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Abstract. In this paper we extract the geometric characteristics from
an antipodally symmetric spherical function (ASSF), which can be de-
scribed equivalently in the spherical harmonic (SH) basis, in the symmet-
ric tensor (ST) basis constrained to the sphere, and in the homogeneous
polynomial (HP) basis constrained to the sphere. All three bases span
the same vector space and are bijective when the rank of the SH series
equals the order of the ST and equals the degree of the HP. We show,
therefore, how it is possible to extract the maxima and minima of an
ASSF by computing the stationary points of a constrained HP.
In Diffusion MRI, the Orientation Distribution Function (ODF), repre-
sents a state of the art reconstruction method whose maxima are aligned
with the dominant fiber bundles. It is, therefore, important to be able
to correctly estimate these maxima to detect the fiber directions. The
ODF is an ASSF. To illustrate the potential of our method, we take
up the example of the ODF, and extract its maxima to detect the fiber
directions. Thanks to our method we are able to extract the maxima
without limiting our search to a discrete set of values on the sphere, but
by searching the maxima of a continuous function. Our method is also
general, not dependent on the ODF, and the framework we present can
be applied to any ASSF described in one of the three bases.

1 Introduction

In Diffusion MRI there exist numerous state of the art reconstruction algorithms
which attempt to recover an integrated image by incorporating partial and di-
rectional information from diffusion weighted (DW) signals. The reconstructed
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and integrated image is often represented as values on a sphere at every voxel.
The geometric characteristics of these antipodally symmetric spherical functions
(ASSF) provide a sub-voxel resolution superior to the raw DW-MR images.

There are numerous aquisition schemes, and many reconstruction algorithms,
that result in a number of distinct ASSFs, which represent different physical phe-
nomena. For example there exist Diffusion Tensor Imaging (DTI) [1] which repre-
sents the Apparent Diffusion Coefficient (ADC), Generalized DTI (GDTI) [2–4]
which also represents the ADC, Q-ball imaging (QBI) [5, 6] which represents the
Orientation Distribution Function (ODF), Spherical Deconvolution (SD) which
represents the fiber Orientation Density (fOD), and Maximum Entropy Spherical
Deconvolution (MESD) [7] which is a generalization of the Persistent Angular
Structure (PAS) method, and which recovers the angular structure of the particle
displacement probability density function; to enumerate a few methods.

For certain of these ASSFs, their geometric characteristics have direct physi-
cal consequences. For example the maxima of the ODF and the fOD correspond
to the fiber bundle directions. It is, therefore, important to be able to correctly
estimate the maxima of these ASSFs to detect fiber directions (see Fig-1).

Fig. 1. An antipodally symmetric spherical function (ASSF) reconstructed from DWIs.
The maxima of the ODF, for example, indicate fiber bundles. It is important to cor-
rectly estimate the maxima of these ASSFs.

It is common to analytically represent an ASSF in the Spherical Harmonic
(SH) basis – analytical QBI for example, or in the Symmetric Tensor5 (ST)
basis constrained to the sphere – DTI or GDTI for example. These bases are
bijective when the rank of the SH series equals the order of the symmetric tensor.
The basis of Homogeneous Polynomials (HP) constrained to the sphere, is also
bijective to the ST basis and spans the same vector space when the degree of the
HP equals the order of the ST. It is, therefore, possible to represent an ASSF
described in either the SH basis or the ST basis as a constrained HP.

In this paper, we take advantage of this constrained HP representation of an
ASSF, to extract the maxima of the ASSF, by computing the stationary points
of the constrained HP. We then rank the stationary points by their polynomial
values to extract the maxima of the ASSF (see Fig-2).
5 A symmetric tensor of any order requires that the coordinate array representating

the tensor be invariant under all permutation of indices. It is often also referred to
as a supersymmetric tensor.
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Fig. 2. An antipodally symmetric spherical function (ASSF) can be represented in
three equivalent bases – spherical harmonics, symmetric tensor constrained to the
sphere, or homogeneous polynomial (HP) constrained to the sphere. As a constrained
HP it is possible to compute its stationary points to extract the maxima of the ASSF.

We illustrate our method on the ODF by computing its maxima, which cor-
respond to fiber bundle directions. This method is, however, independent of the
ODF, or of the ODF estimation process. It is, therefore, applicable to any ASSF
that can be represented in either the SH, ST or HP basis. Also, since it is inde-
pendent of the estimation process of the ASSF (ODF for example), this method,
as we shall see, can be used to quantize the error of the estimation process of
the ASSF. This can have important implications for evaluating the quality of
the estimation process (ODF for example).

Another strength of our method, lies in the fact that it is not limited to
searching for the maxima of the ASSF in a finite set of values on the sphere, but
rather searches the maxima of a continuous function.

2 Methods

We begin the methods section by establishing the equivalence of the SH, ST and
HP bases when describing an ASSF. First let us consider the ST and the HP
bases, and then the HP and SH bases.

2.1 SH basis, constrained ST basis, constrained HP basis There is a
useful connection between the space of STs and the space of HPs, e.g.[8, 9]. A
symmetric tensor of dimension n and order d has a one-to-one correspondance
with a homogeneous polynomial in n variables of total degree d. For example if
we consider a 4-way array of dimension 3, then a tensor element aijk`, is associ-
ated to the monomial aijk`xixjxkx` and the whole tensor to the homogeneous
polynomial

∑3
i=1

∑3
j=1

∑3
k=1

∑3
`=1 aijk`xixjxkx`. In other words, for an order

d symmetric tensor of dimension n, an individual index i, j, k, . . . , can take
values from 1 to n, and the total number of indices qualifying a tensor element
a (in the case of aijk`, it is four) has to be d. A similar construction exists for
non-symmetric tensors and multi-homogeneous polynomials.
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To illustrate this through an example, consider the 2×2×2 tensor, i.e. order
three symmetric tensor A of dimension two, with a111 = 1, a121 = a211 = a112 =
2, a221 = a122 = a212 = 3 and a222 = 4. The tensor consists of two 2 × 2 slices,
i.e.

A(: : 1) =
[

1 2
2 3

]
and A(: : 2) =

[
2 3
3 4

]
.

The element a111 maps to the monomial x3
1, the elements a121, a211 and a112

map to the monomial 2x2
1x2, the elements a221, a122 and a212 map to the mono-

mial 3x1x
2
2, and a222 maps to 4x3

2. Finally, A corresponds to the homogenous
polynomial f = x3

1 + 6x2
1x2 + 9x1x

2
2 + 4x3

2.
Now let us consider the SH basis and the HP basis. Spherical functions are

naturally decomposed and expressed in a SH basis because SHs form an or-
thonormal basis for complex functions on the sphere and have many properties
that facilitate computation [10, 11]. The correspondence between coefficients of
the real and symmetric SH series and the coefficients of the HP constrained to
the sphere are derived here.

In [2, 12], it was proved that both even order SHs up to rank d and the
HPs of degree d restricted to the sphere are bases for the same vector space. It
is, therefore, possible to define a general linear transformation M between the
two bases which shall be recomputed here by expressing the coefficients of the
modified SH series cj in terms of the coefficients of the homogeneous polynomial.

Let an ASSF S be decomposed in the modified SH basis such that [10, 11, 2,
12],

cj =
∫

Ω

S(g(θ, φ))Yj(θ, φ)dΩ, (1)

where g(θ, φ) is a normalized radial direction in spherical coordinates and Yj is
the jth coefficient of the real and symmetric SH basis [12].

Given a homogeneous polynomial P of degree d in three variables and con-
strained to the sphere

P(x = [x1, x2, x3]t) =
3∑

i1=1

3∑
i2=1

· · ·
3∑

id=1

ai1i2···id
xi1xi2 · · ·xid

, (2)

where ai1i2···id
are also the elements of the corresponding order d symmetric

tensor A of dimension three, and x is of unit length to constrain P to the
sphere; P can be rewritten in the form

P(x) =
N∑

k=1

µkak

d∏
p=1

xk(p), (3)

where N are the number of independent elements of A, ak is the kth indepen-
dent element of A, µk is its corresponding multiplicity, and

∏d
p=1 xk(p) is the

corresponding monome (see[12]).
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If P also describes the same ASSF S, then S in (1) can be replaced by (3) to
obtain an expression in matrix form, where cj is the jth element of the vector
C = MA and d is the number of elements in the SH basis:

cj =
N∑

k=1

ak

∫
Ω

µk

d∏
p=1

xk(p)(θ, φ)Yj(θ, φ)dΩ =⇒ C = MA , where (4)

M =



µ1

∫
Ω

d∏
p=1

x1(p)(θ, φ)Y1(θ, φ)dΩ . . . µN

∫
Ω

d∏
p=1

xN(p)(θ, φ)Y1(θ, φ)dΩ

...
. . .

...

µ1

∫
Ω

d∏
p=1

x1(p)(θ, φ)YN (θ, φ)dΩ . . . µN

∫
Ω

d∏
p=1

xN(p)(θ, φ)YN (θ, φ)dΩ


.

(5)
It has been shown in [12] that the N x N square matrix M is a change-of-

basis matrix, and is invertible. Therefore, given a vector C of SH coefficients,
M−1 can be used to compute the coefficients of the constrained HP.

This establishes the bijectivity between the the SH basis, the constrained ST
basis, and the constrained HP basis.

2.2 Constrained Polynomial maxima extraction Now that it is possible
to express an ASSF in terms of a HP constrained to a sphere, the problem
of determining the maxima of the ASSF reduces to computing the stationary
points of the homogeneous polynomial P on the unit sphere. Once the stationary
points are all computed, they can be sorted by their values in P to threshold
and extract the maxima.

Therefore, to be more specific the following non-linear optimization problem
has to be solved

maxx P(x) subject to ‖x‖2
2 − 1 = 0, (6)

where x = (x1, x2, . . . , xn) are the variables and P is of degree d, i.e. P ∈ R[x]d.
In our case, d is even and n = 3.

The size of the problem (6) (degrees of the polynomials involved, number
of solutions) is relatively small, and thus there is no need to rely on general
algorithms for polynomial optimization subject to constraints, e.g. [13]. Instead,
we use the method of Lagrange multipliers for our problem. The reader may
also refer to Karush-Kuhn-Tucker conditions [14] that provide the necessary
conditions for the solution to (6) to be optimal.

We consider the polynomial F (x, λ) = P(x) − λ (‖x‖2
2 − 1). Then, the solu-

tion(s) of (6) is (are) among the solutions of the system

∂F

∂x1
=

∂F

∂x2
= · · · = ∂F

∂xn
= ‖x‖2

2 − 1 = 0. (7)

It is easy to see that the equations in (7) are linear in λ. Thus one can be
solved for λ and substituted in the others. The derived system is equivalent to
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the system obtained by requiring the vectors ∇P and x = [x1, x2, . . . , xn], to be
parallel. This yields the system∣∣∣∣∣ ∂P

∂xi
xi

∂P
∂xj

xj

∣∣∣∣∣ = 0 for 1 ≤ i < j ≤ n and ‖x‖2
2 − 1 = 0.

This system describes the values x that maximize P on the unit sphere but
also the other points where P has local extrema. For n = 3 variables and P a
polynomial of degree d = 4, we obtain 3 equations of degree 4 and one of degree
2. One of them (of degree 4) being redundant, by Bezout’s theorem this system
has at most 4×4×2 = 32 solutions. If x is a solution, them −x is also a solution.
Thus the system defines at most 16 directions for the local extrema of P.

We choose to solve the corresponding systems combining two of the state of
the art algorithms in polynomial system solving, i.e. subdivision methods and
generalized normal forms algorithms. We solve the system using both methods
and keep the best solutions by evaluating them in the polynomial system. The
main virtue of both the algorithms is that they rely on algebraic techniques and
thus unlike numerical iterative methods for polynomial system solving, they are
neither slow, and nor do they diverge when dealing with ill conditioned systems.

Subdivision methods [15] approximate only the real solutions. Initialy, they
consider a hyper-box where all the (real) solutions of the system are searched
(here one can take the box [−1, 1]3 which contains the unit sphere) and they
subdivide it until a specified precision is reached, excluding boxes which do
not contain roots. Preconditionning techniques are exploited to speed up the
root approximation process. Bounding techniques are used to handle properly
polynomials with approximate coefficients.

The other family of algorithms that can also be applied to polynomials with
approximate coefficients is based on generalized normal form computations [16],
which extend classical Gröbner basis methods [17]. Unlike Gröbner basis, this
algorithm is numerical stable and thus suitable for solving polynomial systems
with approximate coefficients. The method exploits the multiplicative structure
of the quotient algebra of the polynomial ring by the (zero dimensional) ideal
generated by a system of polynomial equations. Eventually, the resolution of the
polynomial system is transformed into a generalized eigenvalue and eigenvector
problem [18]. In practice, all the complex roots are computed within some tol-
erance, and those which are (almost) real are kept.

2.3 Analytical spherical harmonic estimation of the ODF Having estab-
lished the theoretical framework of our method, we would like to illustrate it
on a concrete example. We pick for that purpose the ODF computed analyti-
cally in the SH basis from QBI. The ODF is an ASSF. We, therefore, present
for completeness, the analytical ODF estimation from High Angular Resolution
Diffusion Imaging (HARDI) aquisitions. Our approach is, however, independent
of the ODF or the ODF estimation process, and can be applied to any ASSF
expressed in one of the SH, the ST or the HP bases.
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The diffusion ODF is defined as the angular portion of the averaged diffusion
PDF. It can be obtained from diffusion spectrum imaging (DSI) or from QBI. [5]
showed that it was possible to reconstruct the diffusion ODF directly from raw
HARDI measurements on a single sphere by the Funk-Radon transform (FRT).
The ODF is intuitive because it has its maximum(a) aligned with the underlying
population of fiber(s). [6, 19] proposed a simple analytical spherical harmonic
(SH) reconstruction of the ODF. The FRT integral can be evaluated analytically
which leads to a linear, robust and computationnally fast ODF reconstruction.

Letting Y m
d denote the SH of rank d and degree m (m = −d, ..., d) in the

standard basis and Yj (j(d, m) = (d2 + d + 2)/2 + m) be the SH in the modified
real and symmetric basis [12, 6], the analytical ODF solution is

Ψ(θ, φ) =
N∑

j=1

2πPd(j)(0)cj︸ ︷︷ ︸
fj

Yj(θ, φ), (8)

where N = (d + 1)(d + 2)/2, cj are the SH coefficients describing the input
HARDI signal [12], fj are the SH coefficients describing the ODF Ψ , dj is the
rank associated with jth SH basis element (for j = {1, 2, 3, 4, 5, 6, 7, ...}, dj =
{0, 2, 2, 2, 2, 2, 4, ...}) and Pdj a Legendre polynomial.

3 Experiments

For our initial experiments, we test our method for a SH basis of rank-4, or
equivalently a ST basis of order-4, or equivalently a HP basis of degree-4.

We test on synthetic data with known ground truth maxima directions. We
perform two types of tests along similar lines. We consider an ASSF to be a
set of scalar values defined on a sphere. In the first type of tests we generate a
spherical function with four maxima (antipodally symmetric, therefore, we can
consider the maxima to be along two distinct directions), to test our approach
on a purely mathematical framework. We generate the spherical function by first
randomly choosing the two maxima-directions separated by a pre-defined angle.
Along these directions (and their opposite directions) we then set the function
to have value 1, and everywhere else on the sphere to have value 0. Essentially
we generate a spherical dirac function. We then fit a rank-4 SH function to
this spherical data, for our maxima extraction tests. We call this the dirac test
(section-3.1).

In the second type of tests, we use the multi-tensor model [12], to synthet-
ically generate DW signals with fiber crossings. We simulate one and two fiber
voxels with known ground truth directions. In the case of two fiber voxels, the two
fibers have equal volume fractions are are separated by 90o. The diffusion tensor
profile used for a fiber has diag(D) = [1390,355,355]x10−6 mm2/s, FA = 0.7
which corresponds to our real dataset diffusion profile. This synthetic data gen-
eration is relatively standard and has the advantage of producing known ground
truth ADC and ODF profiles as well as ground truth fiber orientations. We add
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no noise to the signal. We then estimate the analytical ODF in the SH basis
with rank-4 from this signal, on which we perform the maxima extraction tests.
We call this the ODF test (section-3.2).

Both tests, essentially involve three steps, which can be summarized as:

1. A set of ground truth directions {di} are used to generate either a set of
values on the sphere (section-3.1) or DW signals (section-3.2) such that the
maxima of the set of values on the sphere or the ODF estimated from the
DW signals respectively, have their maxima alligned with {di}.

2. In section-3.1 we estimate a rank-4 SH series to best fit the set of values
on the sphere. In section-3.2 we estimate an ODF of rank-4 from the DW
signals.

3. We then convert the SH coefficients to the HP basis (or the equivalent ST
basis) and formulate the constrained polynomial problem, which we call F .
We compute its stationary points {Rj}, and sort them by their polynomial
value, and then threshold the list to retrieve a set of computed maxima {d′

k}.

We then proceed to compare {d′

k} to {di}. This is only possible when k = i.
When the two sets are comparable, we pair the computed directions with the
ground truth directions such that their difference is minimized. Then we first
compute the angle between di and d

′

i in degrees which we denote as ang(di, d
′

i)
o.

If this angle is non zero, we proceed to quantize the errors in steps 1, 2 and 3.
Since, {d′

i} are the stationary points of F , the value of ||∇F(d
′

i)|| indicates the
amount of error in step 3. Computing ||∇F(di)|| on the other hand indicates
the amount of error in steps 1 and 2. In both the dirac tests and the ODF tests
the error in step 1 can be considered to be nominal, since in the dirac tests the
spherical function is analytically generated, and in the ODF tests we don’t use
any noise while generating the DW signals. So essentially ||∇F(di)|| is a measure
of the error in step 2, which for the dirac tests is a truncated SH fit, and for the
ODF tests is a truncated ODF estimation.

3.1 Dirac test In these tests we have four antipodally symmetric maxima,
or two distinct maxima-directions (the two other are the opposites of these),
separated by a pre-decided angle. We test our method for separation angles of
65o and of 90o. We construct one hundred test cases for each separation angle,

ang(d, d
′
)o ||∇F(d

′
)|| ||∇F(d)||

m v m v m v

65o 0.281947 0.165978 4.70385e-11 2.91655e-21 5.00318e-05 3.28434e-10

90o 0.0308949 0.0242211 4.00631e-11 2.82319e-21 1.09740e-05 1.55176e-11

Table 1. (m=mean, v=variance). The correct number of maxima were extracted.

||∇F(d
′
)|| gives a measure of the error in step 3, and ||∇F(d)|| gives a measure of the

error in step 2. The error in step 3 is orders of magnitude smaller than the error in
step 2. Our approach can be used to quantify the error in step 2 due to the truncation
of SH series.
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but randomly chosen maxima-directions, to compute the maxima directions and
to compare the errors in steps 2 and 3. Since two maxima are extracted, for all
the errors computed, such as ang(di, d

′

i)
o, ||∇F(di)||, and ||∇F(d

′

i)|| we keep the
maximum of the two errors in each test (and remove the index i). The results
are presented in Table-1.

In each of these tests we extract the correct number of maxima. We, however,
notice that for a rank-4 SH estimation of the dirac spherical function, if we
decrease the separation angle from 65o, then the maxima were not prominently
distinct any more, and we did come across cases when the number of estimated
directions didn’t match the number of ground truth directions. We suspect,
therefore, that our approach can be also used to determine the angular resolution
of a truncated SH series, depending upon the truncation length.

We also realise that the error in step 3: ||∇F(d
′
)||, is orders of magnitude

smaller than the error in step 2: ||∇F(d)||. Again our approach can be useful
in determining the goodness of fit of a truncated SH series to a set of scalars
defined on a sphere.

3.2 ODF test In these tests we used the multi-tensor model [12] to generate
DW signals, from where we estimate the ODF in the SH basis with rank-4.

We again construct one hundred test cases for both the one fiber and the
two fiber simulations, and the ground truth directions are chosen randomly. The
results are summarized in Table-2. Again in each of the tests we extract the
correct number of maxima. We notice that the mean error in step 2 of the ODF
tests: ||∇F(d)|| (Table-2), i.e. the ODF estimation in the truncated (rank-4) SH
basis, entails an error that is orders of magnitude larger than the mean error
in step 2 of the dirac tests: ||∇F(d)|| (Table-1). This can be explained by the
fact that the ODF estimation is a much more complex process than a simple
rank-4 SH fit. The error in the ODF estimation step is of course much larger
than the error in step 3: ||∇F(d

′
)|| (Table-2), where we compute the maxima

using the homogeneous polynomial representation. A graphical illustration of
our approach from this test can be seen in Fig-3a.

We also tested our method on real data[20] and successfully extracted max-
ima from ODFs with various fiber configurations. We tested in a region of interest
(ROI) of a coronal slice, where complex fiber structures are known to exist in

ang(d, d
′
)o ||∇F(d

′
)|| ||∇F(d)||

m v m v m v

1-Fib 0.0104625 4.22152e-05 2.07053e-11 1.49751e-21 0.000490269 9.16956e-08

2-Fib90o 0.0254106 3.85231e-05 5.5777e-11 1.7602e-21 0.0036013 2.4827e-06

Table 2. (m=mean, v=variance). The correct number of maxima were extracted from

the ODF estimation. ||∇F(d
′
)|| gives a measure of the error in step 3, and ||∇F(d)||

gives a measure of the error in step 2 – the ODF estimation. The error in step 3 is
orders of magnitude smaller than the error in step 2. Our approach can be used to
quantify the error in the ODF estimation due to the truncation of SH series.



10

Fig. 3. Our approach applied to extract the maxima of an ODF in the SH basis with
rank-4. a) We test on synthetic data, the dark blue lines are the ground truth directions.
In the more prominent green are the computed directions. b) We test on a coronal slice
of a real dataset within a region with complex fiber crossings. We see highlighted the
fibers extracted by our method. We see that our approach can successfully extract the
maxima of the ODF which are the fiber directions.

the white matter. The ROI contained fiber bundles from the cortico-spinal tract,
superior longitudinal fibers (traversing the plane) and the corpus callosum (in
the plane). The visual results can be viewed in Fig-3b.

Finally on the real dataset we compared our method against a discrete ap-
proach[6] which searches for the maxima on the discretized mesh of the ODF.
For the discrete approach we used an icosahedron scheme on the sphere with
tesselations of order 2, 3, 4, 5, 6 with 21, 81, 321, 1281, 5121 mesh-points respec-
tively on a hemisphere. For the discrete method on each of these meshes and
our approach, after extracting the maxima, we computed the error ||∇F(d)||
for each voxel and from there the mean and the variance. Figure-4 compares
the mean error and the variance of the discrete approach on increasingly refined
meshes to those of our method.

4 Discussion & Conclusion

We took advantage of the fact that an ASSF can be equivalently represented
in any of three bijective bases – the SH basis, the ST basis constrained to the
sphere, and the HP basis constrained to the sphere. This permitted us to extract
the geometric characteristics, i.e. the maxima of an ASSF by computing the
stationary points of a constrained homogeneous polynomial problem.

We tested this approach on synthetic tests, first on a purely mathematically
generated dirac spherical function, and then on the ODF computed analytically
in the SH basis. The ODF is a state-of-the-art reconstruction algorithm in diffu-
sion MRI, who’s maxima are aligned with the underlying dominant fiber bundles.
Therefore, it is of utmost importance to be able to extract these maxima cor-
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Fig. 4. Mean error (||∇F(d)||: red bar) with ln of the variance (blue vertical intervals)
of the discrete search method (DSM) plotted as a function of the mesh resolution,
compared against our homogeneous polynomial (HP) method on a real dataset.

rectly. We took the ODF as an example, to concretely illustrate our method.
But our method is independent of the ODF or of the ODF estimation process.
It can be applied to any ASSF that can be written in either the SH basis, or the
ST basis or the HP basis.

Our method has also the added strength of searching for the maxima of a
continuous function, and is, therefore, not limited to searching for the maxima
of an ASSF in a finite set of values on the sphere.

We tested our method with a rank-4 SH series, or equivalently order-4 ST,
or equivalently a degree-4 HP. In the future we plan to test for greater values of
rank/order/degree.

We also discovered that, using our polynomial approach, it was possible to
quantify the error in the ODF estimation process that takes place due to the
truncation of the SH basis to a finite rank. This interesting point could be further
developed too.
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