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(1) Team Mistis, INRIA Rhône-Alpes & LJK, Inovallée, 655, av. de l’Europe, Montbonnot,

38334 Saint-Ismier cedex, France
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Abstract

In this paper, we propose to include Weibull tail-distributions in a more general family of

distributions. In particular, the considered model also encompasses the whole Fréchet maxi-

mum domain of attraction as well as log-Weibull tail-distributions. The asymptotic normality

of some tail estimators based on the log-spacings between the largest order statistics is es-

tablished in an unified way within the considered family. This result permits to understand

the similarity between most estimators of the Weibull tail-coefficient and the Hill estimator.

Some different asymptotic properties, in terms of bias, rate of convergence, are also highlighted.

AMS Subject Classifications: 62G05, 62G20, 62G30.

Keywords: Weibull tail-distributions, extreme quantile, maximum domain of attraction,

asymptotic normality.

1 Motivations

Weibull tail-distributions encompass a variety of light-tailed distributions, i.e. distributions in
the Gumbel maximum domain of attraction, see [20] for further details. Weibull tail-distributions
include for instance Weibull, Gaussian, gamma and logistic distributions. Let us recall that a
cumulative distribution function F has a Weibull tail if its associated survival function F̄ = 1−F
satisfies the following property: There exists θ > 0 such that for all λ > 0,

lim
t→∞

log F̄ (λt)

log F̄ (t)
= λ1/θ. (1)

The parameter θ is called the Weibull tail-coefficient. We refer to [7] for a general account on
Weibull tail-distributions and to [6] for an application to the modeling of large claims in non-life
insurance. Dedicated methods have been proposed to estimate the Weibull tail-coefficient since the
relevant information is only contained in the extreme upper part of the sample denoted hereafter
by X1, . . . ,Xn. A first direction was investigated in [8] where an estimator based on the record
values is proposed. Another family of approaches [3, 4, 10, 13] consists of using the kn upper order
statistics Xn−kn+1,n ≤ . . . ≤ Xn,n where (kn) is an intermediate sequence of integers i.e. such that

lim
n→∞

kn = ∞ and lim
n→∞

kn/n = 0. (2)
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More specifically, most recent estimators are based on the log-spacings between the kn upper order
statistics [7, 11, 22, 23, 25, 26, 27]. All these estimators are thus similar to the Hill statistics [34]
defined as

Hn =
1

kn − 1

kn−1∑

i=1

log(Xn−i+1,n) − log(Xn−kn+1,n). (3)

As an example, all three estimators proposed in [22] are proportional to Hn. This similarity may be
surprising since Hn is dedicated to the estimation of the tail index γ for heavy-tailed distribution
i.e. such that

lim
t→∞

F̄ (λt)

F̄ (t)
= λ−1/γ ,

for all λ > 0. This property characterizes distributions belonging to the Fréchet maximum domain
of attraction and sometimes called Pareto-type distributions.

The main goal of this work is therefore to explain why statistics based on log-spacings could be
efficient in estimating tail parameters of both Weibull-tail and Pareto-type distributions. To this
end, we introduce a family of distributions, indexed by two parameters τ ∈ [0, 1] and θ > 0, which
includes these two type of distributions. The first parameter τ allows to represent a large panel of
distribution tails ranging from Weibull-type tails (τ = 0) to Pareto-type tails (τ = 1). The second
parameter θ is the parameter to be estimated. It coincides with the Weibull tail-coefficient when
τ = 0 and with the tail index when τ = 1.

An estimator θ̂n of θ is then introduced for the new family of distributions and an estimator
of extreme quantiles is derived. The asymptotic normality of these estimators is established in
Section 3 in an unified way and illustrated on some simulated data in Section 4. Some concluding
remarks are given in Section 5. Proofs are postponed to Section 6.

2 Model and estimators

2.1 Definition and first properties

Let us consider the family of survival distribution functions defined as

(A1(τ, θ)) F̄ (x) = exp(−K←
τ (log H(x))) for x ≥ x∗ with x∗ > 0 and

• Kτ (x) =
∫ x

1
uτ−1du where τ ∈ [0, 1],

• H an increasing function such that H←(t) = inf{x, H(x) ≥ t} = tθℓ(t), where θ > 0 and ℓ
is a slowly varying function i.e. ℓ(λx)/ℓ(x) → 1 as x → ∞ for all λ ≥ 1.

The function H← is the so-called generalized inverse of H. Note that K←
τ coincides with the

classical inverse since Kτ is continuous. The expansion H←(t) = tθℓ(t) is equivalent to supposing
that H← is regularly varying at infinity with index θ. This property is denoted by H← ∈ Rθ,
see [9] for more details on regular variations theory. Let us first highlight that the tail heaviness
of F̄ is mainly driven by τ ∈ [0, 1] and secondarily by θ > 0:

Proposition 1 Let F̄τ1,θ1
and F̄τ2,θ2

be two survival distribution functions satisfying respectively
(A1(τ1, θ1)) and (A1(τ2, θ2)).

(i) If τ1 < τ2 then F̄τ1,θ1
(x)/F̄τ2,θ2

(x) → 0 as x → ∞ for all (θ1, θ2) ∈ (0,∞)2.

(ii) If τ1 = τ2 = τ and θ1 < θ2 then F̄τ,θ1
(x)/F̄τ,θ2

(x) → 0 as x → ∞.
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Thus, the larger is τ , the heavier is the tail. Let us consider the two extremal cases τ = 0 and
τ = 1. Clearly, under (A1(0, θ)), F̄ (x) = exp(−H(x)) is the survival function of a Weibull-tail
distribution, see (1). At the opposite, (A1(1, θ)) entails F̄ (x) = e1/H(x) = x−1/θ ℓ̃(x) where ℓ̃
is a slowly varying function. As a consequence, F belongs to the Fréchet maximum domain of
attraction and θ coincides with the tail index. In view of the above remarks, intermediate values
of τ ∈ (0, 1) correspond to distribution tails lighter than Pareto tails but heavier than Weibull
tails. Indeed, we have F̄ (x) = exp(−h(x)) with h(x) ∼ ((τ/θ) log x)1/τ and thus h(x)/xβ → 0
for all β > 0 while h(x)/ log(x) → ∞ as x → ∞, this property characterizing an “exponential
type” distribution, see [32]. The next proposition provides a more precise characterization while
examples are provided in Paragraph 2.2.

Proposition 2

(i) F verifies (A1(0, θ)) if and only if F is a Weibull-tail distribution function with Weibull
tail-coefficient θ.

(ii) If F verifies (A1(τ, θ)), τ ∈ [0, 1) and if H is twice differentiable then F belongs to the Gumbel
maximum domain of attraction.

(iii) F verifies (A1(1, θ)) if and only if F is in the Fréchet maximum domain of attraction with
tail-index θ.

2.2 Examples

In view of Proposition 2(i), Gaussian, gamma, Weibull, Benktander II, logistic and extreme-value
distributions all verify (A1(0, θ)) since they are examples of Weibull tail-distributions (see [23],
Table 1). Examples of distributions verifying (A1(τ, θ)) with τ ∈ (0, 1) include some log-Weibull
tail-distributions. Let us recall that a random variable Y is distributed from a log-Weibull tail-
distribution if log(Y ) follows a Weibull tail-distribution.

Proposition 3 Suppose that F verifies (A1(0, θ)) with θ ∈ (0, 1]. If, moreover, the slowly-varying
function ℓ is differentiable and ℓ(t) → ℓ∞ > 0 as t → ∞ then F (log .) verifies (A1(θ, θℓ∞)).

As an example, the standard log-normal distribution can be looked at as a log-Weibull tail-
distribution and thus verifies (A1(1/2,

√
2/2)). Similarly, the gamma distribution verifies (A1(0, 1))

and the log-gamma distribution belongs to the Fréchet maximum domain of attraction, see for in-
stance [16], Table 3.4.2. Finally, other examples of distributions satisfying (A1(1, θ)) can be found
in the above mentioned table.

2.3 Definition of the estimators

Denoting by (kn) an intermediate sequence of integers (see (2)), the following estimator of θ is
considered:

θ̂n =
1

µ1,τ (log(n/kn))

1

kn − 1

kn−1∑

i=1

(log(Xn−i+1,n) − log(Xn−kn+1,n)), (4)

with, for all t > 0 and q ∈ N
∗,

µq,τ (t) =

∫ ∞

0

(Kτ (x + t) − Kτ (t))
q
e−xdx.

A crucial point is that the estimator (4) essentially consists in averaging the log-spacings between

the upper-order statistics. Even more strongly, θ̂n only differs from the Hill statistics (3) by the
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non-random normalizing sequence µ1,τ (log(n/kn)). This similarity can be intuitively understood
by studying the log-spacing between two quantiles xu and xv of F̄ , with 0 < u < v ≤ 1. Under
(A1(τ, θ)) we have

log xu − log xv = θ (Kτ (− log u) − Kτ (− log v)) + log

(
ℓ(exp Kτ (− log u))

ℓ(exp Kτ (− log v))

)
. (5)

Now, since ℓ is a slowly-varying function, if the orders u and v of the quantiles are small enough,
the second term can be neglected in the right-hand side of (5) to obtain

log xu − log xv ≃ θ (Kτ (− log u) − Kτ (− log v)) , (6)

which shows that log-spacings are approximately proportional to θ. Since this key property holds
for all τ ∈ [0, 1], it is thus shared by Pareto-type, Weibull tail and log-Weibull tail-distributions.
Note that this property can be checked graphically on a sample by drawing a quantile-quantile
plot. It consists in plotting the pairs (Kτ (log(n/i)), log(Xn−i+1,n)) for i = 1, . . . , kn. From (6),
the graph should be approximately linear. Following the same ideas, an estimator of the extreme
quantile xpn

can be deduced from (4) by:

x̂pn
= Xn−kn+1,n exp

(
θ̂n (Kτ (log(1/pn)) − Kτ (log(n/kn)))

)
. (7)

Recall that an extreme quantile xpn
of order pn is defined by xpn

= F
←

(pn) with pn → 0 as
n → ∞. For instance, if npn → 0 then xpn

is larger than the maximum observation Xn,n of the
sample (with probability tending to one). This requires to extrapolate sample results to areas
where no data are observed and occurs in reliability [14], hydrology [36], finance [16],...

3 Asymptotic properties

We show in the next paragraph that the asymptotic normality of θ̂n and x̂pn
can be established

for all τ ∈ [0, 1] in an unified way. In this sense, the asymptotic behavior of these estimators is
more a consequence of the log-spacings property than of a tail behavior (which can be exponential
as well as polynomial). Paragraphs 3.2 and 3.3 illustrate our general result on the two extremal
cases τ = 0 and τ = 1.

3.1 Main results

To establish the asymptotic normality of θ̂n, a second-order condition on ℓ is necessary:

(A2(ρ)) There exist ρ < 0 and b(x) → 0 such that uniformly locally on λ ≥ λ0 > 0

log

(
ℓ(λx)

ℓ(x)

)
∼ b(x)Kρ(λ), when x → ∞.

It can be shown that necessarily |b| ∈ Rρ (see [24]). The second order parameter ρ < 0 tunes
the rate of convergence of ℓ(λx)/ℓ(x) to 1. The closer is ρ to 0, the slower is the convergence.
Condition (A2(ρ)) is the cornerstone in all the proofs of asymptotic normality for extreme value
estimators. It is used in [5, 33, 34] to prove the asymptotic normality of several estimators of the
extreme value index.
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Theorem 1 Suppose that (A1(τ, θ)) and (A2(ρ)) hold. Let (kn) be an intermediate sequence such
that √

kn b(exp Kτ (log(n/kn))) → λ. (8)

Then, introducing aτ,ρ = 1 if τ ∈ [0, 1) and a1,ρ = 1/(1 − ρ), we have

√
kn

(
θ̂n − θ − aτ,ρb(exp Kτ (log(n/kn)))

)
d−→ N (0, θ2). (9)

It appears that the asymptotic variance of θ̂n given by AV = θ2/kn is independent of τ . In
particular, it remains constant whatever the maximum domain of attraction of F . The asymptotic
squared bias is given by ASB(τ, ρ) = a2

τ,ρb
2(exp Kτ (log(n/kn))). If b2 is ultimately decreasing, then

ASB is a decreasing function of τ ∈ [0, 1) with a jump at τ = 1. These remarks are illustrated on

simulated data in Section 4. The next result allows us to establish the rate of convergence of θ̂n

to θ in (9).

Proposition 4 Condition (8) with λ 6= 0 implies log(kn) = −2ρaτ,2ρKτ (log n)(1 + o(1)).

The rate of convergence is thus of order exp(−ρaτ,2ρKτ (log n)(1 + o(1))). A geometrical rate
of convergence is obtained only in the Fréchet maximum domain of attraction, τ = 1 yields√

kn = n−ρ/(1−2ρ)+o(1) which is consistent with the conclusions of [31]. Weibull tail-distributions
give rise to logarithmic rates of convergence, τ = 0 yields

√
kn = (log n)−ρ+o(1) which is consistent

with the results of [22]. More generally, the heavier is the tail, the better the rate of convergence
is. The next result provides an extension of Statement 1 in [2], which was initially proved only for
Weibull tail-distributions (τ = 0).

Proposition 5 Suppose condition (8) holds with λ 6= 0. If τ ∈ [0, 1/2] then

ASB(τ, ρ) = cτ,ρb
2(exp Kτ (log n))(1 + o(1)),

where cτ,ρ = 1 if τ ∈ [0, 1/2) and c1/2,ρ = exp(8ρ2).

It follows that, when τ ∈ [0, 1/2], the first order of the asymptotic bias is asymptotically indepen-
dent of kn. As a consequence, the asymptotic mean-squared error defined as ASB(τ, ρ) + AV is
eventually decreasing with respect to kn. This remark, already made in [2] in the particular case
τ = 0, is only of theoretical interest. Indeed, in finite sample situations, condition (8) does not
hold and the empirical mean-squared error is a convex function of kn, see for instance [22]. Now,
the asymptotic normality of the extreme quantile estimator (7) can be deduced from Theorem 1:

Theorem 2 Suppose the assumptions of Theorem 1 hold with λ = 0. If, moreover,

(log(n/kn))1−τ (Kτ (log(1/pn)) − Kτ (log(n/kn))) → ∞ (10)

then, √
kn

Kτ (log(1/pn)) − Kτ (log(n/kn))

(
x̂pn

xpn

− 1

)
d−→ N (0, θ2).

Let us now focus on the two particular cases τ = 0 (Weibull tail-distributions) and τ = 1 (Fréchet
maximum domain of attraction).
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3.2 Application to Weibull tail-distributions

If τ = 0, the estimator (4) coincides with θ̂
(1)
n introduced in [22], and

x̂pn
= Xn−kn+1,n

(
log(1/pn)

log(n/kn)

)bθn

is the estimator proposed in [21]. As a consequence of Theorem 1 and Theorem 2, we obtain:

Corollary 1 Suppose that (A1(0, θ)) and (A2(ρ)) hold. Let (kn) be an intermediate sequence
such that

√
kn b(log(n/kn)) → 0. Then,

√
kn (θ̂n − θ)

d−→ N (0, θ2).

If, moreover
log(n/kn) (log log(1/pn) − log log(n/kn)) → ∞ (11)

then, √
kn

log log(1/pn) − log log(n/kn)

(
x̂pn

xpn

− 1

)
d−→ N (0, θ2).

This result is very similar to Corollary 3.1 in [22] except that condition (11) is weaker than the one

used in the above mentioned paper. Let us also note that estimators θ̂
(2)
n and θ̂

(3)
n in [22] can be

respectively deduced from θ̂n by approximating µ1,0 by a Riemann’s sum or using the first order
approximation µ1,0(t) ∼ 1/t as t → ∞ given in Lemma 2(i).

3.3 Application to the Fréchet maximum domain of attraction

Letting τ = 1 and remarking that µq,1(t) = q! for all t > 0 and q ∈ N
∗, the estimator (4) coincides

with (3) which is the Hill estimator [34] of the tail index. Besides,

x̂pn
= Xn−kn+1,n

(
kn

npn

)bθn

is the Weissman estimator [37]. A straightforward application of the above theorems gives back
the classical results:

Corollary 2 Suppose that (A1(1, θ)) and (A2(ρ)) hold. Let (kn) be an intermediate sequence
such that

√
kn b(n/kn) → 0. Then,

√
kn(θ̂n − θ)

d−→ N (0, θ2).

If, moreover kn/(npn) → ∞ then,

√
kn

log(kn/(npn))

(
x̂pn

xpn

− 1

)
d−→ N (0, θ2).
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4 Illustration on simulations

The section is dedicated to the illustration of the conclusions drawn from Theorem 1 on simulated
data. To this end, we consider a cumulative distribution function Fθ,τ,ρ verifying (A1(τ, θ)) and
(A2(ρ)) with θ = 1/2, τ ∈ {0, 1/2, 1} and ρ ∈ {−1/2,−1/4}. More specifically, the slowly-varying
function is given by

ℓ(x) = 1 − 1

ρ

(
1 +

1

x

)θ

.

Following Proposition 2(i), it appears that the case τ = 0 corresponds to a Weibull tail-distribution
(with Weibull tail-coefficient 1/2) similar to a Gaussian distribution. When τ = 1/2, in view of
Paragraph 2.1, F̄ (x) = exp{−(log x)2(1 + o(1))}, the distribution has a tail behavior similar to
the log-normal distribution. Finally, Proposition 2(iii) shows that, when τ = 1, the distribution
belongs to the Fréchet maximum domain of attraction with tail-index 1/2.

For each considered combination of τ and ρ, N = 500 samples (Xn,j)j=1,...,N of size n = 500 were

simulated from F1/2,τ,ρ. On each sample (Xn,j), the estimate θ̂n,j is computed for k = 2, . . . , 250,
the associated empirical squared bias ESB and empirical variance EV plots are built by plotting

the pairs
(
k, (θ̄

(1)
n (k) − θ)2

)
and

(
k, θ̄

(2)
n (k) − (θ̄

(1)
n (k))2

)
where for i ∈ {1, 2},

θ̄(i)
n (k) =

1

N

N∑

j=1

(θ̂n,j(k))i.

The empirical squared bias and the empirical variance are depicted on Figure 1 and Figure 2
respectively. Both graphs are represented on the same scale for the sake of comparison. As
expected, the squared bias, for a fixed value of k, is an increasing function of ρ and a decreasing
function of τ . At the opposite, the variance seems to be independent of ρ and is not much dependent
of τ .

5 Concluding remarks

As illustrated in the previous sections, the model (A1(τ, θ)) provides a new tool for the analysis
of tail estimators based on log-spacings. It permits to encompass Weibull tail-distributions in a
more general framework and thus to explain why their dedicated tail estimators are very similar to
Hill or Weissman statistics. This work could be extended to estimators including a bias correction.
To this end, an exponential regression model for these tail distributions extending [5, 11, 12, 18]
would be of interest. We also plan to adapt our results to the case τ > 1 and to investigate the
possible links with super-heavy tails [19]. Finally, this work could be further extended to random
variables Y = ψ(X) where X has a parent distribution satisfying (A1(τ, θ)). For instance, choosing
ψ(x) = x∗ − 1/x would allow to consider distributions (with finite endpoint x∗) in the Weibull
maximum domain of attraction. This may help for including the negative Hill estimator (see for
instance [17] or [30], paragraph 3.6.2) in our framework.
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6 Proofs

We first give some preliminary lemmas. Their proofs are postponed to the appendix.

6.1 Preliminary lemmas

The first lemma provides some uniform approximations based on (A1(τ, θ)) and (A2(ρ)).

Lemma 1 If (A1(τ, θ)) and (A2(ρ)) hold then

sup
λ≥1

∣∣∣∣
ℓ(λx)

ℓ(x)
− 1 − b(x)Kρ(λ)

∣∣∣∣ = o(b(x)), when x → ∞.

Let us define for all q ∈ N
∗, τ ∈ [0, 1] and t > 0, σ2

q,τ (t) = µ2q,τ (t) − µ2
q,τ (t). The following lemma

is of analytical nature. It provides first-order expansions which will be useful in the sequel.

Lemma 2 For all q ∈ N
∗ and τ ∈ [0, 1], when t → ∞:

(i) µq,τ (t) ∼ q! t(τ−1)q,

(ii) σ2
q,τ (t)/µ2

q,τ (t) → (2q)!/(q!)2 − 1,

(iii) µ′
1,τ (t)/µ1,τ (t) → 0.

The next lemma presents an expansion of θ̂n.

Lemma 3 Let (kn) be an intermediate sequence. Then, under (A1(τ, θ)), the following expansions
hold:

θ̂n =
1

µ1,τ (log(n/kn))

(
θθ

(1)
n,1(En−kn+1,n) + θn,2(En−kn+1,n)

)
,

with, for all q ∈ N
∗,

θ
(q)
n,1(t) =

1

kn − 1

kn−1∑

i=1

(Kτ (Fi + t) − Kτ (t))q,

θn,2(t) =
1

kn − 1

kn−1∑

i=1

log

(
ℓ(exp Kτ (Fi + t))

ℓ(exp Kτ (t))

)
,

and where En−kn+1,n is the (n − kn + 1)th order statistic associated to n independent standard
exponential variables and {F1, . . . , Fkn−1} are independent standard exponential variables and in-
dependent from En−kn+1,n.

The asymptotic behavior of the (n− kn + 1)th standard exponential order statistic is described in
the following lemma.

Lemma 4 Let (kn) be an intermediate sequence. Then, for all differentiable function g, we have

√
kn(g(En−kn+1,n) − g(log(n/kn))) = OP(1)g′(log(n/kn)(1 + oP(1))).

The next two lemmas provide the key results for establishing the asymptotic distribution of θ̂n.
They describe the asymptotic behavior of the random terms appearing in Lemma 3.
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Lemma 5 Let (kn) be an intermediate sequence. Then, for all q ∈ N
∗,

√
kn

σq,τ (En−kn+1,n)

(
θ
(q)
n,1(En−kn+1,n) − µq,τ (En−kn+1,n)

)
d−→ N (0, 1).

Lemma 6 Suppose that (A1(τ, θ)) and (A2(ρ)) hold. Let (kn) be an intermediate sequence. Then,

θn,2(En−kn+1,n) = b(exp Kτ (En−kn+1,n))θn,3(En−kn+1,n)(1 + oP(1)),

where ∣∣∣θn,3(En−kn+1,n) − θ
(1)
n,1(En−kn+1,n)

∣∣∣ ≤ −ρ

2
θ
(2)
n,1(En−kn+1,n).

Moreover, if τ = 1, then θn,3(En−kn+1,n)
P−→ 1/(1 − ρ).

6.2 Proofs of the main results

Proof of Proposition 1 − Assumptions (A1(τ1, θ1)) and (A1(τ2, θ2)) entail

F̄τ1,θ1
(x)

F̄τ2,θ2
(x)

= exp

[
−K←

τ1
(log H1(x))

(
1 − K←

τ2
(log H2(x))

K←
τ1

(log H1(x))

)]
, (12)

where H1 ∈ R1/θ1
and H2 ∈ R1/θ2

. As a consequence, for all q ∈ {1, 2}, log Hq(x) ∼ log(x)/θq

when x → ∞, see [9], Proposition 1.3.6. Let us first prove (i): 0 < τ1 < τ2 implies

K←
τq

(log Hq(x)) ∼ (τq/θq)
1/τq (log x)1/τq → ∞, (13)

and thus
K←

τ2
(log H2(x))

K←
τ1

(log H1(x))
∼ (τ2/θ2)

1/τ2

(τ1/θ1)1/τ1

(log x)1/τ2−1/τ1 → 0. (14)

Collecting (12), (13) and (14) gives the result: F̄τ1,θ1
(x)/F̄τ2,θ2

(x) → 0 as x → ∞. Similarly, if
τ1 = 0, then

K←
τ2

(log H2(x))

K←
0 (log H1(x))

∼ (τ2/θ2)
1/τ2

H1(x)
(log x)1/τ2 → 0,

which concludes the first part of the proof. Let us now focus on (ii) and suppose θ1 < θ2. If τ > 0
then

K←
τ (log H2(x))

K←
τ (log H1(x))

→
(

θ1

θ2

)1/τ

< 1,

as x → ∞, while, if τ = 0,
K←

0 (log H2(x))

K←
0 (log H1(x))

=
H2(x)

H1(x)
→ 0,

as x → ∞. In both cases, for x large enough,

1 − K←
τ (log H2(x))

K←
τ (log H1(x))

> 0, (15)

and collecting (12), (13) and (15) concludes the proof: F̄τ,θ1
(x)/F̄τ,θ2

(x) → 0 as x → ∞.
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Proof of Proposition 2 − Proofs of (i) and (iii) are straightforward consequences of Para-
graph 2.1. Let us focus on (ii). In view of the characterization (3.35) in [16] of the Gumbel
maximum domain of attraction, it is sufficient to prove that there exists a positive function a,
differentiable with a′(t) → 0 as t → ∞, such that

F̄ (x) = exp

{
−

∫ x

x∗

dt

a(t)

}
, x ≥ x∗. (16)

Letting a = 1/(K←
τ (log H))′, it thus remains to prove that a′(t) → 0 as t → ∞ for all τ ∈ [0, 1).

To this end, let us remark that

a′(t) =
1

K←
τ (log H(t))

(
τ − 1 +

(
1 − H ′′(t)H(t)

H ′(t)2

)
(1 + τ log H(t))

)

=
1

K←
τ (log H(t))

(τ − 1 + (θ + o(1))(1 + τ log H(t))),

since H ′ ∈ R1/θ−1 implies H ′′(t)H(t)/H ′(t)2 → 1 − θ as t → ∞. Two cases arise:

• If τ ∈ (0, 1) then a′(t) ∼ θ(τ log H(t))1−1/τ → 0 as t → ∞.

• Otherwise, when τ = 0, we have a′(t) = (θ − 1 + o(1))/H(t) → 0 as t → ∞.

In both situations, the conclusion follows.

Proof of Proposition 3 − Let us suppose that F verifies (A1(0, θ)) with θ ∈ (0, 1]. Then,
introducing W (x) = exp Kθ(H(log x)), we have F̄ (log x) = exp(−K←

θ (log W (x))). It thus remains
to prove that W← ∈ Rθℓ∞ . Simple calculations show that

W←(t) = exp {H←(K←
θ (log t))}

= exp {(1 + θ log t)ℓ (K←
θ (log t))}

= eℓ∞tθℓ∞ϕ(t),

where we have defined ϕ(t) = ψ(log t) with ψ(x) = exp{(1 + θx)[ℓ(K←
θ (x)) − ℓ∞]}. As a conse-

quence,

t(log ϕ(t))′ = (log ψ)′(log t)

= θ(ℓ(K←
θ (log t)) − ℓ∞) + K←

θ (log t)ℓ′(K←
θ (log t))

= o(1),

since, from [9], p. 15, uℓ′(u)/ℓ(u) → 0 as u → ∞. Using again [9], p. 15, it follows that ϕ is a
slowly varying function. Thus, W← ∈ Rθℓ∞ and F (log .) verifies (A1(θ, θℓ∞)).

Proof of Theorem 1 − Lemma 5 states that for q ∈ {1, 2},
√

kn

σq,τ (En−kn+1,n)

(
θ
(q)
n,1(En−kn+1,n) − µq,τ (En−kn+1,n)

)
= ξ(q)

n

where ξ
(q)
n

d−→ N (0, 1). Then, by Lemma 3,

√
kn (θ̂n − θ − aτ,ρb(exp Kτ (log(n/kn))) =

√
kn θ

(
µ1,τ (En−kn+1,n)

µ1,τ (log(n/kn))
− 1

)
+ θ

σ1,τ (En−kn+1,n)

µ1,τ (log(n/kn))
ξ(1)
n

+
√

kn

(
θn,2(En−kn+1,n)

µ1,τ (log(n/kn))
− aτ,ρb(exp Kτ (log(n/kn))

)

def
= T (1)

n + T (2)
n + T (3)

n ,
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and the three terms are studied separately. First, applying Lemma 4 to g = µ1,τ yields

T (1)
n = OP(1)

µ′
1,τ (log(n/kn)(1 + oP(1)))

µ1,τ (log(n/kn))
= oP(1), (17)

in view of Lemma 2(i, iii). Second,

T (2)
n =

σ1,τ (En−kn+1,n)

µ1,τ (En−kn+1,n)

(
1 +

T
(1)
n

θ
√

kn

)
θξ(1)

n =
σ1,τ (En−kn+1,n)

µ1,τ (En−kn+1,n)
θξ(1)

n (1 + oP(1))

and, from Lemma 2(ii), σ1,τ (En−kn+1,n)/µ1,τ (En−kn+1,n)
P−→ 1. As a preliminary conclusion,

T (2)
n = θξ(1)

n (1 + oP(1)). (18)

From Lemma 6, T
(3)
n can be expanded as

T (3)
n =

√
knb(exp Kτ (log(n/kn)))

(
b(exp Kτ (En−kn+1,n))

b(exp Kτ (log(n/kn)))

θn,3(En−kn+1,n)

µ1,τ (log(n/kn))
(1 + oP(1)) − aτ,ρ

)

= λ

(
b(exp Kτ (En−kn+1,n))

b(exp Kτ (log(n/kn)))

θn,3(En−kn+1,n)

µ1,τ (log(n/kn))
(1 + oP(1)) − aτ,ρ

)
(1 + o(1)).

Introducing T
(3,1)
n = Kτ (En−kn+1,n) − Kτ (log(n/kn)) and applying Lemma 4 with g = Kτ yield

exp T (3,1)
n = exp

(
OP(1)

(log(n/kn))τ−1

√
kn

)
P−→ 1, (19)

since τ ∈ [0, 1]. Therefore, b being regularly varying,

b(exp Kτ (En−kn+1,n)/b(exp Kτ (log(n/kn))
P−→ 1

as well, and consequently

T (3)
n = λ

(
θn,3(En−kn+1,n)

µ1,τ (log(n/kn))
(1 + oP(1)) − aτ,ρ

)
(1 + o(1))

= λ

(
θn,3(En−kn+1,n)

µ1,τ (En−kn+1,n)

(
1 +

T
(1)
n

θ
√

kn

)
(1 + oP(1)) − aτ,ρ

)
(1 + o(1))

= λ

(
θn,3(En−kn+1,n)

µ1,τ (En−kn+1,n)
(1 + oP(1)) − aτ,ρ

)
(1 + o(1)),

from (17). Two situations occur. If τ = 1, then, in view of Lemma 6, θn,3(En−kn+1,n)
P−→ a1,ρ =

1/(1 − ρ), µ1,1(En−kn+1,n) = 1 and thus T
(3)
n

P−→ 0. If τ ∈ [0, 1), T
(3)
n can be rewritten as

T (3)
n = λ

(
(T (3,2)

n + T (3,3)
n )(1 + oP(1)) − 1

)
(1 + o(1)),

where

T (3,2)
n

def
=

θ
(1)
n,1(En−kn+1,n)

µ1,τ (En−kn+1,n)
= 1 +

σ1,τ (En−kn+1,n)

µ1,τ (En−kn+1,n)

ξ
(1)
n√
kn

= 1 + oP(1)
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|T (3,3)
n | def

=
|θn,3(En−kn+1,n) − θ

(1)
n,1(En−kn+1,n)|

µ1,τ (En−kn+1,n)

≤ −ρ

2

θ
(2)
n,1(En−kn+1,n)

µ2,τ (En−kn+1,n)

µ2,τ (En−kn+1,n)

µ1,τ (En−kn+1,n)

d
= −ρ(log(n/kn))τ−1(1 + oP(1))

(
1 +

σ2,τ (En−kn+1,n)

µ2,τ (En−kn+1,n)

ξ
(2)
n√
kn

)

= OP(log(n/kn))τ−1,

in view of Lemma 2, Lemma 5 and Lemma 6. Thus, for all τ ∈ [0, 1), T
(3)
n

P−→ 0. Taking (17) and
(18) into account concludes the proof.

Proof of Proposition 4 − From (8), we have

1

2
log kn + log |b(exp Kτ (log(n/kn)))| → log |λ|

as n → ∞, and since Kτ (log(n/kn)) → ∞ as n → ∞, it follows that

log kn

2Kτ (log(n/kn))
+

log |b(exp Kτ (log(n/kn)))|
Kτ (log(n/kn))

→ 0

as n → ∞. Now, |b| is a regularly-varying function with index ρ and thus log |b(x)|/ log x → ρ for
all x → ∞, see [9], Proposition 1.3.6. As a consequence, we obtain

log kn

Kτ (log(n/kn))
→ −2ρ (20)

as n → ∞. Let us first remark that, if τ = 1 then (20) implies

log kn =
2ρ

2ρ − 1
(log n)(1 + o(1)) =

2ρ

2ρ − 1
K1(log n)(1 + o(1))

and the conclusion follows. Otherwise, if τ ∈ [0, 1), condition (20) can be rewritten as

log kn

log n

log n

Kτ (log(n/kn))
→ −2ρ. (21)

Besides, since Kτ is non-decreasing,

log n

Kτ (log(n/kn))
≥ log n

Kτ (log n)
→ ∞

for all τ ∈ [0, 1) and thus, in view of (21), necessarily log kn/ log n → 0 as n → ∞. As a consequence,
log(n/kn) is asymptotically equivalent to log n and thus Kτ (log(n/kn)) is asymptotically equivalent
to Kτ (log(n)) as well. Replacing in (20), the conclusion follows.

Proof of Proposition 5 − Let us consider τ ∈ [0, 1/2) and suppose that (8) holds with λ 6= 0.
Following Proposition 4, log(kn) = −2ρKτ (log n)(1+o(1)) and thus log(kn)/ log(n) → 0 as n → ∞.
A first order Taylor expansion shows that there exists ηn ∈ [0, 1] such that

∆n
def
= exp{Kτ (log(n/kn)) − Kτ (log n)} = exp{−(log kn)K ′

τ (log(n) − ηn log(kn))}
= exp{−(log kn)K ′

τ (log n)(1 + o(1))},

12



since K ′
τ is regularly-varying. As a consequence,

∆n = exp{2ρKτ (log n)K ′
τ (log n)(1 + o(1))}

and thus ∆n → 1 if τ ∈ [0, 1/2) or ∆n → exp(4ρ) if τ = 1/2. Since b2 is regularly varying with
index 2ρ it follows that

ASB(τ, ρ) = b2(exp Kτ (log n))
b2(∆n expKτ (log n))

b2(exp Kτ (log n))

= cτ,ρb
2(exp Kτ (log n))(1 + o(1)),

and the conclusion follows.

Proof of Theorem 2 − From (7), one can infer that

log x̂pn
− log xpn

=
(
log(Xn−kn+1,n) − log F̄←(kn/n)

)

+ (θ̂n − θ) (Kτ (log(1/pn)) − Kτ (log(n/kn)))

+ log
ℓ (expKτ (log(n/kn)))

ℓ (exp Kτ (log(1/pn)))
def
= Q(1)

n + Q(2)
n + Q(3)

n .

The three terms are studied separately. First, note that in view of (A1(τ, θ)) and (A2(ρ)), Q
(1)
n

can be expanded as

Q(1)
n = log H← (expKτ (En−kn+1,n)) − log H← (exp Kτ (log(n/kn)))

= θ(Kτ (En−kn+1,n) − Kτ (log(n/kn))) + log
ℓ(exp Kτ (En−kn+1,n))

ℓ(exp Kτ (log(n/kn)))
def
= θT (3,1)

n + Q(1,2)
n ,

where T
(3,1)
n is defined in the proof of Theorem 1 as

T (3,1)
n = Kτ (En−kn+1,n) − Kτ (log(n/kn)) = OP(1)

(log(n/kn))τ−1

√
kn

, (22)

in view of (19). Moreover, Q
(1,2)
n

def
= log ℓ(λnxn) − log ℓ(xn), where xn = expKτ (log(n/kn)) → ∞

and λn = exp T
(3,1)
n

P−→ 1. Thus, from (A2(ρ)) we have

Q(1,2)
n = b(exp Kτ (log(n/kn)))Kρ(λn)(1 + oP(1))

= b(exp Kτ (log(n/kn))) log(λn)(1 + oP(1))

= OP(1)b(exp Kτ (log(n/kn)))
(log(n/kn))τ−1

√
kn

,

in view of (22). Since b(x) → 0 as x → ∞, it follows that

Q(1,2)
n = oP

(
(log(n/kn))τ−1

√
kn

)
,

entailing
√

kn

Kτ (log(1/pn)) − Kτ (log(n/kn))
Q(1)

n = OP

(
(log(n/kn))τ−1

Kτ (log(1/pn)) − Kτ (log(n/kn))

)
= oP(1),

13



from (10). Now, concerning the second term, Theorem 1 entails that

√
kn

Kτ (log(1/pn)) − Kτ (log(n/kn))
Q(2)

n =
√

kn

(
θ̂n − θ

)
d−→ N (0, θ2).

Finally, Q
(3)
n = log ℓ(x∗

n) − log ℓ(λ∗
nx∗

n) where λ∗
n = exp[Kτ (log(1/pn)) − Kτ (log(n/kn))] ≥ 1 in

view of (10) and x∗
n = exp Kτ (log(n/kn)) → ∞. Thus, Lemma 1 entails

√
knQ

(3)
n

log λ∗
n

∼ −
√

knb(x∗
n)

Kρ(λ
∗
n)

log λ∗
n

= o

(
Kρ(λ

∗
n)

log λ∗
n

)
,

since
√

knb(x∗
n) =

√
knb(exp Kτ (log(n/kn))) → 0. Taking account of the inequality Kρ(x) ≤ log x

for all x ≥ 1 yields √
kn

Kτ (log(1/pn)) − Kτ (log(n/kn))
Q(3)

n = o(1).

Combining the above results, Theorem 2 follows.
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Appendix: Proof of auxiliary results

Proof of Lemma 1 − From (A1(τ, θ)) and (A2(ρ)), it is easy to infer that, for any constant

C̃ > 0, we have

1

C̃b(x)

(
H←(λx) − H←(x)

θH←(x)(1 + b(x)/θ)
− λθ − 1

θ

)
=

λθ

C̃θ
Kρ(λ) − 1

C̃θ

λθ − 1

θ
+ o(1)

=
θ + ρ

C̃θ

1

ρ
[Kθ+ρ(λ) − Kθ(λ)] + o(1).

Then, choosing C̃ such that (θ + ρ)/(C̃θ) = 1, a direct application of Lemma 5.2 in [15] yields, for
any ε > 0 and λ ≥ 1,

min(1, λ−ρ−ε)

∣∣∣∣
ℓ(λx)

ℓ(x)
− 1 − b(x)Kρ(λ) − 1

θ
b2(x) [Kρ(λ) − K−θ(λ)]

∣∣∣∣

≤ εC̃θ|b(x)| |1 + b(x)/θ|min(1, λ−ρ−ε)
[
λ−θ + 1 + 2λρ+ε

]

≤ 4εC̃θ|b(x)|min(1, λ−ρ−ε)
[
1 + λρ+ε

]

≤ 8εC̃θ|b(x)|

for x large enough. Moreover, letting 0 < ε < −ρ yields

sup
λ≥1

∣∣∣∣
ℓ(λx)

ℓ(x)
− 1 − b(x)Kρ(λ) − 1

θ
b2(x) [Kρ(λ) − K−θ(λ)]

∣∣∣∣ = o(b(x)). (23)

Besides, Kρ(λ) − K−θ(λ) is bounded when ρ < 0, and therefore (23) can be simplified as

sup
λ≥1

∣∣∣∣
ℓ(λx)

ℓ(x)
− 1 − b(x)Kρ(λ)

∣∣∣∣ = o(b(x)), as x → ∞,

and the conclusion follows.

Proof of Lemma 2 − (i) Let us consider for t > 1 and q ∈ N
∗,

Qq(t) =

∫ ∞

0

(
Kτ (x + t) − Kτ (t)

K ′
τ (t)

)q

e−xdx.

There exists η ∈ (0, 1) such that

∣∣∣∣
Kτ (x + t) − Kτ (t)

xK ′
τ (t)

∣∣∣∣ =
(
1 +

ηx

t

)τ−1

≤ 1.

Thus, Lebesgue Theorem implies that

lim
t→∞

Qq(t) =

∫ ∞

0

lim
t→∞

(
1 +

ηx

t

)q(τ−1)

xqe−xdx =

∫ ∞

0

xqe−xdx = q!

which concludes the first part of the proof.
(ii) is a straightforward consequence of (i).
(iii) We have

µ′
1,τ (t) =

∫ ∞

0

(K ′
τ (x + t) − K ′

τ (t)) e−xdx
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=

∫ ∞

0

K ′
τ (x + t)e−xdx − K ′

τ (t)

=

∫ ∞

0

Kτ (x + t)e−xdx − Kτ (t) − K ′
τ (t)

= µ1,τ (t) − tτ−1.

Finally, (i) states that tτ−1/µ1,τ (t) → 1 as t → ∞ which entails µ′
1,τ (t)/µ1,τ (t) → 0 as t → ∞.

Proof of Lemma 3 − Recall that

θ̂n =
1

µ1,τ (log(n/kn))

1

kn − 1

kn−1∑

i=1

(log(Xn−i+1,n) − log(Xn−kn+1,n))

d
=

1

µ1,τ (log(n/kn))

1

kn − 1

kn−1∑

i=1

log

(
H←(exp Kτ (En−i+1,n))

H←(exp Kτ (En−kn+1,n))

)
,

where E1,n, . . . , En,n are ordered statistics generated by n independent standard exponential ran-
dom variables. The Rényi representation of the Exp(1) ordered statistics (see [1], p. 72) yields

{En−i+1,n}i=1,...,kn−1

d
= {Fkn−i,kn−1 + En−kn+1,n}i=1,...,kn−1 , (24)

where {F1,kn−1, . . . , Fkn−1,kn−1} are ordered statistics independent from En−kn+1,n and generated
by kn − 1 independent standard exponential variables {F1, . . . , Fkn−1}. We thus have

θ̂n
d
=

1

µ1,τ (log(n/kn))

1

kn − 1

kn−1∑

i=1

log

(
H←(exp Kτ (Fkn−i,kn−1 + En−kn+1,n))

H←(exp Kτ (En−kn+1,n)))

)

d
=

1

µ1,τ (log(n/kn))

1

kn − 1

kn−1∑

i=1

log

(
H←(exp Kτ (Fi + En−kn+1,n))

H←(exp Kτ (En−kn+1,n))

)

d
=

1

µ1,τ (log(n/kn))

(
θθ

(1)
n,1(En−kn+1,n) + θn,2(En−kn+1,n)

)

in view of (A1(τ, θ)) and the conclusion follows.

Proof of Lemma 4 − A first order expansion of the function g leads to,

√
kn(g(En−kn+1,n) − g(log n/kn))) =

√
kn(En−kn+1,n − log(n/kn))g′(η̃n),

with η̃n ∈ [min (En−kn+1,n, log(n/kn)) ,max (En−kn+1,n, log(n/kn))]. Now, Lemma 1 in [25] shows

that
√

kn (En−kn+1,n − log(n/kn))
d−→ N (0, 1) which implies that η̃n = log(n/kn)(1 + oP(1)) and

the result follows.

Proof of Lemma 5 − Let us introduce for all t ≥ 1 and q ∈ N
∗,

S(q)
n (t) =

(kn − 1)1/2

σq,τ (t)
(θ

(q)
n,1(t) − µq,τ (t)) =

(kn − 1)−1/2

σq,τ (t)

kn−1∑

i=1

Y
(q)
i (t),

where Y
(q)
i (t)

def
= (Kτ (Fi + t) − Kτ (t))q − µq,τ (t), i = 1, . . . , kn − 1 are centered, independent

and identically distributed random variables with variance σ2
q,τ (t). Clearly, in view of the Central

18



Limit Theorem, for all t ≥ 1 and q ∈ N
∗, S

(q)
n (t) converges in distribution to a standard Gaussian

distribution. Our goal is to prove that, for all x ∈ R and q ∈ N
∗,

P(S(q)
n (En−kn+1,n) ≤ x) → Φ(x) as n → ∞,

where Φ is the cumulative distribution function of the standard Gaussian distribution. Lemma 2(i)
implies that for all ε ∈ (0, 1), and r ∈ N

∗, there exists Tε ≥ 1 such that for all t ≥ Tε,

(1 − ε) r! tr(τ−1) ≤ µr,τ (t) ≤ (1 + ε) r! tr(τ−1). (25)

Furthermore, for x ∈ R,

P(S(q)
n (En−kn+1,n) ≤ x) − Φ(x) =

∫ Tε

0

(P(S(q)
n (t) ≤ x) − Φ(x))hn(t)dt

+

∫ ∞

Tε

(P(S(q)
n (t) ≤ x) − Φ(x))hn(t)dt

def
= An + Bn,

where hn is the density of the random variable En−kn+1,n. First, let us focus on the term An. We
have,

|An| ≤ 2 P(En−kn+1,n ≤ Tε).

Since En−kn+1,n/ log(n/k)
P−→ 1 (see [25], Lemma 1), it is easy to show that An → 0. Now, let us

consider the term Bn. For all t ≥ Tε,

E(|Y (q)
1 (t)|3) ≤ E ((Kτ (F1 + t) − Kτ (t))q + µq,τ (t))

3

= µ3q,τ (t) + 3µq,τ (t)µ2q,τ (t) + 4µ3
q,τ (t)

≤ C1(ε) t3q(τ−1) < ∞,

from (25). Here, and in the following, C1(ε), C2, C3(ε) and C4(ε) are positive constants indepen-
dent of t. Thus, from Berry-Esséen’s inequality (see [35], Theorem 3), we have:

sup
x

|P(S(q)
n (t) ≤ x) − Φ(x)| ≤ C2 Ln with Ln =

(kn − 1)−1/2

σ3
q,τ (t)

E(|Y (q)
1 (t)|3).

From (25), since t ≥ Tε,

σ2
q,τ (t) = µ2q,τ (t) − µ2

q,τ (t) ≥ C3(ε) t2q(τ−1).

Thus, Ln ≤ C4(ε)(kn − 1)−1/2 and therefore

|Bn| ≤ C2 C4(ε) (kn − 1)−1/2
P(En−kn+1,n ≥ Tε) ≤ C2 C4(ε) (kn − 1)−1/2 → 0,

which concludes the proof.

Proof of Lemma 6 − Let us consider the random variables xn = exp[Kτ (En−kn+1,n)] and

λi,n = exp[Kτ (Fi + En−kn+1,n) − Kτ (En−kn+1,n)], i = 1, . . . , kn − 1. It is clear that xn
P−→ ∞ in

view of Lemma 1 in [25] and λi,n ≥ 1. Thus, letting

θn,3(En−kn+1,n) =
1

kn − 1

kn−1∑

i=1

Kρ [exp(Kτ (Fi + En−kn+1,n) − Kτ (En−kn+1,n))] ,

19



Lemma 1 entails

θn,2(En−kn+1,n)
d
= b(exp Kτ (En−kn+1,n))θn,3(En−kn+1,n)(1 + oP(1)).

Since |Kρ(exp u) − u| ≤ −ρu2/2 for all u ≥ 0, we have

∣∣∣θn,3(En−kn+1,n) − θ
(1)
n,1(En−kn+1,n)

∣∣∣ ≤ −ρ

2
θ
(2)
n,1(En−kn+1,n).

Moreover, if τ = 1, then

θn,3(En−kn+1,n) =
1

kn − 1

kn−1∑

i=1

Kρ(exp Fi)
P−→

∫ +∞

0

Kρ(exp u) exp(−u)du =
1

1 − ρ
,

in view of the law of large numbers, and the conclusion follows.
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Figure 1: Empirical squared bias as a function of k obtained with θ̂n computed on 500 samples of
size 500 from F1/2,τ,ρ. Up: ρ = −1/2, down: ρ = −1/4, solid line: τ = 1, dashed line: τ = 1/2,
dotted line: τ = 0.
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Figure 2: Empirical variance as a function of k obtained with θ̂n computed on 500 samples of size
500 from F1/2,τ,ρ. Up: ρ = −1/2, down: ρ = −1/4, solid line: τ = 1, dashed line: τ = 1/2, dotted
line: τ = 0.
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