaluate
system reliability parameters exist today; however, their
work is based on the assumptions that hardware and
software failures happen independently. The challenge in
this field is to take into account the hardware-software
interactions in the evaluation of the model.

In the continuity of the CETIM project [1] whose principal
objective is to define an integrated design of dependable
mechatronic systems, this work evaluates important
reliability parameters of an embedded application in a stack
processor architecture using two dynamic models. The first
one (stack processor emulator [2]) allows the study of
dynamic performance and the evaluation of a fault-tolerant
technique. The second one (information flow approach [3])
evaluates the failure probability for each assembler
instruction and for some program loops. The main objective
is to estimate the failure probability of the whole
application. The hierarchically modelling with the
information flow approach makes it possible to evaluate the
efficiency of protection program loops. These loops ensure
the fault tolerance policy by recovering imminent failures
and allow the application to run successfully thanks to a
permanent software recover mechanism: in case of a
detected and not corrected error, the system returns to the
last faultless state.

This work is useful because it allows adjusting the
architecture and shows the advantages of the hardware-
software interactions during the co-design phase before the
hardware implementation. It puts the hand on the critical
points in term of reliability thanks to the scenarios of
critical failure paths in the processor architecture.

Keywords - embedded systems, device modeling, reliability
issues, VHDL-RTL modeling, fault-tolerant, IEC61508,
stack processor.

1. Introduction
Computer systems operating in industrial environment

are subject to different radiation phenomena, whose effects
are often called ‘soft error’. Generally, these systems
employ software techniques to address and tolerate the soft
errors. In this paper, a software fault tolerance technique
based on a recovery strategy is evaluated using information
flow approach. The distinctive advantage of this fault
tolerance technique is the possibility to estimate the time
performance overhead depending on the fault apparition. By
applying the information flow modeling on several
benchmark applications, we evaluate the probabilities of
existence on different functional mode.

Most of the studies, however, have focused on fault
coverage and error latency of hardware fault-tolerant
mechanisms in digital systems as dependability measures
[4]. At recent years, it was reported that the environmental
transient faults could be masked only by software without
hardware error masking mechanisms [5]. Thus, a substantial
number of faults do not affect the program results for
several reasons: faults whose errors are neutralized by the
next instructions, faults affecting the execution of
instructions that do not contribute to the benchmark results,
and faults whose errors are tolerated by the semantic of the
running benchmark. This effect should be considered
properly because even a small change of system fault
coverage value can affect the system dependability [6].

Using the stack processor emulator and benchmarks, an
emulation model for fault injection was developed to
estimate the dependability of the complex programmable
system in operational phase. Through the fault injection into
the emulator, the software fault tolerance effect on system is
evaluated in this work. This effect is measured by the flow

informational modeling approach. The faults consist of the
single bit-flip, hardware fault (failure of component) and
stuck-at-value faults in the internal registers of the stack
processor and in memory cells.

We start by introducing the faults tolerance strategy
proposed by LICM laboratory in Section 2. This strategy is
described and explained how it can used efficiently. In
Section 3 the information flow approach is introduced in
details. It’s firstly applied on one instruction before being
generalizing on the whole bubble sort program. The
probabilities of existence on different functional are
calculated. Section 4 gives assessment of the same
probabilities but with taking into account the fault tolerance
strategy. These results are analysed and compared with
Section 3’s results. Finally, Section 5 concludes and presents
the future works.

2. Fault tolerance strategy
The protection techniques consist of a share between

hardware techniques and software techniques (Fig 1). Here,
we interest to errors which can be produced in the processor
and not in the application. If we look at the consequences of
these techniques, we notice that on one hand, when
implementing hardware techniques, we will have an
additional silicon area and possibly extend the critical path.
On the other hand, when implementing software techniques,
we will have a loss on time performance because of the
additional protection routines which can extend the duration
of the whole program.

Fig 1. Necessity of compromise between software and hardware protection

techniques

So, for an application located in particular conditions

(error rate, time constraints, power constraints), we can
estimate which kind of protection shall we use. Thus, a
compromise should be found. In summary, each protection
technique has its efficiency and cost. For that reason, we use
both emulator and benchmark to determine the limit
between software and hardware protections.

Some functional errors can be modelled and integrated

in the processor emulator. As a consequence, the embedded
program and the internal processor states may change. In

order to skip such case, some protection techniques can be
added in the benchmarks as it is shown in Fig 1. This is very
useful because our priority is the dependability.

Fig 2. Usefulness of the emulator/benchmark for fault injection and

protection methods integration

The errors injection is implemented in the emulator. We
suppose the existence of mechanism of hardware detection
technique. Each detected and not corrected error generates
an interruption. This interruption forces the processor to run
a routine from a definite address. The function of this
routine is to return to the last dependable state. In fact, in the
benchmark, we integrate a routine which store periodically
the stack pointers, the program counter and the top-of-
stacks. Storage of the treated data is also possible. So, on
every interruption, the protection routine recovers the last
data saved. These 2 routines (storing data and recovering
stored data) are implemented in the benchmark. Some
additional instructions are proposed in order to allow the
storage of stack pointers value in the top-of-stack.

Since the fault tolerance strategy is well described, we
can now introduce the global reliability evaluation strategy.

2.1 Global reliability evaluation strategy
The reliability of software is defined according to

ISO/IEC 9126 [7] as ‘the ability of the software to maintain
a level of required performance when it is used under
specified conditions’. To avoid confusion between the
hardware reliability and software reliability, this paper treats
the reliability evaluation of the hardware architecture from a
case study of one instruction. It will be generalized on the
whole architecture instruction set. We consider that software
(embedded program) is largely deterministic without taking
into account its random reliability [8]. Fig 3 introduces the
global reliability evaluation strategy.
Based on the standards specifications description, the
original HW/SW architecture is proposed and its instruction
set is designed. Each instruction is modelled by a VHDL-
RTL model to facilitate the transition to its information flow
stochastic model, from which the high-level and low-level
with eventual simplification are made. An emulator is
developed based on the instruction set. Obviously,
benchmarks are developed to test them on this emulator.
These benchmarks represent mechatronic applications that
can be embedded in the stack processor in the future.
Because dependability is our main goal; an injection of faults

Sensor Application Processor

Hardware protection Software protection

Processor dependability

Hardware protection H.P. S.P H.PSoftware protection S.P.

Additional silicon area Loss of time performance

Emulator

Fault
injection

Benchmarks
(mechatronic application)

Consequences

Implementation of
software protection

techniques

is integrated into the emulator, periodic, random, or salve
injection. Through the different fault injection into the
emulation model, the software fault tolerance effect is
studied: the impacts on time performance and the ability to
correct faults in different scenarios of errors occurrence.
Another parameter to evaluate this software fault tolerance
method is based on the informational flow modeling
approach. The software fault tolerance method is integrated
in the informational flow of each instruction in order to have
a quantitative probabilistic assessment. Using this approach,
we predicate the software fault tolerance coverage values in
a programmable system and estimate this reliability. We
obtain a global analysis which may judge this protection
method and which serve to an eventual architecture fine-
tuning.

Fig 3. Co-design flow using a global reliability evaluation strategy

So, we apply this modeling on one assembler instruction
based on its RTL modeling. This part is detailed in the next
section.

3. Information Flow approach applied on sorting
program (without tolerance)

3.1 Case study
The case study is the bubble sort of variables. From a

table containing these variables, the program consists of
reading the data, swapping in the case of disorder and
kipping the table with new ordered values. First of all, the
program initializes the variables in memory. We make a
reset of the permutation flag. Every two successive data is
compared. If a permutation is done, the flag is putted to 1.

We make the same comparison until the end of variables
and until the flag is null.

To evaluate the global probability of the correct run of
the program after sorting the variables, we are placed in the
worst case where these variables are totally disordered. The
following figure shows that in reality the software
application is composed of blocs. The functions and
routines composing these blocks are constructed by several
assembler instructions. The number of such instructions
changes according to the application’s program.

Fig 4. Decomposition of the software application

Based on the results from the probability to run
correctly the separate instructions, this work shows the
practicability of the information flow approach for the
evaluation of program formed by several instructions, the
result of this step is useful when we want to validate the
effectiveness of the fault tolerance strategy proposed, as
well as to validate our modeling of hardware-software
interactions. In this step, it’s necessary to show how we find
the different values of probability for simple instruction. It’s
detailed in the next paragraph.

3.2 Evaluation of the simple instruction
In this part, a preliminary VHDL-RTL modeling is done

for all assembler instructions in order to make easy their
information flow modeling. We give one sample: the DUP
instruction. Before explaining these instructions, we should
mention that the processor has two stacks. One stack is used
for the data treatment called data stack (DS). The top-of-
stack (TOS) and the next-of-stack (NOS) correspond
respectively to the first and the second element of this stack.
The second stack is used for the subroutine return addresses,
interruption addresses and temporary data copies, and is
called return stack (RS). The top-of-return-stack (TORS)
corresponds to the first element of this stack. The stack
buffers are managed in an external memory of the processor
in order to have no restriction in the stack depth. They are
addressed by internal pointers (data stack pointer DSP and
return stack pointer RSP).

Since some architecture features are explained, we can
detail clearly the DUP instruction. The DUP instruction
allows the duplication of the top-of-stack (TOS).

HW Architecture SW Architecture

Standard specifications

Benchmark
(mechatronic application)

Stochastic model
‘Information flow’

Fault
injection

Fault consequence
Time performance

High-level model
Low-level model

with simplification

Global
analytic/dynamic
reliability analysis

Processor emulator

Probabilistic
Assessment

Software protection
techniques integration

 DSP DSP +1 « incrementation of DSP to push a new
element »

 3rd DS Element (Memory value addressed by the new
DSP) NOS « NOS becomes the 3rd DS element »

 NOS TOS « duplication of the TOS value »

Fig 5 presents the RTL model of the DUP instruction.

Fig 5. RTL model of the DUP instruction

Concerning the control logic for the execution of this

instruction (bold lines in Fig 5):

 The data stack memory is in write enable mode;
 The control signals of the Mux_DSP are in position so
that the (+1) input is selected;

 The control signals of the Mux_NOS are in position so
that the connection from TOS is selected.

At the clock’s rising edge, all the operations are done and
DUP instruction is executed.

Thanks to this VHDL-RTL model of the DUP
instruction, we can now realize the information flow
modeling for this instruction. However, we should
summarize the main features of this approach before [9, 10
and 11]. It is based on the following points:

 Existence of information flow;
 Existence of control events;
 Existence of check procedures;
 Existence of information storage entities.

The high level model allows an efficient subdivision of
the functional architecture. The incorrect information
existing in a sub-functional entity is propagated in the
following ones. If this incorrect information is used by two
distinct downstream sub-functional entities, it must be
propagated logically along two different paths. We
distinguish in high level model five types of sub-functional
entities:

 TF: Entity of signal transformation: this bloc transforms
the input signal into a different output signal;

 SB: Entity of signal storage: it conserves information and
allows the storage of an input signal in order to be reused
by another entity. The SB bloc allows representation of
the necessary storage processes;

 IP: Decision entity: it allows delivering on output
information with taking into account two input signals;

 CT: Entity of time control: it checks the information
reception for each interval of time;

 ST: Self-test entity: it corresponds to the real time
operation tests, representing on-line tests based on the
observation of periodical transmission.

The result of the application of the high-level model on the
DUP instruction is illustrated in Fig 6.

Fig 6. High-level model of DUP instruction

The DUP instruction copies the top of stack (TOS) into

the next of stack register (NOS) and pushes the NOS to the
third element in the data stack memory (Mem_DS). This
instruction needs to increments the data stack pointer (DSP)
to allocate a new cell in Mem_DS.

Concerning the low-level model, it consists of modelling
the functional and dysfunctional behaviour of each sub-
functional entity in the high level model by associating a
finite state automaton [12]. The transition events in this
automaton are classed and labelled between different states.
The transient failures (bit-flip), which can change the
credibility of information, are mainly modelled by
associating them with random events. The hardware failure
modes (dM) related to the sub-functional entity are also
modelled, we talk about permanent failure modes. It is
possible to model the following modes: non-achievable
state, correct behaviour, dead-lock situation, infinite loop,
live-lock situation and the forbidden types of
communication between the components. At this step, we
create for each bloc (sub-functional entity) of the high level
model a finite state automaton.
The result of the application of the low-level model on the
DUP instruction is illustrated in Fig 7. In the low level
model a transition between two states of the automaton
represents the flow of failure information.

There are different failures possible scenarios which are
represented in the generated list. Ldef represents a possible
failure scenario.

Ldef =
{TOS.End(true).Bf.Incorrect_shunting.NOS.End(true).
P_DSP.dM.Stuck-At-Fault_state.Busy_state}
The word ‘TOS.End(true)’ means that incorrect information
from TOS is propagated to the next bloc. The word
‘Bf.Incorrect_shunting’ represents a fault in the shunting of
the MUX caused by a Bit-flip (Bf). Finally, the word
‘P_DSP.dM. Stuck-At-Fault_state.Busy_state’ means that
hardware failure can cause a problem in stack pointer and
thereafter a busy state report.

TOS MUX NOS NOS

MUX DSP DSP
Mem_DS

Fig 7. Low-level model for DUP instruction

There are six functional dependability modes, in which
we speak about level of credibility of information [13].

 Mode 1: All works well, correct result and no failure
detected;

 Mode 2: Looking for Availability, incorrect result, failure
detected but tolerated;

 Mode 3: Looking for Reliability, incorrect result, failure
detected but not tolerated;

 Mode 4: incorrect result, failure not detected;
 Mode 5: Spurious Shutdown, correct result, failure
detected;

 Mode 6: Stop of System, Absence of result.

After generation of all the characteristic lists (scenarios)
from low level model, we gather them by family according
to correct operation modes (mode 1), failures detected
(mode 2 and mode 3), not detected (mode 4), failure
tolerated (mode 2) or not tolerated (mode 3), the spurious
shutdowns (mode 5), latent errors (mode 4), worst cases
(mode 4), as well as the absence of information (mode 6).
These scenarios make it possible to calculate the probability
of occurrence of these failure modes. In practice, we
transform these lists to fault trees. Fault tree analysis is
recently a widely accepted technique to assess the
probability and frequency of system failure in many
industries [14]. The analysis performed on fault tree can be
either qualitative or quantitative. Fault tree analysis, based
on binary decision diagram (BDD), is a technique that may
be used for programmable electronic control system
reliability analysis. However, research works show that fault
tree generation algorithms are not sufficiently efficient for
programmable and complex systems because of some
problems, such as variable ordering and combination of
large states (combinatory explosion) [15]. The information
flow approach is proposed as solution. This qualitative

analysis shows, for instance, which event combinations
must occur together to cause a system failure. Concerning
the quantitative analysis, when we need to calculate the
probability of the event, the characteristic lists generated by
the information flow approach is transformed to fault trees.
The probability of top element event occurring is calculated
from the probabilities of the basic events. Tools such as
Aralia1 can, in many cases, give results more accurate than
conventional tools because it’s running 1000 times faster
[16].

After the translation of the sub-functional entities of the
high level model in the finites states automaton, it is
necessary to calculate the transition failure rate to achieve
each final state. We use as tools the Markov process. This
method can account the common cause failures, multiple
failure states, and variable failure rates. The arcs values
represent the failure rates of the information flow between
two states. These values represent also the matrix elements
of this Markov process. The values calculated by the
Markov process replace the different probabilities of the
basic elements in the fault trees.

The following table gives the results of the DUP
instruction probability according to different functional
mode:

Table 1. Different probabilities for each functional mode

According to this numerical table, we can easily note

that the probability of mode 2 (failure detected but tolerated)
is higher than the probability of the mode 3 (failure detected
but not tolerated). This shows the advantage of the software
technique and its efficiency to tolerate failures.

In the next paragraph, this study is generalized on the
remainder instructions.

3.3 Evaluation of the sorting program without fault

tolerance

The main goal is to know at anytime the values of
probabilities of existence on the six functional modes for the
whole program. This can be done by exploiting the results
from the simple instruction, and the routines execution
probabilities.

The probability of the top element in Fig 8 is easily
calculated by the assessment of the basic elements
probabilities (the probabilities of the sub-trees top-
elements). The subdivision of the global fault tree in the
sub-fault trees is a practical and effective way to calculate
global probability. The calculation of each dysfunction

Probability of
existence in: Mode 2 Mode 3 Mode 4 Mode 5

DUP 72 10-3 9 10-5 8.99 10-10 4.9 10-22

P DSP

Bf dM

Stuck-At
Fault state

Busy state

Absence of
information

End(true)

End(false)

Valid
state

Failed
state

TOS

NOS
End(true)

End(false)

Correct
shunting

Bf

Bf

Bf

dM

dM

Absence of
information

P_DSP+1

Incorrect
shunting

mode probability of the program requires the replacement of
each sub-fault tree element (Fig 9) by its probability for the
same dysfunction mode.

Fig.8. Fault tree of sorting program without tolerance

For example, the probability of basic element ‘Flag_Test’
is given by the flowing sub-tree as shown in Fig 9.

Fig.9. Fault tree of the Test_Flag bloc

In this sub-fault tree, we should find the probability of
different assembler instructions which composed this tree
with the same manner than DUP instruction detailed
previously. The results from this modeling are illustrated by
the table 2. In this table, we can assume that the probability
to be in mode 3 is important. It means that our architecture is
not able de tolerant some fault. By the way the probability in
the mode 2 is null because we don’t implement yet the
recovery technique. In the next step of this work, we show
how we can change these results by adding the proposed
technique of tolerance.
Table 2. Values probability of sorting program without taking into account

recovery functions

 Mode 1 Mode 2 Mode 3
Initialisation_Bloc 4.894 10-8 0.0 3.091 10-3

Sorting_Bloc 1.27 10-11 0.0 10.5 10-3
Flag_Test 9.17 10-6 0.0 4.59 10-3

Comparison_Function 58.49 10-8 0.0 7.9 10-4
Sorting_program 7.49 10-6 0.0 6.67 10-2

4. Sorting program with fault tolerance strategy
We consider the example of the bubble sort program

above, the recovery strategy is translated by the addition of
the functions of backup and recovery that we model next.

As shown in the organizational chart of the bubble sort
program algorithm (fig 10), the integration of the recovery
function is done before each sorting iteration in order to
keep in memory the correct data before eventual failure.

Fig 10. Organizational chart of the bubble sort program algorithm with the
taking into account of tolerance

The difference from the previous program is the

integration of the recovery functions. This strategy is based
on recovering the last dependable state on each error
detected and not corrected by hardware. The dependable
state is periodically obtained thanks to storage of stack
pointers, program counter and top-of-stacks before starting
of each comparison cycle. In case of any failure event
during the program execution, a restore of saved data is
done. After this restoration, the program continues to run
with reliable data. The faults tolerance method proposed in
this work uses a set of features to save and restore
periodically the sensitive elements in stack processor
architecture (DSP, RSP, PC, TOS, NOS and TORS). As
example, we can illustrate the backup and the restore of the
Data Stack Pointer (DSP), given by the following features:

Initialization of variables in
memory

Program of data comparison:
1. Initialization of the comparison flag
2. Pop of 2-data in Data Stack in order

to be compared
3. Call of the 2-data comparison

function
4. 2 & 3 are repeated until the end of

data sorted

Permutation flag = 0

The end of
program

Not Ok

Ok
2-data comparison function:
If (xi < xi+1) permutate and set flag
Return

Integration of the
recovery functions

----------------- Save_DSP ------------
Push_DSP
DLIT @_Sauv_DSP
STORE

----------------- Restore_DSP ---------
DLIT @_Sauv_DSP
FETCH
Pop_DSP

To evaluate for example the probability of the
‘Save_DSP’ function, we should have the probabilities of
all assembler instructions (Push_DSP, DLIT and STORE).

Fig 11. Fault tree of the 'Save_DSP'

The addition of the context storage after each sorting
operation requires taking into account the probability values
to save and restore correctly at any time the sensitive values
(TOS, NOS, TORS, DSP, RSP and PC). The failure
probability of the program will be influenced by the failure
probability of these functions as showed in the following
fault tree in fig 12.

Fig.12. Fault tree of sorting program with tolerance.

The following table summarizes the probability values

for each functional mode according to the six mode of
operation.

Table 3. Probability values for the sorting program with taking into account
recovery functions

 Mode1 Mode2 Mode3

Initialisation_Bloc 4.894 10-8 1.430 10-2 3.091 10-3

Sorting_Bloc 1.27 10-11 1.57 10-2 10.5 10-3
Flag_Test 9.17 10-6 3.55 10-3 4.59 10-3

Comparison_Function 58.49 10-8 3.70 10-2 7.9 10-4
Save_Function 7.44 10-5 1.55 10-2 2.2 10-4

Restore_Function 11 10-5 0.33 10-2 1.9 10-5
Sorting_Programme 6.32 10-5 1.57 10-2 2.39 10-4

In this table we assume that the probability to be in

mode 2 (failure detected but tolerated) becomes important
and the probability of mode 3 (failure detected but not
tolerated) decreases due to the addition of recovery
functions of the sensitive elements in the stack processor
architecture. This shows the advantage of the software
technique and its efficiency to tolerate failures.

These results can be analysed and compared with results
obtained by applying the same approach on the sorting
program without tolerance. This comparison is illustrated in
table 4.

Table 4. Comparison of the probability values for the sorting program with

and without taking into account recovery functions

 Mode 1 Mode 2 Mode 3
Sorting_Program
without tolerance 7.49 10-6 0.0 6.67 10-2

Sorting_Program
with tolerance 6.32 10-5 1.57 10-2 2.39 10-4

Comparing to the sorting program without tolerance, we

notice that for the sorting program with tolerance, the
probability to be in mode 1 (correct result and no failure
detected) and the probability to be in mode 2 (failure
detected but tolerated) have increased. It is a logic result due
to the effect of the fault tolerance technique. Whereas, the
probability to be in mode 3 (failure detected but not
tolerated) has decreased. It means that the non-tolerance of
failure is less probable. Thus, it is clearly shown in this table
that the implementation of recovery functions has an effect
on the final results of probability. The last ones show the
advantage of this technique and its efficiency to tolerate
failures.

5. Conclusions and perspectives
In this work we have proposed an approach which

verifies sufficiently some important reliability parameters of
the architecture, complementary with an adequate test-
validation strategy, and which achieves the probabilistic
reliability target as defined in IEC61508. The interest is to
implement, evaluate and enhance fault tolerance
mechanisms, and to move our system in the state where
tolerance is efficient. Otherwise, the goal is to reduce the
probability of mode 3 (failure detected but not tolerated),
which is in close relationship with the increase of the
information credibility.

We have firstly detailed our global reliability strategy.
Because our priority is reliable system design, an
implemented software protection technique is evaluated
using RTL-VHDL modeling of the instruction set and using
the information flow approach. This approach is composed
of a high-level model and a low-level model. The first one
makes easy the modeling of the architecture hardware
resources by the appropriate sub-functional entities. The
second one consists of creating a finite state automaton for
each high level entity.

An already developed stack processor emulator evaluates
the internal states and the running duration and serves for
architecture fine-tuning. Surely, benchmarks corresponding
to processor embedded programs are developed in order to
be tested in the emulator. Because our priority is the
dependability and in order to measure its impacts on time
performance, we have implemented in benchmark a software
protection method: when a perturbation, susceptible to
disturb the processor, appears, this one loops in error
recovery mode and become no more functional until it
returns to a stable and sure state after the occurrence of the
error generator event. This technique allows determining the
border between the two types of protection (hardware and
software).

In order to evaluate this software protection method, we
have introduced the information flow approach. We have
firstly applied this approach on one assembler instruction to
secondly generalize it for all the instruction set. Thus, the
probabilities of existence on different functional are
calculated for a bubble sort program embedded on the stack
processor emulator. Then, the same probabilities are also
calculated but with taking into account the fault tolerance
strategy. The results are analysed and compared.

The conclusions taken from the numerical results are
varied. Before the implementation of the recovery strategy,
the blocs program ‘initialisation_Bloc’, ‘Sorting_Bloc’,
‘Test_Flag_Bloc’ and ‘Comparison_Function_Bloc’ have a
null probability of being in mode 2 (failure detected but
tolerated), and an important probability to be in the mode 3
(failure detected but not tolerated). After the implementation
of the fault tolerance techniques, we conclude the following
items: the probability of mode 2 for these program blocs
becomes non-null and more important to the probability of
mode 3. It means that the recovery functions effect (backup
and restore) is inevitable. The instructions, that compose
these features, are the cause of the probability increase of
mode 2 of those functions and consequently of the whole
program. The functions of recovery (backup and restore) are
composed by instructions which are more probable to be in
mode 2 than to be in mode 3.

Moreover, the information flow approach has showed its
ability to evaluate the hardware-software architecture. Even
after the implementation of the tolerance strategy, our
approach remains efficient to validate the impact of this
policy of tolerance and avoidance of transient faults.
Through the collaboration with other research teams in our

consortium, we are able to achieve results in the design
phase, which is used to prevent certain consequences closely
related to the safety and security systems.

6. References
[1] H. Belhadaoui, M. Jallouli, B. Dubois, O. Malassé, K.

Hamidi, V. Idasiak, J-B. Kammerer, L.Hébrard, F. Monteiro,
C. Diou, M. Hehn, J-F. Aubry, H. Medromi, F. Braun, A.
Dandache, S. Piestrak and B. Lepley “Instrumentation sûre de
fonctionnement - Une synergie multidisciplinaire”, 4ème
Colloque Interdisciplinaire en Instrumentation (C2I 2007),
Octobre 2007.

[2] M. Jallouli, C. Diou, F. Monteiro and A. Dandache “Stack
processor architecture and development methods suitable for
dependable applications”, in Proc. 3rd International
Workshop on Reconfigurable Communication Centric System-
On-Chips (ReCoSoC’07), June 2007.

[3] K. Hamidi, O.Malassé, J.F. Aubry “Coupling of information-
flow aggregation method and dynamical model for a more
accurate evaluation of reliability”, European Safety and
Reliability Conference, ESREL, June 2005.

[4] Z.Lei, H.Yinhe, L.Huawei, L.Xiaowei, “Fault Tolerance
Mechanism in Chip Many-Core Processors”, Tsinghua
Science and Technology, ISSN 1007-0214 30/49, vol. 12, No.
S1, July 2007 pp.169-174.

[5] A.Li, B.Hong, “Software implemented transient fault
detection in space computer”, Aerospace Science and
Technology 11, 2007 pp. 245–252.

[6] Kishor S. Trivedi, Jogesh K. Muppala, Steven P. Woolet and
Boudewijn R. Haverkort, “Composite performance and
dependability analysis”, Performance Evaluation, vol. 14, Issues
3-4, February 1992 pp. 197-215.

[7] Norme CEI 9126. – Génie du logiciel – Qualité des produits –
Partie 1 : Modèle de qualité, Genève 2001.

[8] F. Vallée et D. Vernos, “Le test et la fiabilité du logiciel sont
ils antinomiques?” 12ème Colloque national de Fiabilité et
Maintenabilité, Montpellier, 2000.

[9] Jing-An Li, Yue Wu, King Keung, Ke Liu, “Reliability
estimation and prediction of multi-state components and
coherent systems”, Reliability Engineering and System Safety
88, 2005 pp. 93-98.

[10] Mile K. Stoj cev, Goran Lj. Djordjevi c, Tatjana R. Stankovij
“Implementation of self-checking two-level combinational
logic on FPGA and CPLD circuits”, Microelectronics
Reliability 44, 2004 pp. 173–178.

[11] A. Rauzy, “Mode automaton and their compilation into fault
trees”, Reliability Engineering and System Safety, 2002.

[12] C.Bolchini, R.Montandon, F.Salice and D.Sciuto, “Finite
State Machine and Data-Path Description”, IEEE
Transactions on very large scale integration (VLSI) systems,
vol.8, No.1, February 2000 pp. 98-103.

[13] IEC 61508, 1999 Functional Safety of Electrical/
Electronic/Programmable Electronic Safety-Related Systems,
Part 1-7. International Electrotechnical Committee.

[14] M.Yuchang, L.Hongwei, Y.Xiaozong, “Efficient Fault Tree
Analysis of Complex Fault Tolerant Multiple-Phased
Systems”, Tsinghua Science and Technology, ISSN 1007-
0214 22/49 vol. 12, No. S1, July 2007 pp.122-127

[15] J D.Esary, H.Ziehms, “Reliability analysis of phased
missions” In Proceedings of Reliability and Fault Tree
Analysis, Philadelphia, USA, 1975 pp. 213-236.

[16] Group Aralia, “Computation of prime implicants of a fault
tree within Aralia” In Proceedings of the European Safety and
Reliability Association Conference, ESREL’95,
Bournemouth, UK, 1995: 190-202.

