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Abstract

We introduce the new model of ϕ-tail distributions which depends on a function ϕ and on

a parameter θ, called the ϕ-tail coefficient. Based on an intermediate sequence, estimators of

θ and extreme quantiles are proposed. Their asymptotic normality is established under mild

assumptions on ϕ. Depending on the function ϕ, this model includes very different distribu-

tion tail behaviours from the three classical maximum domains of attraction. In the particular

cases of Pareto type tails or Weibull tails, our estimators coincide with classical ones proposed

in the literature, thus permitting to retrieve their asymptotic normality in an unified way.

AMS Subject Classifications: 62G05, 62G20, 62G30.

Keywords: Distribution tail, extreme quantile, maximum domain of attraction, asymp-

totic normality.

1 Definition of ϕ-tail distributions

Let F be a cumulative distribution function such that

1 − F (x) = exp(−ϕ←(logH(x))), for x ≥ x∗, (1)

and verifying the following three conditions

(H.1) H← is an increasing function such that H←(t) = inf{x, H(x) ≥ t} = tθℓ(t),

where θ > 0 and ℓ is a slowly varying function i.e. ℓ(λx)/ℓ(x) → 1 as x → ∞ for all λ ≥ 1. The
function H← is said to be regularly varying at infinity with index θ and this property is denoted
by H← ∈ Rθ, see [6] for more details on this topic.

(ϕ.1) ϕ is increasing and ϕ(x) → ∞ as x→ ∞.

(ϕ.2) ϕ is continuously differentiable, ϕ′ ∈ Rτ , with τ ∈ [−1, 0], and there exists M > 0 such that
ϕ′(.) ≤M .

Remark 1 If τ 6= 0 in (ϕ.2), then the assumption ϕ′(.) ≤M is automatically fulfilled.

In the following, such distributions are refered to as ϕ-tail distributions. The parameter θ is called
the ϕ-tail coefficient and x∗ = H←(eϕ(0)) is the starting point of the ϕ-tail distribution. We shall see
in Section 4 that this model includes very different distribution tails behaviour, depending on the
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function ϕ. For instance, it encompasses Pareto type distributions in the Fréchet Maximum Domain
of Attraction as well as Weibull tail-distributions in the Gumbel Maximum Domain of Attraction.
We refer to [4] for a general account on Weibull tail-distributions. All these distributions depend
on the ϕ-tail coefficient θ which has to be estimated. In the first mentioned case of Pareto type
distributions, θ reads as the tail index, while in the case of Weibull tail-distributions θ is the
Weibull tail-coefficient. In the next section, an estimator θ̂n of θ is proposed in the general context
of ϕ-tail distributions and an estimator of extreme quantiles is derived. The asymptotic normality
of these estimators is established in Section 3. Some illustrations are provided in Section 4 and
concluding remarks are given in Section 5. Proofs are postponed to Section 6.

2 Inference

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed random variables from
a ϕ-tail distribution. The associated order statistics are denoted by X1,n ≤ . . . ≤ Xn,n. In all
the sequel, (kn) is an intermediate sequence of integers i.e. such that 1 ≤ kn ≤ n, kn → ∞ and
kn/n→ 0 as n→ ∞. We propose the following estimator of θ :

θ̂n =
1

µ1(log(n/kn))

1

kn − 1

kn−1∑

i=1

(log(Xn−i+1,n) − log(Xn−kn+1,n)), (2)

with, for all t > 0 and q ∈ N
∗,

µq(t) =

∫ ∞

0

(ϕ(x+ t) − ϕ(t))
q
e−xdx.

An important point is that the estimator (2) essentially consists in averaging the log-spacings
between the upper-order statistics. It only depends on ϕ through the multiplicative normalizing
constant. This characteristics can be intuitively understood by studying the log-spacing between
two quantiles xu and xv of 1 − F , with 0 < u < v ≤ 1. The definition of ϕ-distributions entails

log xu − log xv = θ (ϕ(− log u) − ϕ(− log v)) + log

(
ℓ(expϕ(− log u))

ℓ(expϕ(− log v))

)
. (3)

Now, since ℓ is a slowly-varying function, if the orders u and v of the quantiles are small enough,
the second term can be neglected in the right-hand side of (3) to obtain

log xu − log xv ≃ θ (ϕ(− log u) − ϕ(− log v)) , (4)

which shows that log-spacings are approximatively proportional to θ. Note that this property can
be checked graphically on a sample by drawing a quantile-quantile plot adapted to ϕ-tail distribu-
tions. It consists in plotting the pairs (ϕ(log(n/i)), logXn−i+1,n) for i = 1, . . . , kn. From (4), the
graph should be approximatively linear. Following the same ideas, an estimator of the extreme
quantile xpn can be deduced from (2) by:

x̂pn = Xn−kn+1,n exp
(
θ̂n (ϕ(log(1/pn)) − ϕ(log(n/kn)))

)
. (5)

Recall that an extreme quantile xpn of order pn is defined by the equation

1 − F (xpn) = pn, with 0 < pn < 1/n.

The condition pn < 1/n is very important in this context. It usually implies that xpn is larger
than the maximum observation of the sample. This necessity to extrapolate sample results to areas
where no data are observed occurs in reliability [11], hydrology [27], finance [13],...
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3 Asymptotic normality

To establish the asymptotic normality of θ̂n, a second-order condition on ℓ is necessary:

(H.2) There exist ρ ≤ 0 and b(x) → 0 such that uniformly locally on λ ≥ 1

log

(
ℓ(λx)

ℓ(x)

)
∼ b(x)Kρ(λ), when x→ ∞,

with Kρ(λ) =
∫ λ

1
uρ−1du.

It can be shown that necessarily |b| ∈ Rρ (see [19]). The second order parameter ρ ≤ 0 tunes
the rate of convergence of ℓ(λx)/ℓ(x) to 1. The closer ρ is to 0, the slower is the convergence.
Condition (H.2) is the cornerstone in all the proofs of asymptotic normality for extreme value
estimators. It is used in [3, 24, 25] to prove the asymptotic normality of several estimators of the
extreme value index.

Theorem 1 Suppose (H.1), (H.2), (ϕ.1) and (ϕ.2) hold. Let (kn) be an intermediate sequence

such that k
1/2
n b(expϕ(log(n/kn))) → 0. Then,

k1/2
n (θ̂n − θ)

d→ N (0, θ2).

Let us emphasize that the asymptotic distribution of θ̂n does not depend on ϕ. The asymptotic
normality of the extreme quantile estimator (5) can be deduced from Theorem 1:

Theorem 2 Suppose the assumptions of Theorem 1 hold with ρ < 0. If, moreover,

k1/2
n

b(expϕ(log(n/kn)))

log(n/kn)ϕ′(log(n/kn))
→ 0 (6)

and there exists c > 1 such that
log(1/pn)

log(n/kn)
→ c (7)

then,

k
1/2
n

log(n/kn)ϕ′(log(n/kn))

(
x̂pn

xpn

− 1

)
d→ N (0, θ2K2

τ+1(c)).

Unsurprisingly, since τ+1 > 0, the smaller is pn, the larger is c and the larger is the asymptotic vari-

ance. It is also worth noticing that the speed of convergence, defined as k
1/2
n /{log(n/kn)ϕ′(log(n/kn))},

is larger for light tails (ϕ′(t) → 0 rapidly) than for heavy tails.
Finally, we shall see in the next section that it can be of interest to slightly extend the class of
ϕ-tail distributions thanks to a change of variable.

Remark 2 Consider a sequence Y1, Y2, . . . , Yn of independent and identically distributed random
variables with distribution tail such that

1 −G(x) = exp(−ϕ←(logH(ψ(x)))), for x ∈ (x∗, x
∗), (8)

where x∗ = ψ←(H←(eϕ(0))), x∗ = limt→∞ ψ←(t), H and ϕ are defined as previously and where
ψ is an increasing function. Then, it is readily seen that the random variables defined as Xi =
ψ(Yi), i = 1, . . . , n follow a ϕ-tail distribution. As a straightforward consequence, Theorem 1 and
Theorem 2 also hold for the estimators defined by

θ̂n =
1

µ1(log(n/kn))

1

kn − 1

kn−1∑

i=1

(log(ψ(Yn−i+1,n)) − log(ψ(Yn−kn+1,n))) (9)

ŷpn = ψ←
(
ψ(Yn−kn+1,n) exp

(
θ̂n (ϕ(log(1/pn)) − ϕ(log(n/kn)))

))
.
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4 Examples of ϕ-tail distributions

4.1 Fréchet Maximum Domain of Attraction

Choosing ϕ(t) = t in model (1) yields 1 − F ∈ R−1/θ, θ > 0, which is verified if and only if F
belongs to the Fréchet Maximum Domain of Attraction. In this case, θ is interpreted as the tail
index,

θ̂n =
1

kn − 1

kn−1∑

i=1

(log(Xn−i+1,n) − log(Xn−kn+1,n))

is the Hill estimator [25] (since µq(t) = q! for all t > 0 and q ∈ N
∗) and

x̂pn = Xn−kn+1,n

(
kn

npn

)bθn

is the Weissman estimator [28]. A straightforward application of the above theorems gives back
the classical results:

Corollary 1 Suppose (H.1), (H.2) hold and let ϕ(t) = t. Let (kn) be an intermediate sequence

such that k
1/2
n b(n/kn) → 0. Then,

k1/2
n (θ̂n − θ)

d→ N (0, θ2).

If, moreover ρ < 0, and there exists c > 1 such that (7) holds then,

k
1/2
n

log(n/kn)

(
x̂pn

xpn

− 1

)
d→ N (0, θ2(c− 1)2).

Note that such estimators exhibit a severe bias, which justifies the recent techniques of bias reduc-
tion. For instance, we can mention the exponential regression model for Pareto type distributions
(see [3, 15]) or the estimation of the second order parameter ρ (see [21, 22]).

4.2 Weibull Maximum Domain of Attraction

Choosing ϕ(t) = t and ψ(t) = 1/(x∗ − t) in (8) of Remark 2 yields the characterization of the
Weibull Maximum Domain of Attraction. In this case, −θ represents the extreme value index and
x∗ is the endpoint of the distribution. Replacing x∗ by its empirical counterpart Yn,n in (9) yields
the negative Hill estimator (see for instance [14] or [23], paragraph 3.6.2).

4.3 Gumbel Maximum Domain of Attraction

Weibull tail-distributions. Choosing ϕ(t) = log t in model (1) yields − log(1 − F ) ∈ R1/θ,
θ > 0, which is the definition of the so-called Weibull tail-distributions. They represent an im-
portant sub-family of the Gumbel Maximum Domain of Attraction and include, for instance,
Gaussian, Gamma, and Weibull distributions. Note that, in this considered case, the estimator (2)

corresponds to θ̂
(1)
n introduced in [18], although there is no closed form available for µq, q ∈ N

∗,
and

x̂pn = Xn−kn+1,n

(
log(1/pn)

log(n/kn)

)bθn

is the estimator introduced in [17]. As a consequence of Theorem 1 and Theorem 2, we obtain the
asymptotic results given in [18], Corollary 3.1.
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Corollary 2 Suppose (H.1), (H.2) hold and let ϕ(t) = log t. Let (kn) be an an intermediate

sequence such that k
1/2
n b(log(n/kn)) → 0. Then,

k1/2
n (θ̂n − θ)

d→ N (0, θ2).

If, moreover ρ < 0, and there exists c > 1 such that (7) holds then,

k1/2
n

(
x̂pn

xpn

− 1

)
d→ N (0, θ2 log2(c)).

Let us also note that estimators θ̂
(2)
n and θ̂

(3)
n in [18] can be respectively deduced from θ̂n by

approximating µ1 by a Riemann’s sum or using the first order approximation µ1(t) ∼ ϕ′(t) as
t → ∞ given in Lemma 2. Other approaches based on the mean excess function [10], quantile
function [2, 7] or record values [5] have also been investigated. Finally, most recent approaches
include a bias correction based on an exponential regression model for Weibull tail-distributions
(see [8, 9]).

Log-Weibull tail-distributions. Choosing ϕ(t) = ψ(t) = log t in model (8) gives rise to a new
family of distributions defined by − log(1 −G(exp(.))) ∈ R1/θ, θ > 0. If θ < 1 and H

′′ ∈ R1/θ−2,
one can show that these 〈〈 log-Weibull tail-distributions 〉〉 belong to the Gumbel maximum domain
of attraction. Indeed, there exists z and a positive constant c such that

1 −G(x) = c exp

(
−

∫ x

z

1/a(t)dt

)
,

where a(t) = t/H ′(log(t)). Since

a′(t) =
H ′(log(t)) −H

′′

(log(t))

[H ′(log(t))]2
∼ 1

H ′(log(t))
→ 0 as t→ ∞,

Theorem 3.3.26 in [13] entails that G belongs to the Gumbel maximum domain of attraction. This
family of distributions includes for instance the log-normal distribution (θ = 1/2).

Remark 3 If θ > 1 and H ′ ∈ R1/θ−1, note that for every λ > 1,

H(log(λx)) −H(log(x)) = log(λ)H ′(η log(x)),

where η ∈ [1, 2]. Since θ > 1, it is clear that limx→∞H
′(η log(x)) = 0 and thus,

lim
x→∞

1 −G(λx)

1 −G(x)
= 1.

In other words, if θ > 1, these log-Weibull tail-distributions belong to the class of super-heavy
tailed distributions [16] (log-Cauchy, log-Pareto, etc . . . ). The case θ = 1 is more complicated,
the domain of attraction depending on the slowly-varying function ℓ in (H.1). For example the
log-gamma distribution belongs to the Fréchet maximum domain of attraction.
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5 Concluding remarks and further work

As illustrated in the previous sections, ϕ-tail distributions provide a general framework for the
analysis of extreme-value estimators. They cover several maximum domains of attraction and thus
may be considered as an unifying tool for designing and studying estimators. In this paper, we
limited ourselves to the estimation of the ϕ-tail coefficient and extreme quantiles. From the the-
oretical point of view, this work could be extended to estimators including a bias correction. To
this end, an exponential regression model for ϕ-tail distributions extending [3, 8, 15] would be of
interest. From the practical point of view, the ϕ-tail distribution model can be used to devise a
test discriminating between Pareto type and Weibull tail-distributions. Indeed, denoting by

H0: There exists θ0 > θmin > 0 such that 1 − F ∈ R−1/θ0
(where θmin is known),

H1: There exists θ1 > 0 such that − log(1 − F ) ∈ R1/θ1
and

Ĥn :=
1

kn − 1

kn−1∑

i=1

(log(Xn−i+1,n) − log(Xn−kn+1,n))

the Hill statistics, it appears that, from Corollary 1, Ĥn is asymptotically Gaussian with mean θ0
under H0, whereas, from Corollary 2, Ĥn converges to zero in probability under H1. A natural idea
is therefore to reject the null hypothesis if Ĥn is small. To be more specific, the null hypothesis is
rejected if {

Ĥn < zn,α := θmin

(
1 +

Φ−1(α)√
kn

)}
,

where Φ(.) is the distribution function of the standard normal distribution and α is the nominal size
of the test. Note that the introduction of θmin in H0 permits to obtain a critical region independent
of the unknown θ0. From Corollary 1, it is easy to obtain the following bound for the probability
that the test statistics fall in the critical region when the null hypothesis is correct:

P

(
Ĥn < zn,α

∣∣∣H0

)
≤ α(1 + o(1)),

whereas from Corollary 2, we deduce that

P

(
Ĥn > zn,α

∣∣∣H1

)
= o(1).

An extensive simulation study will be necessary in order to compare the actual size of the test
with the nominal one and to compute the power of the test. A discussion on the selection of θmin

will be also of great interest. This should lead to a forthcoming paper.

6 Proofs

We first give some preliminary lemmas. Their proofs are postponed to the appendix.

6.1 Preliminary lemmas

The first lemma is of general interest. It provides some uniform approximations based on (H.1) and (H.2).

Lemma 1 Suppose (H.1) and (H.2) hold. Then, for any ε > 0, there exists a constant C > 0
such that, for x large enough,

sup
λ≥1

min(1, λ−ρ−ε)

ε|b(x)|

∣∣∣∣
ℓ(λx)

ℓ(x)
− 1 − b(x)Kρ(λ) −

1

θ
b2(x) [Kρ(λ) −K−θ(λ)]

∣∣∣∣ ≤ C.
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If, moreover, ρ < 0, then

sup
λ≥1

∣∣∣∣
ℓ(λx)

ℓ(x)
− 1 − b(x)Kρ(λ)

∣∣∣∣ = o(b(x)),

when x→ ∞.

The following lemma is of analytical nature. It provides first-order expansions which will be useful
in the sequel.

Lemma 2 Under (ϕ.1) and (ϕ.2), for all q ∈ N
∗,

µq(t) ∼ q!(ϕ′(t))q

µ′1(t)/µ1(t) → 0,

as t→ ∞.

The next lemma presents an expansion of θ̂n.

Lemma 3 Let (kn) be an intermediate sequence. Then, under (H.1) and (ϕ.1), the following
expansions hold:

θ̂n =
1

µ1(log(n/kn))
{θθn,1(En−kn+1,n) + θn,2(En−kn+1,n)} ,

with

θn,1(t) =
1

kn − 1

kn−1∑

i=1

(ϕ(Fi + t) − ϕ(t))

θn,2(t) =
1

kn − 1

kn−1∑

i=1

log

(
ℓ(expϕ(Fi + t))

ℓ(expϕ(t))

)
,

and where En−kn+1,n is the (n − kn + 1)th order statistics associated to n independent standard
exponential variables and {F1, . . . , Fkn−1} are independent standard exponential variables and in-
dependent from En−kn+1,n.

The next two lemmas provide the key results for establishing the asymptotic distribution of θ̂n.
They describe the asymptotic behavior of the random terms appearing in Lemma 3.

Lemma 4 Let (kn) be an intermediate sequence. Then, under (ϕ.1) and (ϕ.2),

k
1/2
n

σ1(En−kn+1,n)
{θn,1(En−kn+1,n) − µ1(En−kn+1,n)} d→ N (0, 1),

where we have defined for all t > 0, σ2
1(t) = µ2(t) − µ2

1(t).

Lemma 5 Suppose (H.1), (H.2), (ϕ.1) and (ϕ.2) hold. Let (kn) be an intermediate sequence.
Then,

θn,2(En−kn+1,n) = θn,1(En−kn+1,n)OP(b(expϕ(En−kn+1,n))).
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6.2 Proofs of the main results

Proof of Theorem 1 − Lemma 4 states that

k
1/2
n

σ1(En−kn+1,n)
{θn,1(En−kn+1,n) − µ1(En−kn+1,n)} = ξn

where ξn
d→ N (0, 1). Then, by Lemma 3,

k1/2
n (θ̂n − θ) = θ

σ1(En−kn+1,n)

µ1(log(n/kn))
ξn + k1/2

n θ

(
µ1(En−kn+1,n)

µ1(log(n/kn))
− 1

)
+ k1/2

n

θn,2(En−kn+1,n)

µ1(log(n/kn))

=: T (1)
n + T (2)

n + T (3)
n ,

and the three terms are studied separately. First,

T (1)
n =

σ1(En−kn+1,n)

µ1(En−kn+1,n)

µ1(En−kn+1,n)

µ1(log(n/kn))
θξn

and, from Lemma 2,

σ1(En−kn+1,n)

µ1(En−kn+1,n)
=

(
µ2(En−kn+1,n)

µ2
1(En−kn+1,n)

− 1

)1/2
P→ 1. (10)

Besides, since ϕ′ is regularly varying and En−kn+1,n/ log(n/kn)
P→ 1 (see [20], Lemma 1) we have

µ1(En−kn+1,n)

µ1(log(n/kn))
=
ϕ′(En−kn+1,n)

ϕ′(log(n/kn))
(1 + oP(1))

P→ 1. (11)

As a preliminary conclusion, (10) and (11) yield

T (1)
n = θξn(1 + oP(1)). (12)

Second, using a first-order expansion of µ1, one can show that there exists a random variable
ηn ∈ (min(En−kn+1,n, log(n/kn)),max(En−kn+1,n, log(n/kn))) such that

T (2)
n = θk1/2

n (En−kn+1,n − log(n/kn))
µ′1(ηn)

µ1(log(n/kn))

= OP(1)
µ′1(ηn)

µ1(ηn)

µ1(ηn)

µ1(log(n/kn))
,

since k
1/2
n (En−kn+1,n− log(n/kn))

d→ N (0, 1) (see [20], Lemma 1). Applying Lemma 2 twice yields

T (2)
n = oP(1)

ϕ′(ηn)

ϕ′(log(n/kn))
= oP(1), (13)

since ηn/ log(n/kn)
P→ 1 entails ϕ′(ηn)/ϕ′(log(n/kn))

P→ 1. In view of Lemma 4 and Lemma 5,

T
(3)
n can be expanded as

T (3)
n = OP

(
k1/2

n b(expϕ(En−kn+1,n))
) (

µ1(En−kn+1,n)

µ1(log(n/kn))
+
σ1(En−kn+1,n)

µ1(log(n/kn))
k−1/2

n ξn

)

= OP

(
k1/2

n b(expϕ(En−kn+1,n))
)
,

8



from (10) and (11). Finally, there exists η′n ∈ (min(En−kn+1,n, log(n/kn)),max(En−kn+1,n, log(n/kn)))
such that

expϕ(En−kn+1,n)

expϕ(log(n/kn))
= exp ((En−kn+1,n − log(n/kn))ϕ′(η′n))

= exp
(
OP(k−1/2

n )ϕ′(η′n)
)

P→ 1, (14)

in view of (ϕ.2). Therefore, b being regularly varying,

b(expϕ(En−kn+1,n))

b(expϕ(log(n/kn)))

P→ 1

as well, and consequently

T (3)
n = OP

(
k1/2

n b(expϕ(log(n/kn)))
)

= oP(1) (15)

by assumption. Collecting (12), (13) and (15) concludes the proof.

Proof of Theorem 2 − From (5), one can infer that

log x̂pn − log xpn =

(
logXn−kn+1,n − logF←

(
1 − kn

n

))

+
(
θ̂n − θ

)
(ϕ (log(1/pn)) − ϕ (log(n/kn)))

+ log
ℓ (expϕ (log(n/kn)))

ℓ (expϕ (log(1/pn)))

=: Q(1)
n +Q(2)

n +Q(3)
n .

The three terms are studied separately. First, note that in view of (H.1) and (H.2), Q
(1)
n can be

expanded as

Q(1)
n = logH← (expϕ(En−kn+1,n)) − logH← (expϕ(log(n/kn)))

= θ (ϕ(En−kn+1,n) − ϕ(log(n/kn))) + log
ℓ (expϕ(En−kn+1,n))

ℓ (expϕ(log(n/kn)))

=: Q(4)
n +Q(5)

n .

Keeping in mind the notations introduced in the proof of Theorem 1, we obtain

Q(4)
n

d
= θ (En−kn+1,n − log(n/kn))ϕ′(η′n)

= θ (En−kn+1,n − log(n/kn))ϕ′ (log(n/kn)) (1 + oP(1)),

since ϕ′ is regularly varying. Now, taking into account that k
1/2
n (En−kn+1,n − log(n/kn)) converges

in distribution to a standard Gaussian random variable yields

k
1/2
n

log(n/kn)ϕ′ (log(n/kn))
Q(4)

n = oP(1). (16)

From (14) and (H.2),

Q(5)
n = log

ℓ (expϕ(log(n/kn))(1 + oP(1)))

ℓ (expϕ (log(n/kn)))

= b (expϕ (log(n/kn)))Kρ(1 + oP(1))

= b (expϕ (log(n/kn))) oP(1),

9



since Kρ(u) → 0 as u→ 1 for all ρ ≤ 0. As a preliminary result, we obtain

k
1/2
n

log(n/kn)ϕ′ (log(n/kn))
Q(1)

n = oP(1), (17)

as a simple consequence of (16) and condition (6). The second term Q
(2)
n can be rewritten as

follows

k
1/2
n

log(n/kn)ϕ′ (log(n/kn))
Q(2)

n = k1/2
n

(
θ̂n − θ

) ∫ ∞

1

ϕ′ (u log(n/kn))

ϕ′ (log(n/kn))
1l{u≤ log(1/pn)

log(n/kn)}du.

Assumption (7) and Potter bounds entail that, for all ε > 0 and n large enough,

ϕ′ (u log(n/kn))

ϕ′ (log(n/kn))
1l{u≤ log(1/pn)

log(n/kn)} ≤ 2uτ+ε1l{u≤c+1}

and thus Lebesgue theorem yields

∫ ∞

1

ϕ′ (u log(n/kn))

ϕ′ (log(n/kn))
1l{u≤ log(1/pn)

log(n/kn)}du −→
∫ c

1

uτdu = Kτ+1(c),

as n→ ∞ since ϕ′ ∈ Rτ . Consequently,

k
1/2
n

log(n/kn)ϕ′ (log(n/kn))
Q(2)

n = k1/2
n

(
θ̂n − θ

)
Kτ+1(c)(1 + oP(1))

d→ N
(
0, θ2K2

τ+1(c)
)
, (18)

from Theorem 1. Finally, since ρ < 0 and 0 ≤ Kρ(u) ≤ −1/ρ for all u ≥ 1, Lemma 1 yields

ℓ (expϕ (log(n/kn)))

ℓ (expϕ (log(1/pn)))
→ 1

as n→ ∞ and thus

Q(3)
n =

(
ℓ (expϕ (log(n/kn)))

ℓ (expϕ (log(1/pn)))
− 1

)
(1 + o(1))

= −b (expϕ (log(n/kn))) {Kρ (exp [ϕ (log(1/pn)) − ϕ (log(n/kn))]) + o(1)}(1 + o(1))

= O(b (expϕ (log(n/kn)))),

since Kρ is bounded. It follows that

k
1/2
n

log(n/kn)ϕ′ (log(n/kn))
Q(3)

n = o(1), (19)

under condition (6). Combining (17), (18) and (19), Theorem 2 follows from a simple application
of the delta method.
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Appendix: Proof of lemmas

Proof of Lemma 1 − It is based on an application of Lemma 5.2 in [12]. Indeed, from

(H.1) and (H.2), it is easy to infer that, for any constant C̃ > 0, we have

H←(λx) −H←(x)

θH←(x)(1 + 1
θ b(x))

− λθ − 1

θ

C̃b(x)
=

λθ

C̃θ
Kρ(λ) −

1

C̃θ

λθ − 1

θ
+ o(1)

=
θ + ρ

C̃θ

1

ρ
[Kθ+ρ(λ) −Kθ(λ)] + o(1).

Then, by choosing C̃ such that
θ + ρ

C̃θ
= 1, a direct application of this lemma yields, for any ε > 0

and λ ≥ 1,

min(1, λ−ρ−ε)

∣∣∣∣
ℓ(λx)

ℓ(x)
− 1 − b(x)Kρ(λ) −

1

θ
b2(x) [Kρ(λ) −K−θ(λ)]

∣∣∣∣

≤ εC̃θ|b(x)|
∣∣∣∣1 +

1

θ
b(x)

∣∣∣∣ min(1, λ−ρ−ε)
[
λ−θ + 1 + 2λρ+ε

]

≤ 4εC̃θ|b(x)|min(1, λ−ρ−ε)
[
1 + λρ+ε

]

≤ 8εC̃θ|b(x)|

for x large enough. Letting C = 8C̃θ, the first part of the lemma is proved. Moreover, if ρ < 0,
choosing ε < −ρ yields

sup
λ≥1

∣∣∣∣
ℓ(λx)

ℓ(x)
− 1 − b(x)Kρ(λ) −

1

θ
b2(x) [Kρ(λ) −K−θ(λ)]

∣∣∣∣ = o(b(x)). (20)

Besides, Kρ(λ) −K−θ(λ) is bounded when ρ < 0, and therefore (20) can be simplified as

sup
λ≥1

∣∣∣∣
ℓ(λx)

ℓ(x)
− 1 − b(x)Kρ(λ)

∣∣∣∣ = o(b(x)),

as x→ ∞.

Proof of Lemma 2 − Let us consider for t > 1 and q ∈ N
∗,

Qq(t) =

∫ ∞

0

(
ϕ(x+ t) − ϕ(t)

ϕ′(t)

)q

e−xdx.

Under (ϕ.1) and (ϕ.2), there exists η ∈ (0, 1) and ε1 > −τ such that
∣∣∣∣
ϕ(x+ t) − ϕ(t)

xϕ′(t)

∣∣∣∣ =
ϕ′(t+ ηx)

ϕ′(t)
≤ 2

(
1 +

ηx

t

)τ+ε1

≤ 2(1 + x)τ+ε1 ,

for t large enough, from Potter bounds (see [6], Theorem 1.5.6 (iii)). Thus, Lebesgue Theorem
implies that

lim
t→∞

Qq(t) =

∫ ∞

0

lim
t→∞

(
ϕ′(t+ ηx)

ϕ′(t)

)q

xqe−xdx.

Finally, since ϕ′ is regularly varying and (t + ηx)/t → 1 as t → ∞ for all x ≥ 0, it follows that
ϕ′(t+ ηx)/ϕ′(t) → 1 as well and therefore

lim
t→∞

Qq(t) =

∫ ∞

0

xqe−xdx = q!
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which concludes the first part of the proof. Potter bounds imply that there exists ε2 > −τ such
that

|ϕ′(x+ t) − ϕ′(t)| ≤ ϕ′(t)

(
ϕ′(x + t)

ϕ′(t)
+ 1

)
≤M

(
2

(
1 +

x

t

)τ+ǫ2
+ 1

)
≤ 2M(1 + x)τ+ε2 +M.

Therefore, µ′1(t) can be written as

µ′1(t) =

∫ ∞

0

(ϕ′(x+ t) − ϕ′(t))e−xdx

=

∫ ∞

0

ϕ′(x+ t)e−xdx− ϕ′(t)

=

∫ ∞

0

ϕ(x + t)e−xdx − ϕ(t) − ϕ′(t)

= µ1(t) − ϕ′(t),

after integrating by parts and remarking that ϕ(t)e−t → 0 as t→ ∞. Finally, the first part of the
lemma states that ϕ′(t)/µ1(t) → 1 as t→ ∞ which entails µ′1(t)/µ1(t) → 0 as t→ ∞.

Proof of Lemma 3 − Recall that

θ̂n =
1

µ1(log(n/kn))

1

kn − 1

kn−1∑

i=1

(log(Xn−i+1,n) − log(Xn−kn+1,n))

d
=

1

µ1(log(n/kn))

1

kn − 1

kn−1∑

i=1

log

(
H←(expϕ(En−i+1,n))

H←(expϕ(En−kn+1,n))

)
,

where E1,n, . . . , En,n are ordered statistics generated by n independent standard exponential ran-
dom variables. The Rényi representation of the Exp(1) ordered statistics (see [1], p. 72) yields

{En−i+1,n}i=1,...,kn−1

d
= {Fkn−i,kn−1 + En−kn+1,n}i=1,...,kn−1 , (21)

where {F1,kn−1, . . . , Fkn−1,kn−1} are ordered statistics independent from En−kn+1,n and generated
by kn − 1 independent standard exponential variables {F1, . . . , Fkn−1}. We thus have

θ̂n
d
=

1

µ1(log(n/kn))

1

kn − 1

kn−1∑

i=1

log

(
H←(expϕ(Fkn−i,kn−1 + En−kn+1,n))

H←(expϕ(En−kn+1,n)))

)

d
=

1

µ1(log(n/kn))

1

kn − 1

kn−1∑

i=1

log

(
H←(expϕ(Fi + En−kn+1,n))

H←(expϕ(En−kn+1,n))

)

d
=

1

µ1(log(n/kn))
(θθn,1(En−kn+1,n) + θn,2(En−kn+1,n))

in view of (H.1) and the conclusion follows.

Proof of Lemma 4 − Let us introduce for all t ≥ 1,

Sn(t) =
(kn − 1)1/2

σ1(t)
(θn,1(t) − µ1(t)) =

(kn − 1)−1/2

σ1(t)

kn−1∑

i=1

Yi(t),

where Yi(t) := ϕ(Fi + t)−ϕ(t)− µ1(t), i = 1, . . . , kn − 1 are centered, independent and identically
distributed random variables with variance σ2

1(t). Clearly, in view of the Central Limit Theorem,
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for all t ≥ 1, Sn(t) converges in distribution to a standard Gaussian distribution. Our goal is to
prove that for x ∈ R,

P(Sn(En−kn+1,n) ≤ x) − Φ(x) → 0 as n→ ∞,

where Φ is the cumulative distribution function of the standard Gaussian distribution. Lemma 2
implies that for all ε ∈ (0, 1), and q ∈ N

∗, there exists Tε ≥ 1 such that for all t ≥ Tε,

(1 − ε)q!(ϕ′(t))q ≤ µq(t) ≤ (1 + ε)q!(ϕ′(t))q. (22)

Furthermore, for x ∈ R,

P(Sn(En−kn+1,n) ≤ x) − Φ(x) =

∫ Tε

0

(P(Sn(t) ≤ x) − Φ(x))hn(t)dt

+

∫ ∞

Tε

(P(Sn(t) ≤ x) − Φ(x))hn(t)dt =: An +Bn,

where hn is the density of the random variable En−kn+1,n. First, let us focus on the term An. We
have,

|An| ≤ 2P(En−kn+1,n ≤ Tε).

Since En−kn+1,n/ log(n/k)
P→ 1 (see [20], Lemma 1), it is easy to show that An → 0. Now, let us

consider the term Bn. For all t ≥ Tε,

E(|Y1(t)|3) ≤ E (ϕ(F1 + t) − ϕ(t) + µ1(t))
3

= µ3(t) + 3µ1(t)µ2(t) + 4µ3
1(t)

≤ C1(ε)(ϕ
′(t))3 <∞,

from (22) where C1(ε) is a constant independent of t. Thus, from Berry-Esséen’s inequality (see [26],
Theorem 3), we have:

sup
x

|P(Sn(t) ≤ x) − Φ(x)| ≤ C2Ln,

where C2 is a positive constant and

Ln =
(kn − 1)−1/2

σ3
1(t)

E(|Y1(t)|3).

From (22), since t ≥ Tε,
σ2

1(t) = µ2(t) − µ2
1(t) ≥ C3(ε)(ϕ

′(t))2,

where C3(ε) is a constant independent of t. Thus, Ln ≤ C4(ε)(kn−1)−1/2 where C4(ε) is a constant
independent of t, and therefore

|Bn| ≤ C2C4(ε)(kn − 1)−1/2
P(En−kn+1,n ≥ Tε) ≤ C2C4(ε)(kn − 1)−1/2 → 0,

which concludes the proof.

Proof of Lemma 5 − Let us consider the random variables xn = expϕ(En−kn+1,n) and λi,n =

exp{ϕ(Fi + En−kn+1,n) − ϕ(En−kn+1,n)}, i = 1, . . . , kn − 1. It is clear that xn
P→ ∞, in view of

(ϕ.1) and Lemma 1 in [20]. Moreover from (ϕ.2), there exists ηi,n ∈ (0, 1) such that

1 ≤ λi,n = exp{Fiϕ
′(En−kn+1,n + ηi,nFi)} ≤ exp(MFi),
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and thus (H.2) entails

θn,2(En−kn+1,n)
d
= (1+oP(1))b(expϕ(En−kn+1,n))

1

kn − 1

kn−1∑

i=1

Kρ (exp(ϕ(Fi + En−kn+1,n) − ϕ(En−kn+1,n))) .

Since 0 ≤ Kρ(u) ≤ log u for all u ≥ 1, we have

θn,2(En−kn+1,n) = OP(b(expϕ(En−kn+1,n)))
1

kn − 1

kn−1∑

i=1

(ϕ(Fi + En−kn+1,n)) − ϕ(En−kn+1,n))

= θn,1(En−kn+1,n)OP(b(expϕ(En−kn+1,n)))

and the conclusion follows.
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