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Abstract 

Fault tolerance is an essential requirement for critical 
programming systems, due to potential catastrophic 
consequences of faults. Several approaches to evaluate 
system reliability parameters exist today; however, their 
work is based on the assumptions that hardware and 
software failures happen independently. The challenge in 
this field is to take into account the hardware-software 
interactions in the evaluation of the model. 
 
In the continuity of the CETIM project [1] whose principal 
objective is to define an integrated design of dependable 
mechatronic systems, this work evaluates important 
reliability parameters of an embedded application in a stack 
processor architecture using two dynamic models. The first 
one (stack processor emulator [2]) allows the study of 
dynamic performance and the evaluation of a fault-tolerant 
technique. The second one (information flow approach [3]) 
evaluates the failure probability for each assembler 
instruction and for some program loops. The main objective 
is to estimate the failure probability of the whole 
application. The hierarchically modelling with the 
information flow approach makes it possible to evaluate the 
efficiency of protection program loops. These loops ensure 
the fault tolerance policy by recovering imminent failures 
and allow the application to run successfully thanks to a 
permanent software recover mechanism: in case of a 
detected and not corrected error, the system returns to the 
last faultless state. 
 
This work is useful because it allows adjusting the 
architecture and shows the advantages of the hardware-
software interactions during the co-design phase before the 
hardware implementation. It puts the hand on the critical 
points in term of reliability thanks to the scenarios of 
critical failure paths in the processor architecture. 
 

Keywords - embedded systems, device modeling, reliability 
issues, VHDL-RTL modeling, fault-tolerant, IEC61508, 
stack processor. 

1. Introduction  
Computer systems operating in industrial environment 

are subject to different radiation phenomena, whose effects 
are often called ‘soft error’. Generally, these systems 
employ software techniques to address and tolerate the soft 
errors. In this paper, a software fault tolerance technique 
based on a recovery strategy is evaluated using information 
flow approach. The distinctive advantage of this fault 
tolerance technique is the possibility to estimate the time 
performance overhead depending on the fault apparition. By 
applying the information flow modeling on several 
benchmark applications, we evaluate the probabilities of 
existence on different functional mode.  
 

Most of the studies, however, have focused on fault 
coverage and error latency of hardware fault-tolerant 
mechanisms in digital systems as dependability measures 
[4]. At recent years, it was reported that the environmental 
transient faults could be masked only by software without 
hardware error masking mechanisms [5]. Thus, a substantial 
number of faults do not affect the program results for 
several reasons: faults whose errors are neutralized by the 
next instructions, faults affecting the execution of 
instructions that do not contribute to the benchmark results, 
and faults whose errors are tolerated by the semantic of the 
running benchmark. This effect should be considered 
properly because even a small change of system fault 
coverage value can affect the system dependability [6]. 
 

Using the stack processor emulator and benchmarks, an 
emulation model for fault injection was developed to 
estimate the dependability of the complex programmable 
system in operational phase. Through the fault injection into 
the emulator, the software fault tolerance effect on system is 
evaluated in this work. This effect is measured by the flow 



informational modeling approach. The faults consist of the 
single bit-flip, hardware fault (failure of component) and 
stuck-at-value faults in the internal registers of the stack 
processor and in memory cells.  
 

We start by introducing the faults tolerance strategy 
proposed by LICM laboratory in Section 2. This strategy is 
described and explained how it can used efficiently. In 
Section 3 the information flow approach is introduced in 
details. It’s firstly applied on one instruction before being 
generalizing on the whole bubble sort program. The 
probabilities of existence on different functional are 
calculated. Section 4 gives assessment of the same 
probabilities but with taking into account the fault tolerance 
strategy. These results are analysed and compared with 
Section 3’s results. Finally, Section 5 concludes and presents 
the future works. 

 

2. Fault tolerance strategy 
The protection techniques consist of a share between 

hardware techniques and software techniques (Fig 1). Here, 
we interest to errors which can be produced in the processor 
and not in the application. If we look at the consequences of 
these techniques, we notice that on one hand, when 
implementing hardware techniques, we will have an 
additional silicon area and possibly extend the critical path. 
On the other hand, when implementing software techniques, 
we will have a loss on time performance because of the 
additional protection routines which can extend the duration 
of the whole program. 
 

 
Fig 1. Necessity of compromise between software and hardware protection 

techniques 
 
So, for an application located in particular conditions 

(error rate, time constraints, power constraints), we can 
estimate which kind of protection shall we use. Thus, a 
compromise should be found. In summary, each protection 
technique has its efficiency and cost. For that reason, we use 
both emulator and benchmark to determine the limit 
between software and hardware protections.  

 
Some functional errors can be modelled and integrated 

in the processor emulator. As a consequence, the embedded 
program and the internal processor states may change. In 

order to skip such case, some protection techniques can be 
added in the benchmarks as it is shown in Fig 1. This is very 
useful because our priority is the dependability. 
 

 
Fig 2. Usefulness of the emulator/benchmark for fault injection and 

protection methods integration 
 

The errors injection is implemented in the emulator. We 
suppose the existence of mechanism of hardware detection 
technique. Each detected and not corrected error generates 
an interruption. This interruption forces the processor to run 
a routine from a definite address. The function of this 
routine is to return to the last dependable state. In fact, in the 
benchmark, we integrate a routine which store periodically 
the stack pointers, the program counter and the top-of-
stacks. Storage of the treated data is also possible. So, on 
every interruption, the protection routine recovers the last 
data saved. These 2 routines (storing data and recovering 
stored data) are implemented in the benchmark. Some 
additional instructions are proposed in order to allow the 
storage of stack pointers value in the top-of-stack.  

Since the fault tolerance strategy is well described, we 
can now introduce the global reliability evaluation strategy. 

2.1 Global reliability evaluation strategy 
The reliability of software is defined according to 

ISO/IEC 9126 [7] as ‘the ability of the software to maintain 
a level of required performance when it is used under 
specified conditions’. To avoid confusion between the 
hardware reliability and software reliability, this paper treats 
the reliability evaluation of the hardware architecture from a 
case study of one instruction. It will be generalized on the 
whole architecture instruction set. We consider that software 
(embedded program) is largely deterministic without taking 
into account its random reliability [8]. Fig 3 introduces the 
global reliability evaluation strategy. 
Based on the standards specifications description, the 
original HW/SW architecture is proposed and its instruction 
set is designed. Each instruction is modelled by a VHDL-
RTL model to facilitate the transition to its information flow 
stochastic model, from which the high-level and low-level 
with eventual simplification are made. An emulator is 
developed based on the instruction set. Obviously, 
benchmarks are developed to test them on this emulator. 
These benchmarks represent mechatronic applications that 
can be embedded in the stack processor in the future. 
Because dependability is our main goal; an injection of faults 

Sensor Application Processor 

Hardware protection Software protection 

Processor dependability 

Hardware protection H.P. S.P H.PSoftware protection S.P.

Additional silicon area Loss of time performance 

Emulator 

Fault 
injection 

Benchmarks 
(mechatronic application) 

Consequences  

Implementation of 
software protection 

techniques 



is integrated into the emulator, periodic, random, or salve 
injection. Through the different fault injection into the 
emulation model, the software fault tolerance effect is 
studied: the impacts on time performance and the ability to 
correct faults in different scenarios of errors occurrence. 
Another parameter to evaluate this software fault tolerance 
method is based on the informational flow modeling 
approach. The software fault tolerance method is integrated 
in the informational flow of each instruction in order to have 
a quantitative probabilistic assessment. Using this approach, 
we predicate the software fault tolerance coverage values in 
a programmable system and estimate this reliability. We 
obtain a global analysis which may judge this protection 
method and which serve to an eventual architecture fine-
tuning. 

 
Fig 3. Co-design flow using a global reliability evaluation strategy 
 

So, we apply this modeling on one assembler instruction 
based on its RTL modeling. This part is detailed in the next 
section. 

3. Information Flow approach applied on sorting 
program (without tolerance) 

3.1 Case study  
The case study is the bubble sort of variables. From a 

table containing these variables, the program consists of 
reading the data, swapping in the case of disorder and 
kipping the table with new ordered values. First of all, the 
program initializes the variables in memory. We make a 
reset of the permutation flag. Every two successive data is 
compared. If a permutation is done, the flag is putted to 1.  

We make the same comparison until the end of variables 
and until the flag is null.  

To evaluate the global probability of the correct run of 
the program after sorting the variables, we are placed in the 
worst case where these variables are totally disordered. The 
following figure shows that in reality the software 
application is composed of blocs. The functions and 
routines composing these blocks are constructed by several 
assembler instructions. The number of such instructions 
changes according to the application’s program. 
         

 
 

Fig 4. Decomposition of the software application  
 

Based on the results from the probability to run 
correctly the separate instructions, this work shows the 
practicability of the information flow approach for the 
evaluation of program formed by several instructions, the 
result of this step is useful when we want to validate the 
effectiveness of the fault tolerance strategy proposed, as 
well as to validate our modeling of hardware-software 
interactions. In this step, it’s necessary to show how we find 
the different values of probability for simple instruction. It’s 
detailed in the next paragraph. 

3.2 Evaluation of the simple instruction 
In this part, a preliminary VHDL-RTL modeling is done 

for all assembler instructions in order to make easy their 
information flow modeling. We give one sample: the DUP 
instruction. Before explaining these instructions, we should 
mention that the processor has two stacks. One stack is used 
for the data treatment called data stack (DS). The top-of-
stack (TOS) and the next-of-stack (NOS) correspond 
respectively to the first and the second element of this stack. 
The second stack is used for the subroutine return addresses, 
interruption addresses and temporary data copies, and is 
called return stack (RS). The top-of-return-stack (TORS) 
corresponds to the first element of this stack. The stack 
buffers are managed in an external memory of the processor 
in order to have no restriction in the stack depth. They are 
addressed by internal pointers (data stack pointer DSP and 
return stack pointer RSP).  

Since some architecture features are explained, we can 
detail clearly the DUP instruction. The DUP instruction 
allows the duplication of the top-of-stack (TOS).  
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 NOS  TOS    « duplication of the TOS value » 
 
Fig 5 presents the RTL model of the DUP instruction. 

 
Fig 5. RTL model of the DUP instruction 

 
Concerning the control logic for the execution of this 

instruction (bold lines in Fig 5):  
 

 The data stack memory is in write enable mode; 
 The control signals of the Mux_DSP are in position so 
that the (+1) input is selected; 

 The control signals of the Mux_NOS are in position so 
that the connection from TOS is selected. 

 
At the clock’s rising edge, all the operations are done and 
DUP instruction is executed. 
   

Thanks to this VHDL-RTL model of the DUP 
instruction, we can now realize the information flow 
modeling for this instruction. However, we should 
summarize the main features of this approach before [9, 10 
and 11].  It is based on the following points: 

 
 Existence of information flow; 
 Existence of control events; 
 Existence of check procedures; 
 Existence of information storage entities. 

 

The high level model allows an efficient subdivision of 
the functional architecture. The incorrect information 
existing in a sub-functional entity is propagated in the 
following ones.  If this incorrect information is used by two 
distinct downstream sub-functional entities, it must be 
propagated logically along two different paths. We 
distinguish in high level model five types of sub-functional 
entities: 

 
 TF: Entity of signal transformation: this bloc transforms 
the input signal into a different output signal; 

 SB: Entity of signal storage: it conserves information and 
allows the storage of an input signal in order to be reused 
by another entity. The SB bloc allows representation of 
the necessary storage processes; 

 IP: Decision entity: it allows delivering on output 
information with taking into account two input signals; 

 CT: Entity of time control: it checks the information 
reception for each interval of time; 

 ST: Self-test entity: it corresponds to the real time 
operation tests, representing on-line tests based on the 
observation of periodical transmission. 

 
The result of the application of the high-level model on the 
DUP instruction is illustrated in Fig 6. 

 

 
 

Fig 6. High-level model of DUP instruction 
 
The DUP instruction copies the top of stack (TOS) into 

the next of stack register (NOS) and pushes the NOS to the 
third element in the data stack memory (Mem_DS). This 
instruction needs to increments the data stack pointer (DSP) 
to allocate a new cell in Mem_DS. 
 

Concerning the low-level model, it consists of modelling 
the functional and dysfunctional behaviour of each sub-
functional entity in the high level model by associating a 
finite state automaton [12]. The transition events in this 
automaton are classed and labelled between different states. 
The transient failures (bit-flip), which can change the 
credibility of information, are mainly modelled by 
associating them with random events. The hardware failure 
modes (dM) related to the sub-functional entity are also 
modelled, we talk about permanent failure modes. It is 
possible to model the following modes: non-achievable 
state, correct behaviour, dead-lock situation, infinite loop, 
live-lock situation and the forbidden types of 
communication between the components. At this step, we 
create for each bloc (sub-functional entity) of the high level 
model a finite state automaton. 
The result of the application of the low-level model on the 
DUP instruction is illustrated in Fig 7. In the low level 
model a transition between two states of the automaton 
represents the flow of failure information.  

There are different failures possible scenarios which are 
represented in the generated list. Ldef represents a possible 
failure scenario.  

Ldef = 
{TOS.End(true).Bf.Incorrect_shunting.NOS.End(true). 
P_DSP.dM.Stuck-At-Fault_state.Busy_state} 
The word ‘TOS.End(true)’ means that incorrect information 
from TOS is propagated to the next bloc. The word 
‘Bf.Incorrect_shunting’ represents a fault in the shunting of 
the MUX caused by a Bit-flip (Bf). Finally, the word 
‘P_DSP.dM. Stuck-At-Fault_state.Busy_state’ means that 
hardware failure can cause a problem in stack pointer and 
thereafter a busy state report.  
 

TOS MUX NOS NOS 

MUX DSP DSP
Mem_DS 



 
 

Fig 7. Low-level model for DUP instruction 
 
 

There are six functional dependability modes, in which 
we speak about level of credibility of information [13].  

 Mode 1: All works well, correct result and no failure 
detected; 

 Mode 2: Looking for Availability, incorrect result, failure 
detected but tolerated; 

 Mode 3: Looking for Reliability, incorrect result, failure 
detected but not tolerated;  

 Mode 4:  incorrect result, failure not detected; 
 Mode 5: Spurious Shutdown, correct result, failure 
detected; 

 Mode 6: Stop of System, Absence of result. 
 

After generation of all the characteristic lists (scenarios) 
from low level model, we gather them by family according 
to correct operation modes (mode 1), failures detected 
(mode 2 and mode 3), not detected (mode 4), failure 
tolerated (mode 2) or not tolerated (mode 3), the spurious 
shutdowns (mode 5), latent errors (mode 4), worst cases 
(mode 4), as well as the absence of information (mode 6). 
These scenarios make it possible to calculate the probability 
of occurrence of these failure modes. In practice, we 
transform these lists to fault trees. Fault tree analysis is 
recently a widely accepted technique to assess the 
probability and frequency of system failure in many 
industries [14]. The analysis performed on fault tree can be 
either qualitative or quantitative. Fault tree analysis, based 
on binary decision diagram (BDD), is a technique that may 
be used for programmable electronic control system 
reliability analysis. However, research works show that fault 
tree generation algorithms are not sufficiently efficient for 
programmable and complex systems because of some 
problems, such as variable ordering and combination of 
large states (combinatory explosion) [15]. The information 
flow approach is proposed as solution. This qualitative 

analysis shows, for instance, which event combinations 
must occur together to cause a system failure. Concerning 
the quantitative analysis, when we need to calculate the 
probability of the event, the characteristic lists generated by 
the information flow approach is transformed to fault trees. 
The probability of top element event occurring is calculated 
from the probabilities of the basic events. Tools such as 
Aralia1 can, in many cases, give results more accurate than 
conventional tools because it’s running 1000 times faster 
[16]. 
 

After the translation of the sub-functional entities of the 
high level model in the finites states automaton, it is 
necessary to calculate the transition failure rate to achieve 
each final state. We use as tools the Markov process. This 
method can account the common cause failures, multiple 
failure states, and variable failure rates. The arcs values 
represent the failure rates of the information flow between 
two states. These values represent also the matrix elements 
of this Markov process. The values calculated by the 
Markov process replace the different probabilities of the 
basic elements in the fault trees. 
 

The following table gives the results of the DUP 
instruction probability according to different functional 
mode: 
 

Table 1. Different probabilities for each functional mode 

 
According to this numerical table, we can easily note 

that the probability of mode 2 (failure detected but tolerated) 
is higher than the probability of the mode 3 (failure detected 
but not tolerated). This shows the advantage of the software 
technique and its efficiency to tolerate failures. 
 
In the next paragraph, this study is generalized on the 
remainder instructions. 
 
 
3.3 Evaluation of the sorting program without fault 

tolerance 
 

The main goal is to know at anytime the values of 
probabilities of existence on the six functional modes for the 
whole program. This can be done by exploiting the results 
from the simple instruction, and the routines execution 
probabilities. 

The probability of the top element in Fig 8 is easily 
calculated by the assessment of the basic elements 
probabilities (the probabilities of the sub-trees top-
elements). The subdivision of the global fault tree in the 
sub-fault trees is a practical and effective way to calculate 
global probability. The calculation of each dysfunction 
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mode probability of the program requires the replacement of 
each sub-fault tree element (Fig 9) by its probability for the 
same dysfunction mode. 
 

 
 

Fig.8. Fault tree of sorting program without tolerance 
 

For example, the probability of basic element ‘Flag_Test’ 
is given by the flowing sub-tree as shown in Fig 9. 

 

 
Fig.9. Fault tree of the Test_Flag bloc 

 

In this sub-fault tree, we should find the probability of 
different assembler instructions which composed this tree 
with the same manner than DUP instruction detailed 
previously. The results from this modeling are illustrated by 
the table 2. In this table, we can assume that the probability 
to be in mode 3 is important. It means that our architecture is 
not able de tolerant some fault. By the way the probability in 
the mode 2 is null because we don’t implement yet the 
recovery technique. In the next step of this work, we show 
how we can change these results by adding the proposed 
technique of tolerance.   
Table 2. Values probability of sorting program without taking into account 

recovery functions 
 

 Mode 1 Mode 2 Mode 3 
Initialisation_Bloc 4.894 10-8 0.0 3.091 10-3 

Sorting_Bloc 1.27 10-11 0.0 10.5 10-3 
Flag_Test 9.17 10-6 0.0 4.59 10-3 

Comparison_Function 58.49 10-8 0.0 7.9 10-4 
Sorting_program 7.49 10-6 0.0 6.67 10-2 

4. Sorting program with fault tolerance strategy  
We consider the example of the bubble sort program 

above, the recovery strategy is translated by the addition of 
the functions of backup and recovery that we model next.  
 

As shown in the organizational chart of the bubble sort 
program algorithm (fig 10), the integration of the recovery 
function is done before each sorting iteration in order to 
keep in memory the correct data before eventual failure. 

 
 

 
 

Fig 10. Organizational chart of the bubble sort program algorithm with the 
taking into account of tolerance 

 
The difference from the previous program is the 

integration of the recovery functions. This strategy is based 
on recovering the last dependable state on each error 
detected and not corrected by hardware. The dependable 
state is periodically obtained thanks to storage of stack 
pointers, program counter and top-of-stacks before starting 
of each comparison cycle. In case of any failure event 
during the program execution, a restore of saved data is 
done. After this restoration, the program continues to run 
with reliable data. The faults tolerance method proposed in 
this work uses a set of features to save and restore 
periodically the sensitive elements in stack processor 
architecture (DSP, RSP, PC, TOS, NOS and TORS). As 
example, we can illustrate the backup and the restore of the 
Data Stack Pointer (DSP), given by the following features:  
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----------------- Save_DSP ------------ 
Push_DSP 
DLIT @_Sauv_DSP 
STORE 
 
----------------- Restore_DSP --------- 
DLIT @_Sauv_DSP 
FETCH 
Pop_DSP 
 

To evaluate for example the probability of the 
‘Save_DSP’ function, we should have the probabilities of 
all assembler instructions (Push_DSP, DLIT and STORE). 
   

 
 

Fig 11. Fault tree of the 'Save_DSP' 
 

The addition of the context storage after each sorting 
operation requires taking into account the probability values 
to save and restore correctly at any time the sensitive values 
(TOS, NOS, TORS, DSP, RSP and PC). The failure 
probability of the program will be influenced by the failure 
probability of these functions as showed in the following 
fault tree in fig 12. 
 

 
 

Fig.12. Fault tree of sorting program with tolerance. 
 
The following table summarizes the probability values 

for each functional mode according to the six mode of 
operation. 
 
 
 

Table 3. Probability values for the sorting program with taking into account 
recovery functions 

 
 Mode1 Mode2 Mode3 

Initialisation_Bloc 4.894 10-8 1.430 10-2 3.091 10-3

Sorting_Bloc 1.27 10-11 1.57 10-2 10.5 10-3 
Flag_Test 9.17 10-6 3.55 10-3 4.59 10-3

Comparison_Function 58.49 10-8 3.70 10-2 7.9 10-4 
Save_Function 7.44 10-5 1.55 10-2 2.2 10-4 

Restore_Function 11 10-5 0.33 10-2 1.9 10-5 
Sorting_Programme 6.32 10-5 1.57 10-2 2.39 10-4 

 
In this table we assume that the probability to be in 

mode 2 (failure detected but tolerated) becomes important 
and the probability of mode 3 (failure detected but not 
tolerated) decreases due to the addition of recovery 
functions of the sensitive elements in the stack processor 
architecture. This shows the advantage of the software 
technique and its efficiency to tolerate failures. 

These results can be analysed and compared with results 
obtained by applying the same approach on the sorting 
program without tolerance. This comparison is illustrated in 
table 4. 
 
Table 4. Comparison of the probability values for the sorting program with 

and without taking into account recovery functions 
 

 Mode 1 Mode 2 Mode 3 
Sorting_Program 
without tolerance 7.49 10-6 0.0 6.67 10-2 

Sorting_Program 
with tolerance 6.32 10-5 1.57 10-2 2.39 10-4 

 
Comparing to the sorting program without tolerance, we 

notice that for the sorting program with tolerance, the 
probability to be in mode 1 (correct result and no failure 
detected) and the probability to be in mode 2 (failure 
detected but tolerated) have increased. It is a logic result due 
to the effect of the fault tolerance technique. Whereas, the 
probability to be in mode 3 (failure detected but not 
tolerated) has decreased. It means that the non-tolerance of 
failure is less probable. Thus, it is clearly shown in this table 
that the implementation of recovery functions has an effect 
on the final results of probability. The last ones show the 
advantage of this technique and its efficiency to tolerate 
failures. 

5. Conclusions and perspectives 
In this work we have proposed an approach which 

verifies sufficiently some important reliability parameters of 
the architecture, complementary with an adequate test-
validation strategy, and which achieves the probabilistic 
reliability target as defined in IEC61508. The interest is to 
implement, evaluate and enhance fault tolerance 
mechanisms, and to move our system in the state where 
tolerance is efficient. Otherwise, the goal is to reduce the 
probability of mode 3 (failure detected but not tolerated), 
which is in close relationship with the increase of the 
information credibility. 



We have firstly detailed our global reliability strategy. 
Because our priority is reliable system design, an 
implemented software protection technique is evaluated 
using RTL-VHDL modeling of the instruction set and using 
the information flow approach. This approach is composed 
of a high-level model and a low-level model. The first one 
makes easy the modeling of the architecture hardware 
resources by the appropriate sub-functional entities. The 
second one consists of creating a finite state automaton for 
each high level entity.  

An already developed stack processor emulator evaluates 
the internal states and the running duration and serves for 
architecture fine-tuning. Surely, benchmarks corresponding 
to processor embedded programs are developed in order to 
be tested in the emulator. Because our priority is the 
dependability and in order to measure its impacts on time 
performance, we have implemented in benchmark a software 
protection method: when a perturbation, susceptible to 
disturb the processor, appears, this one loops in error 
recovery mode and become no more functional until it 
returns to a stable and sure state after the occurrence of the 
error generator event. This technique allows determining the 
border between the two types of protection (hardware and 
software).  

In order to evaluate this software protection method, we 
have introduced the information flow approach. We have 
firstly applied this approach on one assembler instruction to 
secondly generalize it for all the instruction set. Thus, the 
probabilities of existence on different functional are 
calculated for a bubble sort program embedded on the stack 
processor emulator. Then, the same probabilities are also 
calculated but with taking into account the fault tolerance 
strategy. The results are analysed and compared. 

The conclusions taken from the numerical results are 
varied. Before the implementation of the recovery strategy, 
the blocs program ‘initialisation_Bloc’, ‘Sorting_Bloc’, 
‘Test_Flag_Bloc’ and ‘Comparison_Function_Bloc’ have a 
null probability of being in mode 2 (failure detected but 
tolerated), and an important probability to be in the mode 3 
(failure detected but not tolerated). After the implementation 
of the fault tolerance techniques, we conclude the following 
items: the probability of mode 2 for these program blocs 
becomes non-null and more important to the probability of 
mode 3. It means that the recovery functions effect (backup 
and restore) is inevitable. The instructions, that compose 
these features, are the cause of the probability increase of 
mode 2 of those functions and consequently of the whole 
program. The functions of recovery (backup and restore) are 
composed by instructions which are more probable to be in 
mode 2 than to be in mode 3. 

Moreover, the information flow approach has showed its 
ability to evaluate the hardware-software architecture. Even 
after the implementation of the tolerance strategy, our 
approach remains efficient to validate the impact of this 
policy of tolerance and avoidance of transient faults. 
Through the collaboration with other research teams in our 

consortium, we are able to achieve results in the design 
phase, which is used to prevent certain consequences closely 
related to the safety and security systems. 
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