
HAL Id: hal-00340490
https://hal.science/hal-00340490v1

Submitted on 30 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Behavioural Adaptation for the Automatic
Composition of Semantic Services

Tarek Melliti, Pascal Poizat, Sonia Ben Mokhtar

To cite this version:
Tarek Melliti, Pascal Poizat, Sonia Ben Mokhtar. Distributed Behavioural Adaptation for the Au-
tomatic Composition of Semantic Services. FASE 2008 - International Conference on Fundamental
Approaches to Software Engineering, Mar 2008, Budapest, Hungary. pp.146–162, �10.1007/978-3-540-
78743-3_12�. �hal-00340490�

https://hal.science/hal-00340490v1
https://hal.archives-ouvertes.fr

Distributed Behavioural Adaptation for the

Automatic Composition of Semantic Services
(Long Version⋆, version 2, January, 7th, 2008)⋆⋆

Tarek Melliti1, Pascal Poizat1,2, and Sonia Ben Mokhtar2

1 IBISC FRE 2873 CNRS – Université d’Évry Val d’Essonne, France
tarek.melliti@ibisc.univ-evry.fr

2 INRIA/ARLES project-team, France
{pascal.poizat,sonia.ben mokhtar}@inria.fr

Abstract. Services are developed separately and without knowledge of
all possible use contexts. They often mismatch or do not correspond
exactly to the end-user needs, making direct composition without medi-
ation impossible. In such a case, software adaptation can support compo-
sition by producing semi-automatically new software pieces called adap-
tors. Adaptation proposals have addressed the signature and behavioural
service interface levels. Yet, taking also into account the semantic level is
mandatory to enable the fully-automatic retrieval of adaptors from ser-
vice interfaces. We propose a new adaptation technique that, compared
to related work, supports both behavioural and semantic service inter-
face levels, works system-wide, and generates automatically distributed
adaptors.
keywords: Model-Based Adaptation, Behavioural Adaptation, Seman-
tic Adaptation, Services, Input Output Labelled Transition Systems.

1 Introduction

Service Oriented Architectures (SOA) [21] have introduced a new organizing
of software, based on services, self describing and loosely coupled interacting
software components that support the rapid and low-cost composition of dis-
tributed applications. An important issue in SOA is service composition and its
automation [21, 16], either to fulfill a user task or to have services collaborat-
ing in added-value composite services. Techniques that support the composition
in component or service based systems rely on four interface description levels:
signature (operations), behaviour (protocols), non functional (time, QoS) and
semantics [22]. In SOA, service composition takes place after services have been
discovered. It is often assumed that discovered services conform at the differ-
ent interface levels, and first, at the signature one where syntactic matching is
used to put in correspondence required and provided functionalities. Approaches

⋆ A shorter version of this paper has been published in the proceedings of FASE’08.
⋆⋆ This work is supported by the project “PERvasive Service cOmposition” (PERSO)

of the French National Agency for Research, ANR-07-JCJC-0155-01.

2 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar

that support the behavioural (called conversation) and semantics levels assume
one-to-one functionality correspondences [5, 3]. These assumptions do not yield
in practice in open heterogeneous environments where services are developed by
different organizations.

Software adaptation [11] has provided solutions for component interoperabil-
ity through the computation – from component interfaces and user-defined adap-
tation specifications called mappings – of adaptors that operate in-between com-
ponents to ensure their correct3 composition at the signature and behavioural
levels [11, 6, 2, 19], and more recently at the non-functional level [24]. Yet, while
automatic adaptation is highly desirable for SOA where systems are composed
from dynamically discovered services, component adaptation techniques do not
support the semantic level and therefore require a mapping to be given by a
designer to deal for example with message name mismatch between services.
Moreover, distributed adaptation is an important issue in domains such as per-
vasive computing, due to the use of small-resource devices and ad-hoc networks
(no centralized server being available to execute the adaptor). Our objective is to
overcome limitations of both semantic service composition – supporting complex
dependencies between services or functionalities – and software adaptation – en-
abling one to obtain automatically distributed (local) adaptor models directly
from service interface models, without requiring some mapping to be given, by
supporting the semantic level in the adaptation process.

In the sequel, we present first a formalizing of service behavioural interfaces
with associated semantic information (Sect. 2). We then develop our automatic
service composition and adaptation technique (Sect. 3). Related work is dis-
cussed in Section 4 and we end with conclusions, including limitations of our
work and perspectives.

2 A Model of Semantic Service Specifications

In this section we present our service model including service interfaces and
service conversations. It is then extended with semantic information to enable
automatic composition and adaptation.

Example 1 (Presentation). In the sequel we consider a simple pervasive system with
four services. PDA is a service on top of a PDA which stores music files (mp3 or ogg).
It is used to transmit music to be played at a given volume. dBMeter is a sensor which
is used to transmit (in dB) the noise level in the room. HF is a Hi-Fi system which can
play ogg files at a given volume which is adjusted according to the required one and
the ambient noise level. Finally, Trans is a service that translates mp3 files into ogg
files at a certain compression level, depending on the ambient noise level.

2.1 Service Interfaces (Interface Signature Level)

Service interfaces are used to advertise service provided functionalities to poten-
tial service clients. They are described, in the case of Web services, using WSDL4

3 In the sense of deadlock freeness.
4 http://www.w3.org/TR/wsdl for WSDL 1.1.

Distributed Behavioural Adaptation of Semantic Services 3

as a set of provided operations, each described using a signature, i.e., typed in/out
arguments, as well as the corresponding XML messages carrying them. We ab-
stract the WSDL elements we use for adaptation in our model as follows. We
define M as the set of XML messages and opNames as the set of operation
names, over which we range respectively using m, m1, . . . and op. The symbols
”?” and ”!” used with messages denote respectively input and output, e.g., ?m
means receiving a message of type m. O is the set of operations, over which we
range using o. An operation o ∈ O can be either one-way o = opName[?m] (so-
licitation) or o = opName[!m] (notification); or two-way o = opName[?m, !m]
(request-response) or o = opName[!m, ?m] (notification-response). Ω is the set
of service names, over which we range using ω, w or w depending of the context. ⊥
denotes an undefined message. Input : O → M ∪{⊥} returns the input message
of an operation: Input(o) = m if o = op[?m], o = op[?m, !m′] or o = op[!m′, ?m]);
⊥ otherwise. Output : O → M∪{⊥} returns the output message of an operation:
Output(o) = m if o = op[!m], o = op[?m′, !m] or o = op[!m, ?m′]; ⊥ otherwise.

Example 2 (Service Interfaces). dBMeter (w1) has an operation to give the dB level,
infodB[?m11a,!m11b]. HF (w2) has an operation play[?m21] to play music. It also has
an operation over which the ambient noise level can be given, ambiance[?m22]. Finally,
an operation output[!m23] outputs sound and volume. Trans (w3) has an operation,
trans[?m31a,!m31b] to translate music files. PDA (w4) provides no operation. This kind
of pure client is used to model some user task the service composition is built for. It is
implemented with additional operations corresponding to the interaction with (usually)
a user interface. We name messages in correspondence with the service they correspond
to, e.g., m31a for Trans (w3), see also the operations on the left of Figure 1.

2.2 Service Conversations (Interface Behavioural Level)

In addition to the set of operations specified in the service interface, an elemen-
tary service described using BPEL4WS5 (or BPEL for short) defines a long-run
interaction protocol, called business protocol, where operations are invoked ac-
cording to ordering and time constraints. These protocols mix both internal and
external behaviours, while only the latter ones (conversations) are relevant for
automatic composition: they constitute the service behavioural interface. Our
solution relies on the derivation of Abstract BPEL5 conversations from BPEL
processes. This process, which abstracts from the service internal activities, is
automated by a tool [18] and only briefly presented here since, for our present
purpose, only its Abstract BPEL end-result is important.

Basic activities. The most relevant activities for service composition are com-
munication activities: invoke[o] (invocation of operation o), receive[o] (reception
of an operation o invocation, forbidden for notification), and reply[o] (response
sending for an operation o invocation, forbidden for solicitation). They specify
the communication constraints between a service and its partners, i.e., the set
of services/clients that interact with it. We distinguish two kinds of invocations:
if the operation owner is known or if it has to be instantiated at run time. In
the first case, invocation is assumed to be internal and is hidden. In the second

5 http://www.ibm.com/developerworks/library/specification/ws-bpel for BPEL 1.1.

4 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar

case, we rely on a set of free variables X = {x1, x2, . . .} to refer to service own-
ers, with a fresh variable for each invoke, written invoke[o](xi). Moreover, as
a composition involves several services, we ensure disjointness of fresh variables
by indexing them with the service name, e.g., invoke[o](xiω). Time activities
are used for example to define timeouts or watchdogs. They can be reduced to
a time passing activity (which we will denote time) and the use of scope (see
below). Finally, empty represents a void activity and terminate a terminated
one. All other BPEL basic activities – e.g., those locally executed by services,
mainly providing data handling facilities – are hidden in interfaces.

Structured activities are control flow constructors. Each one defines an order with
which activities are activated or executed, and can be applied to either basic or
structured activities (both over which we range using P, Q, R, . . .). We support
here a simple subset of BPEL: parallel execution (flow[{Pi,i∈{1,...,n}}]) with joint
links ignored for simplicity, conditional execution (switch[{(, Pi)i∈{1,...,n}}]) and
loops (while(, P)) where we assimilate conditions to internal non-deterministic
choice (choice is performed internally, without external control over it). Finally,
scope(P, EH) encapsulates P with an event handler,

EH = [{(mi, Pi)i∈{1,...,n}}, (d, Q), {(ej, Rj)j∈{1,...,m}}]

An event handler is made up of sets of events, one for each type of event –
an event can be a received message (mi), a time event related to a duration
(d) or a raised exception (ej) – and associated activities: scope behaves as P if
none of the events happens and as a given sub-activity (some Pi, Q, or Rj) if
the corresponding event happens. Other constructs could be supported provided
it is possible to translate them into Timed Input Output Labelled Transition
System (TIOLTS) as in Section 2.4.

We may now introduce our formal definition of a service.

Definition 1 (Service). A service is a tuple 〈ω, O•, O◦, B(X)〉 where ω ∈ Ω is
the service name (used as an abstraction of, e.g., XML name spaces), O• ⊆ O is
a WSDL interface that defines the service’s set of provided operations, O◦ ⊆ O
is a set of required operations, and B(X) ∈ ABP , where ABP denotes the set
of Abstract BPEL processes, is the service conversation, defined over a set of
free variables X = {x1, . . . , xn}. Moreover, B(X) respects: o ∈ O◦ for every
invoke[o](x) and o ∈ O• for every receive[o] and every reply[o].

Due to the assumed uniqueness of services names, we do not distinguish service
names from the corresponding service definition, i.e., for a service 〈ω, O•, O◦,
B(X)〉 we may write ω = 〈O•, O◦, B(X)〉. We further define for a service ω: Oω =
O• ∪O◦, Inω = (

⋃
o∈Oω

{Input(o)}) \ {⊥}, Outω = (
⋃

o∈Oω
{Output(o)}) \ {⊥},

Mω = Inω ∪ Outω , and M IO
ω = {?m | m ∈ Inω} ∪ {!m | m ∈ Outω}.

Example 3 (Service Specifications). We can now give more detail about our services.
dBMeter and HF have no required operations, and their behavioural interfaces are re-
spectively receive[infodB] ; reply[infodB] ; empty and receive[play] ; receive[ambiance]
; reply[output] ; empty. Trans has a required operation, getNoise[?m32a ,!m32b] and

Distributed Behavioural Adaptation of Semantic Services 5

its behaviour is switch[(,receive[trans] ; invoke[getNoise](x1w3) ; reply[trans] ; empty),
(,terminate)] (it may terminate directly if not used). Finally, PDA has one required
operation for each kind of music file, mp3Play[?m41a,!m41b] and oggPlay[?m42a ,!m42b],
and its behaviour is switch[(,invoke[mp3Play](x1w4)),(,invoke[oggPlay](x2w4))] ; empty.

2.3 Semantic Information (Interface Semantic Level)

To support automatic composition, service descriptions must be extended with
descriptive semantic information. A number of research efforts have been con-
ducted for Web service semantic annotation, but SAWSDL6 has become the
W3C recommendation for the semantic annotation of WSDL documents. In this
section we introduce a formal model for representing the descriptive semantics of
a service described using SAWSDL complemented with BPEL. This integrated
formal model allows reasoning on service compatibility at three levels at the
same time (signature, behavioural and semantic levels).

Definition 2 (Semantic Structure). A semantic structure I is a couple (U ,R)
where U is a set of units of sense (UoS), over which we range using u, and
R ⊆ 2U × U is a relation where (U, u) ∈ R denotes that given a set U of UoS,
one can obtain u.

These structures support partner collaboration and can be related to concrete on-
tologies referenced in the SAWSDL service description, where units of sense cor-
respond to the ontology concepts and properties, while R can be used to encap-
sulate relations such as the ”subclassOf” one, i.e., ∀u, u′ ∈ U , u′ subclassOf u ⇒
({u′}, u) ∈ R. A semantic structure may result from ontology integration, e.g.,
following [7], and support different semantic structures for different partners.

Example 4 (Semantic Structure). Elements of U are mfile (music file), ogg (ogg file),
mp3 (mp3 file), vol (volume), noise (noise information), dB (noise in dB), sound (sound
return), and info (information feedback). The relations between them are: ({ogg},mfile)
and ({mp3},mfile) (ogg and mp3 are music files), ({dB},noise) (noise information can
be retrieved from dB), and ({sound,vol},info) (sound and volume build an information).

A service receives requests, process them and sends answers back. Yet, to
process a request, behind its representation (the message format), a set of in-
formation, UoS, is required. In turn, replies contain (possibly new) UoS. For in-
stance, in order to play music, the HF service requires an ogg file and a volume,
and outputs sound and volume. Moreover, for Web services, this information has
to be XML-formatted (and published in the service SAWSDL interface). To sup-
port the automatic use of such a service by a partner, one has to ensure that all
required information is known by the partner, format the request message and
package the information into it, call the service, get the response, and finally
process it to extract the set of information that is returned back. This principle
is at the core of our adaptor behaviours and is first supported through semantic
matching functions and a formal definition of partnership.

6 http://www.w3.org/TR/sawsdl/

6 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar

Definition 3 ((Semantic) Matching Function). A matching function for a
service ω over a semantic structure I = (U ,R) is a function SMω,I : Mω →
2U×Xpath(Mω) with Xpath(Mω) the set of Xpath expressions defined over Mω.

These functions are used to associate to each message the set of UoS it corre-
sponds to, together with a syntactic expression (Xpath) that makes it possible
to relate these UoS with the message XML tree.

Example 5 (Matching Functions). We have dbMeter: (m11a,∅) and(m11b,{(dB,)}) for
infodB (dB output) – HF: (m21,{(ogg,),(vol,)}) and (m23,{(sound,),(vol,)}) for play
and output (inputs ogg file and volume, outputs sound and volume), (m22,{(dB,)}) for
ambiance (inputs ambient noise level) – Trans: (m31a,{(mp3,)}) and (m31b,{(ogg,)})
for trans (inputs mp3, outputs ogg), (m32a,∅) and (m32b,{(noise,)}) for getNoise (noise
returned back) – PDA: (m41a,{(mp3,),(vol,)}) and (m41b,{(info,)}) for mp3Play,
(m42a,{(ogg,),(vol,)}) and (m42b,{(info,)}) for oggPlay (file and volume sent, in-
formation expected in the end). Xpath information is omitted ().

We introduce hereafter the formal definition of partners and partnerships as
a set of services collaborating on top of a semantic structure. We suppose an
enumerable set Id over which partners are indexed (it can be naturals or the set
of partners’ names).

Definition 4 (Partner and Partnership). A partner over a semantic struc-
ture I is a tuple ρω = 〈ω, I, SMω,I〉 where ω is a service and SMω,I is a
matching function for ω over I. A partnership over a semantic structure I is
a set of partners ΥId = {〈ωi, I, SMωi,I〉i∈Id} over I. When clear, suffixes are
omitted.

2.4 Operational Semantics of Semantic Services

We present now the formal semantics of partners using operational semantics to
favor operational issues such as algorithms and tools.

Configurations. To support automatic semantic composition, the operational se-
mantics of a partner 〈ω, (U ,R), SM〉 should be defined through its evolution
over time, directed by its behaviour, of hypotheses on the UoS it holds. This can
be described using configurations (P,H) where P ∈ ABP is the current process
representing the partner and H ∈ 2U is its current semantic environment. HR∗

denotes the closure of H over R and H R u that the u UoS can be obtained
from H: H R u iff u ∈ HR∗

. When clear from the context (remind that all
partners in a partnership share a common R) this is simply noted H u. We
also suppose that a UoS belongs to a partner configuration until it terminates.

Events. The semantics depends on message communication which is modelled
using events (!m and ?m). We also introduce several specific events. As services
may evolve in an unobservable way (e.g., due to a condition abstraction), tau is
used to denote internal actions. The termination event, /, enables the detection
of service termination. Time is supported by χ that denotes the passing of one
time unit (which stands for any delay). This is compatible with the fact that

Distributed Behavioural Adaptation of Semantic Services 7

the time constraints of a Web service are generally soft, thus this discretization
of time is a valid abstraction [18]. We define Exc to be the set of exceptions,
!M = {!m |m ∈ M}, ?M = {?m |m ∈ M} and Event =!M∪?M ∪ {tau, /, χ}.
Moreover, we define complementarity as (?m)c =!m, (!m)c =?m, and ac = a for
all a ∈ Event\(!M∪?M). We introduce hereafter a structural operational se-
mantics (SOS) for our semantic services. In this semantics, we are in the context
of a given partner ρω = 〈ω, I, SMω,I〉.

Basic Activities are denoted by basic processes which are terminate, empty,
time, receive[o], reply[o] and invoke[o].

time has one axiom, and empty can only terminate:

(time,H)
χ

−−→ (time,H) (empty,H)
/

−−→ (terminate, ∅).

receive[o]. Upon reception of the corresponding message, its UoS are aug-
mented with the message ones (also for invoke, below):

(receive[o],H)
?ω.Input(o)

−−−−−−−−−→ (empty,H∪ SM(Input(o))

reply[o]. The UoS needed to build the message corresponding to a reply have
to be obtainable from the ones in the configuration (also for invoke, below):

(reply[o],H)
!ω.Output(o)

−−−−−−−−−−→ (empty,H) if H SM(Output(o))

invoke[o](x) semantics depends on the form of o:

(invoke[o](x),H)
!x.Input(o)

−−−−−−−−−→ (empty,H) if H SM(Input(o))

when o = op[?m]

(invoke[o](x),H)
?x.Output(o)

−−−−−−−−−−→ (empty,H∪ SM(Output(o)))
when o = op[!m]

(invoke[o](x),H)
!x.Input(o)

−−−−−−−−−→ (invoke[op[!m2]](x),H) if SM(Output(o))

when o = op[?m1, !m2]

(invoke[o](x),H)
?x.Output(o)

−−−−−−−−−−→ (invoke[op[?m2]](x),H ∪ SM(Output(o)))
when o = op[!m1, ?m2]

For one-way operations the process executes the event related to the operation
signature and becomes empty. For two-way operations, the first event is executed
and then the process becomes an invoke corresponding to the remaining (now
one-way) operation. If invoke operates on a partner operation that starts with
an input message then the associated event is an output message and vice versa.
Events are prefixed by partner names.

Structured Activities are supported in a structured way as usual in process al-
gebraic SOS for Web services. Since the basic activities are the main ones for
this work, structured activity rules are presented in Appendix A. The modu-
lar application of basic and structured rules associates a TIOLTS to each ABP
process.

8 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar

Operations:
• provided, ◦ required

dBMeter
infodB[?m11a,!m11b]•

HF
play[?m21]•

ambiance[?m22]•

output[!m23]•

Trans
trans[?m31a,!m31b]•

getN...[?m32a,!m32b]◦

PDA
oggP...[?m41a,!m41b]◦

mp3P...[?m42a,!m42b]◦

dBMeter HF

?w1.m11a !w1.m11b
{dB}{}

/

?w2.m21 ?w2.m22
{dB}{ogg,vol}

/

!w2.m23
{sound,vol}

Trans PDA

!x1w3.m32a ?x1w3.m32b
{noise}{}

/

?w3.m31a
{mp3}

!w3.m31b
{ogg}

/

!x1w4.m41a
{mp3,vol}

/

?x1w4.m41b
{info}

/

tau

tau

!x2w4.m42a ?x2w4.m42b
{info}{ogg,vol}

Fig. 1. Partners TIOLTS

Definition 5 (Partner External Behaviour). The external behaviour of a
partner ρ = 〈ω = 〈O•, O◦, B(X)〉, (U ,R), SM〉 is a TIOLTS Lρ = 〈A, S, s0, F,
T (X)〉 where A = M IO

ω ∪ {tau, /, χ} is the alphabet, S ⊆ABP×2U is the set of
configurations, s0 = (B(X), ∅) is the initial state (s0 ∈ S), F = {(sf ,Hf) ∈

S | ∃(s,H) ∈ S ∧ (s,H)
/

−−→ (sf ,Hf) ∈ T } is the set of final states, and
T (X) ⊆ S × A × S is the transition relation obtained from the SOS rules (X is
the set of the free variables used in the transitions).

Based on this definition, we develop techniques operating on TIOLTS. Hence,
in service and partner structures, TIOLTS will be used for ABP processes.

Example 6. Partners TIOLTS are given in Figure 1.

3 Automatic Composition using Adaptation

To be compatible, two partners have to share complementary operations, mes-
sages and matching functions, i.e., the UoS sent by one must correspond to UoS
required by the second. Moreover, their two behaviours should also be compatible
to ensure deadlock freedom. We reuse a relation defined in [18] which intuitively
states that to be compatible (denoted using ∼c), two behaviours must be such
that (i) at each step of the interaction, each sent message can be received, and
(ii) each expected message possibly corresponds to a sent one, regarding the his-
tory of past exchanged messages. This is related to bisimulation, yet taking into
account the difference between sent and received messages. This is also related
to the compatibility relation for interface automata [14] but with support for
internal actions and time.

As usual, an observable relation between states is defined as s
a
⇒ s′ iff

s
tau∗atau∗

−→ s′ and s
ǫ
⇒ s′ iff s

tau∗

−→ s′. Moreover, s
a

=⇒i s′ stands for (s, a, s′) ∈ Ti

and w denotes a word.

Distributed Behavioural Adaptation of Semantic Services 9

Definition 6 (Behavioural Compatibility [18]). Two TIOLTS Li = 〈Ai,
Si, s0i , Fi, Ti(X)〉, i ∈ {1, 2}, are compatible iff there is a relation ∼c⊆ S1 × S2

such that s01
∼c s02

and for every s1, s2 such that s1 ∼c s2:

– ∀a ∈ Event\?M , ∀i, j ∈ {1, 2}, j 6= i, if si
a

=⇒i s′i then there is sj
ac

=⇒j s′j
with s′i ∼

c s′j

– ∀m ∈ M , ∀i, j ∈ {1, 2}, j 6= i, if si
?m
=⇒i s′i then there are s−j

w
=⇒j sj,

s−j
w

=⇒j s+
j , s+

j
!m

=⇒j s′j with si ∼c s+
j and s′i ∼

c s′j, and there is sj
!m′

=⇒j s′j.

Definition 7 (Partner Compatibility). Two partners ρi = 〈ωi = 〈O•
i , O◦

i ,
Lωi〉, I, SMi〉, i ∈ {1, 2}, are compatible, noted ρ1∼cρ2, iff O•

1 = O◦
2, O•

2 = O◦
1,

SM1 = SM2 and Lω1
∼c Lω2

.

It is not realistic to suppose that compatibility yields from scratch in a
context where services are designed by different parties. To release these strict
composition constraints, a one-to-one correspondence between names could be
supported parameterizing the compatibility relation by a name correspondence
mapping (hence solving simple name mismatch), i.e., for two services ω1 and ω2,
defined over Mω1

× Mω2
. However, it is not straightforward to support in such

a way more complex correspondences and semantic information, as the UoS re-
quired for a partner’s received message may correspond to several partners’ sent
messages. For example, ogg and vol for m21 in HF may come either directly from
PDA (using m42a) or using both PDA (m41a) and Trans (m31b). The possible
need for message reordering and cyclic dependencies between required/produced
UoS are also important locks. Recent advances in software adaptation [6, 19] may
help there, provided they are extended to support semantic information.

To solve these issues, we propose an approach were an adaptor is generated
for each partner, which will only communicate through it. We process in three
steps: (i) the generation of a compatible (correct) service client (CSC) for each
partner, which allows to interact with the partner without changing its protocol,
(ii) using the CSCs, the definition of a central global adaptor that defines all
the valid interactions between partners, and finally (iii) the transformation of
CSCs into local adaptors using the global adaptor protocol. The final desired
architecture (adapted system, see Fig. 2) is such that there is compatibility
(i) between each partner and its local adaptor (hiding its communications with
the other adaptors) and (ii) between the adaptors (hiding their communications
with their partners). This yields the deadlock freedom of the global system.

3.1 Step i: Generation of the Correct Service Clients (CSCs)

We compute, for each partner, a CSC which acts as a perfect environment for it
and ensures compatibility by construction. This means that the CSC acts for its
partner as if it provides all required operations and is always ready to consume
(resp. send) its partner sent (resp. received) messages. This idea originates from
controller synthesis and has been applied both in software adaptation [2] and in
service compatibility checking [18]. We reuse the latter as step (i) is independent

10 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar

dbMeter

PDA
Trans

HF

PDA-A

HF-A

Trans-A

dbMeter-A w2c.w1.m11b

w2c.x2w4.m42a

w3c.x1w4.m41a

w4c.w2.m23
w2c.w3.m31b

w2c.x1w4.m41a
w3c.w1.m11b

w1.m11a

x1w4.m41a
x2w4.m42ax1w3.m32a

w3.m31b

w2.m23

w2.m22

w2.m21

x1w3.m32b

w3.m31a

w1.m11b

x2w4.m42b
x1w4.m41b

Fig. 2. Adapted System Architecture

dBMeterc HFc

!w1.m11a ?w1.m11b
{dB}{}

/

!w2.m21 !w2.m22
{dB}{ogg,vol}

/

?w2.m23
{sound,vol}

Transc PDAc

?x1w3.m32a !x1w3.m32b
{noise}{}

/

!w3.m31a
{mp3}

?w3.m31b
{ogg}

/

?x1w4.m41a
{mp3,vol}

/

!x1w4.m41b
{info}

?x2w4.m42a !x2w4.m42b
{info}{ogg,vol}

Fig. 3. CSC TIOLTS

from the semantic information. Two tasks are performed on a partner TIOLTS
to build its CSC TIOLTS: messages are complemented (exchanging directions)
and the resulting TIOLTS is determinized. We fail when the CSC TIOLTS is
non-deterministic on tau transitions or message sending as this ambiguity yields
non implementable behaviours [18].

Definition 8 (Correct Service Client (CSC)). The correct service client
(CSC) for a partner ρ = 〈ω = 〈O•, O◦,Lω = 〈A, S, s0, F, T (X)〉〉, (U ,R), SM〉
is a partner ρc = 〈ωc = 〈O◦, O•,Lc

ω〉, (U ,R), SM〉 where Lc
ω (Lω ∼c Lc

ω) is
computed using the [18] synthesis algorithm. When clear, Lc

ω is also written Lc
ρ.

Example 7. The CSC TIOLTSs are given in Figure 3.

At the time, a CSC does not really provide the required operations to its partner,
but only the corresponding received and/or send messages. The CSC must now

Distributed Behavioural Adaptation of Semantic Services 11

be extended with implementations in terms of calls (resp. replies) to the other
CSCs. Take Transc in Figure 3 for example. Its provided operation for noise
information (getNoise, called with message m32a and noise result returned with
message m32b) should be implemented by getting this noise UoS from some other
CSC (here, dBMeterc, using the relation between dB and noise). Moreover, the
extension of a CSC should also support additional message exchanges for some
messages sent with UoS by this CSC (e.g., for Transc, this means getting the
mp3 UoS from some other CSC (here, PDAc) before sending it to Trans using
m31a). All these extensions correspond to the message exchanges in between
local adaptors in Figure 2. This is the objective of the next steps, where a global
structure (called global adaptor) is first built (step ii) before being used to extend
the CSCs into local adaptors (step iii).

3.2 Step ii: Generation of a Global Adaptor (GA)

Composing partners correctly in a partnership means to have them exchange
messages in a way that guarantees that each partner fulfills its role in the com-
position until all terminate. The global adaptor (GA) is a composition of the
CSC defined such that the orderings imposed by CSC protocols are respected,
The GA is ready to receive a message from any CSC at any time (augmenting
correspondingly its UoS, Def. 9,(1)), and can only send a message when it has
all the required information at its disposal (Def. 9,(2)). From one partner’s point
of view, this ensures that a given operation is run only when the other partners
have sent all required information. Moreover, / is synchronized to ensure correct
termination and time passing is weakly synchronized. The GA corresponds to a
form of free product of the CSCs restricted by constraints over UoS.

The GA has access to UoS originating from different messages of differ-
ent partners. We need to distinguish them in order to support step (iii): when
adaptation is distributed, we must be able to detect which messages were used
to obtain a UoS. Therefore, for a partnership ΥId = {〈ωi, I, SMωi〉i∈Id}, in
the GA configurations the semantic information will be taken in 2E with E =⋃

i∈Id{(m, u) | m ∈ Mωi ∧ u ∈ SMωi(m)}. Given some E ⊆ E , we also define
projections on the message, πmsg(E) = {m | (m, u) ∈ E}, and on the UoS,
πuos(E) = {u | (m, u) ∈ E}.

Definition 9 (Global Adaptor Generation). Let ΥId = {ρi,i∈Id} be a part-
nership with a corresponding set of CSC, {ρc

i = 〈ωi = 〈O•
i , O◦

i ,Li)〉, (U ,R),
SMi〉i∈Id} where for each i in Id, Li = 〈Ai, Si, s0i , Fi, Ti〉. The global adap-
tor for ΥId is the TIOLTS AΥId

= 〈A, S, s0, F, T 〉 where A =
⋃

i∈Id Ai, S ⊆
(Πi∈Id(Si)) × 2E , s0 = (Πi∈Id(s0i), ∅), F = {(s1, ..., sn) ∈ S|∀i ∈ Id, si ∈ Fi},
and T is defined as: ∀s = ((s1, . . . , sn), E) ∈ S,

– if ∃j ∈ Id, (sj , ?m, s′j) ∈ Tj then (s, ?m, s′) ∈ T with s′ = ((s1, . . . , s
′
j , . . . , sn),

E ∪ {(m, u) | u ∈ SMi(m)}); (1)
– if ∃j ∈ Id, (sj , !m, s′j) ∈ Tj and πuos(E) SMi(m) then (s, !m, s′) ∈ T with

s′ = ((s1, . . . , s
′
j , . . . , sn), E); (2)

12 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar

{}

mv
?x1w4.m41a

{m,v}

{}

!w1.m11a
{}

ov

?x2w4.m42a
{o,v}

mv
!w3.m31a

{m}

mv

!w1.m11a
{}

?x1w4.m41a
{m,v}

d

?w1.m11b
{d}

ov

?x2w4.m42a
{o,v}

!w1.m11a
{}

ov

!w2.m21
{o,v}

mv

?x1w3.m32a
{}

mv

!w1.m11a
{}

!w3.m31a
{m}

dmv

?w1.m11b
{d}

?x1w4.m41a
{m,v}

dov

?x2w4.m42a
{o,v}

?w1.m11b
{d}

ov

!w2.m21
{o,v}

!w1.m11a
{}

mv

!w1.m11a
{}

?x1w3.m32a
{}

dmv

?w1.m11b
{d}

!w3.m31a
{m}

dov

!w2.m21
{o,v}

?w1.m11b
{d}

dmv

?w1.m11b
{d}

?x1w3.m32a
{}

dov!w2.m22
{d}

dmv

!x1w3.m32b
{d->n}

dmov

dmov

!w2.m21
{o,v}

dmov

dmosv

?w2.m23
{s,v}

?w3.m31b
{o}

!w2.m22
{d}

dosv ?w2.m23
{s,v}

dosv

!x2w4.m42b
{(s,v)->i}

{}
/ dmosv

!x1w4.m41b
{(s,v)->i}

/

Fig. 4. The GA TIOLTS

– if ∃j ∈ Id, (sj , tau, s′j) ∈ Tj then (s, tau, s′) ∈ T with s′ = ((s1, . . . , s
′
j, . . . , sn),

E);
– if ∀j ∈ Id, (sj , /, s′j) ∈ Tj then (s, /, s′) ∈ T with s′ = ((s′1, . . . , s

′
n), ∅);

– let J = {j ∈ Id | ∃(sj , χ, s′j) ∈ Tj}, if J 6= ∅ then (s, χ, s′) ∈ T with
s′ = ((s′1, . . . , s

′
j, . . . , s

′
n), E) where for every j ∈ Id, (sj , χ, s′j) ∈ Tj if j ∈ J

and s′j = sj otherwise.

Postprocessing is performed on the GA removing recursively transitions leading
to deadlock states (non-final states without outgoing transitions). In such a case,
compatibility will only yield on a subset of partners’ interactions. The alternative
is to abort the adaptation process.

Example 8. The GA is given in Figure 4 where states are labelled with UoS initials
(e.g., d for dB) and transitions with messages and corresponding UoS initials (obtained
by receptions and needed for emissions). To understand postprocessing, let us suppose
Trans had not been available. The grey states would not have been computed and the
three bold states would have been removed (in three steps), being deadlocks. Compat-
ibility between PDA and its adaptor would then only yield for the lower (ogg) branch
in Figure 1. Arrow shapes and colors are used in the sequel to explain step (iii).

The GA computation is exponential. Yet, additional criteria (wrt deadlock
freedom) could be used to filter on-the-fly the GA during its computation and
have a better complexity, as discussed in perspectives (Sect. 5).

3.3 Step iii: Generation of the Local Adaptors

The GA defines all valid interactions. Using it, we can generate for each part-
ner ρ a local adaptor (hereafter adaptor for short) by extending its CSC ρc in
three steps: (a) defining, for each message m sent by ρc to ρ, the set of poten-
tial messages from other CSC used to construct m, and receiving in ρc these

Distributed Behavioural Adaptation of Semantic Services 13

potential messages; (b) defining, for each message m received from ρ in ρc, the
set of interested CSC that need UoS from m to send some message to their
own partner, and sending in ρc the UoS to these interested CSC; (c) updat-
ing the ρc alphabet and operations. In the sequel, we are in the context of
ρc

i = 〈ωi = 〈O•
i , O◦

i ,Lc
i)〉, (U ,R), SMi〉, the CSC of a partner ρi in a partnership

ΥId = {ρi,i∈Id} and with the associated GA AΥId
= 〈A, S, s0, F, T 〉.

(a) Reception of required messages from other adaptors. For all m such
that !m ∈ Ac

i , we define Constm, the set of messages involved (directly or by
means of R) in the construction of m according to AΥId

, as follows: Constm =
{?m′ ∈ A\Ac

i | ∃(s,H) ∈ S, u ∈ U , with (m′, u) ∈ H ∧ ∃((s,H), !m,−) ∈
T∧u ∈ SM(m)∪ ⊎

u′∈SM(m)
R−1(u′)}. This corresponds to a form of GA backward

analysis, from the sending of m by ρc
i to ρi, back to the messages that made the

UoS (u) required for building m available. Yet, it is possible to look only one step
back thanks to UoS union in Def. 9,(1). Note that when a UoS may come from
several messages (and/or several CSC) then we non-deterministically choose one
(i.e., at most one application of (c2) in Def. 10 for each transition).

Example 9. Transc sends two messages to Trans: m31a (the initial call to Trans, requir-
ing a mp3 UoS) and m32b (the sending of the noise UoS required by Trans to encode
mp3 into ogg). In the GA (see the bullet/blue transitions), we see that the mp3 UoS
for m31a comes from m41a (Constw3.m31a={?x1w4.m41a}) and that the noise UoS for
m32b is obtained from a dB UoS which comes from m11b (Constx1w3.m32b ={?w1.m11b}).
See Table 2 in Appendix B for details on the construction of the other adaptors.

We define the ρc
i reception-extended alphabet as ALi = Ac

i ∪ ⊎
!m∈Ac

i

Constm.

From it, we can derive the expected behaviour of ρc
i . It corresponds to the ρc

i role
in the GA, and therefore, to the projection of the GA on ALi. The projection
must be selective, to avoid useless interactions. For example, let us consider
a version of dBMeter (w1) with an operation (infodB[!m11b]) that sends the
dB UoS periodically. ?w1.m11b belongs to the Transc (w3c) reception-extended
alphabet. Yet, Transc should receive an instance of this message only if it is
useful in a future state. Therefore, we first define for a TIOLTS 〈A, S, s0, F, T 〉
a precedence relation over states, �= {(s, s′) | (s, a, s′) ∈ T }+. Then we may
define the projection that enables to retrieve the required receptions to be added
in an adaptor.

Definition 10. Let AΥId
= 〈A, S, s0, F, T 〉 be a global adaptor TIOLTS of a

partnership ΥId = {ρi,i∈Id} and ALi ⊆ A be the alphabet of the ith (local)
adaptor. The projection of AΥId

over ALi is a TIOLTS Pr(AΥId
)ALi = 〈ALi ∪

{tau}, S, s0, F, TALi〉 where TALi is defined as ∀(s, a, s′) ∈ T :

– (c1) if a ∈ Ac
i then (s, a, s′) ∈ TALi ;

– (c2) if a =?m ∈ ALi\Ac
i , ∃!m′ ∈ Ac

i , ∃(s′′, !m′,−) ∈ T, a ∈ Constm′ , s′ � s′′,
then (s, ?ρc

i .m, s′) ∈ TALi (prefixing by ρc
i ensures new private name)

– (c3) otherwise, (s, tau, s′) ∈ TALi (removed using tau-reduction)

14 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar

?w3c.x1w4.m41a

!w2c.w3.m31b ?w3.m31b

?x1w3.m32a!w3.m31a !x1w3.m32b

/

?x1w3.m32a!w3.m31a

?w3c.w1.m11b

/

?w3c.w1.m11b ?w3c.w1.m11b ?w3c.w1.m11b

?w3c.x1w4.m41a

/

Fig. 5. Trans Adaptor TIOLTS

Example 10. Projection may be explained on Transc using Figures 4 and 5 (without
the diamond/red transition). Case c1 (bold transitions) corresponds to the original
CSC messages. Case c2 (bullet/blue transitions) corresponds to receptions added in
ALi, provided they are useful in the future, e.g., not all ?w1.m11b transitions are in
this case. Wrt the GA, in projections case c2 labels are prefixed with the CSC identifier
(w3c for Transc) to ensure private communication between adaptors. Finally, case c3
(dashed transitions) corresponds to non useful messages (taus). In the projection they
are reduced.

(b) Emission of messages to interested adaptors. An adaptor ρc
i must

forward any message m received from its partner ρi to the adaptors that need it.
These may change for each instance of m. For each (s, ?m, s′) ∈ TALi such that
?m ∈ Ac

i , we define a set of Interested Adaptors IA(m,s) = {ρc
j |i 6= j∧∃ !m′ ∈!Ac

j

with m ∈ Constm′ ∧ ∃s′′(s′′, !m′,−) ∈ T ∧ s′ � s′′}. This corresponds to a GA
forward analysis, from the reception of m by ρc

i , to the messages m′ of other
adaptors (ρc

j) that need an UoS in m (m ∈ Constm′). For each (s, ?m, s′) ∈ TALi

such that ?m ∈ Ac
i , we add in the adaptor Pr(AΥId

)ALi TIOLTS the interleaving
of emissions to the elements of IA(m,s) as follows. Let l = |IP (m, s)|. First
we add states, S = S ∪ ×

j∈{1,...,l}
{s′0j, s

′
1j}, then, transitions, TALi = TALi \

(s, ?m, s′) ∪ (s, ?m, s′0 = (s′01, . . . , s
′
0l)) ∪ ×

j∈{1,...,l}
(s′0j , !ρ

c
j .m, s′1j). Finally, we

unify s′ and (s′10, . . . , s
′
1l). This would correspond to flow branches in a BPEL

implementation.

Example 11. Transc receives m32a (no UoS) and m31b (ogg) from its partner. We see
in the GA that only HFc (with m21, reading an ogg file) is interested in m31b. The
adding of emissions (diamond/red transitions) is demonstrated on the Trans adaptor
(Fig. 5). Bullet/blue transitions were added in step iii(i). The final architecture with
the exchanged messages is given in Figure 2 and the other adaptors in Appendix B.

(c) Updating the adaptors alphabet and operations. The initial alphabet
of an adaptor ρc

i (Ac
i) is extended in previous steps with messages for receptions

(the ?ρc
i .m) and emissions (the !ρc

j.m). As far as operations are concerned, we
proceed as follows. For each reception ?ρc

i .m added in step iii(a), we add in O•
i

an operation opρc
i .m[?m]. For each emission !ρc

j .m added in step iii(b), we add
in O◦

i an operation opρc
j .m[!m]. The adding of receptions and emissions in CSCs

is transparent for their partners thanks to prefixing by CSC identifiers. More-
over, the fact that the added emissions are deterministic (i.e., leads to the same

Distributed Behavioural Adaptation of Semantic Services 15

state) preserves in adaptors the CSC correctness by construction. Our approach
does not impose any constraint on resulting adaptors but for communication,
data extraction from messages, and message construction (the latter two being
supported by the Xpath part in matching functions), which makes our approach
realistic for Web services adaptation.

4 Related Work

Behavioural component adaptation is now mature, but its application to SOA is
recent. Mismatch patterns [4] or adaptation operators [15] may support adapta-
tion but are not fully automatic as adaptation contracts must be defined. There
are few fully automatic adaptation techniques. Service adaptation is performed
using matching between service execution trees of BPEL processes in [8]. The
matching process generates a workflow in an intermediary language (YAWL)
which is then translated into BPEL. A form of adaptation may also be sup-
ported using ontology crossing [7]. Ontology matching is used in [20] to obtain
behavioural correspondences and to compute a client-side adaptor that supports
service replacement. Workflow analysis is used in [9] to build server-side adaptors
that can be deployed as new services. All these approaches work with one client
and (one or) several services, not system-wide. Yet, they build local adaptors
and contrast with the centralized ones in most adaptation works [11, 19].

A technique for the distribution of a centralized orchestrator into different
topologies of decentralized orchestrators is presented in [17] and extended in [12]
to support data flow constraints and a filtering mechanism to select the topolo-
gies that satisfy the constraints. These techniques do not address adaptation
and require a centralized orchestrator to be given while our goal is to obtain
distributed orchestrators (in our case, adaptors) directly from the service de-
scriptions. In [23, 1, 2], the authors extend their earlier works on component
adaptation to support respectively incremental local adaptation and the distri-
bution of centralized adaptors. They do not support the semantic interface level
and therefore either require a mapping to be given or cannot deal with message
name mismatch between services.

5 Conclusion

Automatic service composition at run-time is one of the most challenging issues,
as it enables to provide the end-users with added-value functionalities composed
out of services existing in their environment. Automatic service composition
approaches usually assume that services have been previously developed to be
integrated, and the proposed composition processes are limited to simple cor-
respondences between service functionalities. To overcome these limitations, we
have proposed an approach which integrates solutions from behavioural adap-
tation into the service composition process. The distinctive features of this ap-
proach are possibly complex correspondences between service functionalities, the

16 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar

integration of descriptive semantics in the adaptation process, and distributed
adaptors as opposed to a centralized one.

As explained before, the adaptation process is exponential due to the GA
computation. To increase scalability, a first perspective concerns the on-the-fly
filtering of the GA using a composition specification. This may be achieved by
translating first this specification into an LTS and then taking this LTS into
account in the GA computation [2, 19]. Filtering with data flow constraints [12]
could also be used to enhance the GA computation.

We have made the hypothesis that services are equipped with semantic an-
notations. This common assumption in semantic (Web) services enables the au-
tomatic composition and adaptation. Yet, semantic annotation may be difficult
and error prone and may lead to the impossibility to compose and adapt services
correctly. This is a general issue in adaptation, e.g., in semi-automatic adapta-
tion where a mapping is used to replace the semantic annotations and where
wrong mappings yield empty adaptors. The solutions that have been proposed
consist in performing verification using the service and the adaptor models [19],
or to build interactive tools that help building correct mappings [10]. While
the later one is not compatible with automatic adaptation, the first one would,
provided composition properties are given. The approach we have presented is
compatible with this as it is based on related formal models (LTS).

Another perspective concerns the automation of adaptor implementation.
Some results are available for centralized adaptors in BPEL [8] or WF/.NET [13].
An issue is to restrict the services from engaging in a forbidden communication.
A solution could be to rely on additional middleware messages [1].

References

1. M. Autili, M. Flammini, P. Inverardi, A. Navarra, and M. Tivoli. Synthesis of
Concurrent and Distributed Adaptors for Component-Based Systems. In Proc. of
EWSA’06.

2. M. Autili, P. Inverardi, A. Navarra, and M. Tivoli. SYNTHESIS: a tool for auto-
matically assembling correct and distributed component-based systems. In Proc.
of ICSE’07.

3. S. Ben Mokhtar, N. Georgantas, and V. Issarny. COCOA: COnversation-based
Service Composition in PervAsive Computing Environments with QoS Support.
Journal of Systems and Software, 80(12), 2007.

4. B. Benatallah, F. Casati, D. Grigori, H. R. Motahari Nezhad, and F. Toumani.
Developing Adapters for Web Services Integration. In Proc. of CAiSE’05.

5. B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv Environment for Web
Services Composition. IEEE Internet Computing, 7(1):40–48, 2003.

6. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-
tion. Journal of Systems and Software, 74(1), 2005.

7. A. Brogi, S. Corfini, J. F. Aldana, and I. Navas. Automated Discovery of Compo-
sitions of Services Described with Separate Ontologies. In Proc. of ICSOC’06.

8. A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In Proc. of
ICSOC’06.

Distributed Behavioural Adaptation of Semantic Services 17

9. A. Brogi and R. Popescu. Service Adaptation through Trace Inspection. Int. J.
Business Process Integration and Management, 2(1):9–16, 2007.

10. J. Cámara, G. Salaün, and C. Canal. Clint: A Composition Language Interpreter.
In Proc. of FASE’08.

11. C. Canal, J. M. Murillo, and P. Poizat. Software Adaptation. L’Objet, 12(1):9–31,
2006. Special Issue on Software Adaptation.

12. G. Chafle, S. Chandra, V. Mann, and M. Gowri Nanda. Orchestrating Composite
Web Services Under Data Flow Constraints. In Proc. of ICWS’05.

13. J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. A Model-Based Ap-
proach to the Verification and Adaptation of WF/.NET Components. In Proc. of
FACS’07.

14. L. de Alfaro and T. A. Henzinger. Interface Automata. In Proc. of ESEC/FSE’01.
15. M. Dumas, M. Spork, and K. Wang. Adapt or Perish: Algebra and Visual Notation

for Service Interface Adaptation. In Proc. of BPM’06.
16. S. Dustdar and W. Schreiner. A Survey on Web services Composition. Int. J. Web

and Grid Services, 1(1):1–30, 2005.
17. M. Gowri Nanda, S. Chandra, and V. Sarkar. Decentralizing Execution of Com-

posite Web Services. In Proc. of OOPSLA’04.
18. S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek. Modelling Web Services

Interoperability. In Proc. of ICEIS’04.
19. R. Mateescu, P. Poizat, and G. Salaün. Behavioral Adaptation of Component

Compositions based on Process Algebra Encodings. In Proc. of ASE’07.
20. H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati.

Semi-Automated Adaptation of Service Interactions. In Proc. of WWW’07.
21. M. P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing. Commu-

nications of the ACM, 46(10):25–28, 2003.
22. P. Poizat, J.-C. Royer, and G. Salaün. Formal Methods for Component Description,

Coordination and Adaptation. In Proc. of WCAT’04.
23. P. Poizat and G. Salaün. Adaptation of Open Component-based Systems. In Proc.

of FMOODS’07.
24. M. Tivoli, P. Fradet, A. Girault, and G. Goessler. Adaptor Synthesis for Real-Time

Components. In Proc. of TACAS’06.

18 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar

A Structured Activities Semantic Rules

SOS rules for structured activities are given in Table 1 where EHd =
[{(mi, Pi)i∈{1,...,n}}, (d, Q), {(ej, Rj)j∈{1,...,m}}].

∀ a ∈ Event\{/}, (P,H)
a−−→(P ′,H′)

(P ;Q,H)
a−−→(P ′;Q,H′)

∀ a ∈ Event, (P,H)
/

−−→ and (Q,H)
a−−→(Q′,H′)

(P ;Q,H)
a−−→(Q′,H′)

∀i ∈ {1, . . . , n}, (switch[{(, Pi)i∈{1,...,n}}],H)
tau

−−−−→ (Pi,H)

(while(, P),H)
tau

−−−−→ (P ; while(, P),H)

(while(, P),H)
tau

−−−−→ (empty,H)

∀ a ∈ Exc
S

{tau},
∃ j∈{1,...,n}, (Pj ,H)

a−−→(P ′
j ,H′)

(flow[{Pi,i∈{1,...,n}}],H)
a−−→(flow[{Pi,i∈{1,...,n}\{j}}

S

{P ′
j}],H

′)

∀ a ∈ Event\{χ, /},
∃ j∈{1,...,n}, (Pj ,H)

a−−→(P ′
j ,H′)

(flow[{Pi,i∈{1,...,n}}],H)
a−−→(flow[{Pi,i∈{1,...,n}\{j}}

S

{P ′
j}],H

′)

∀ i∈{1,...,n}, (Pi,H)
/

−−→(P ′
i ,H′

i)

(flow[{Pi,i∈{1,...,n}}],H)
/

−−→(terminate,∅)

∃J 6=∅, J⊆{1,...,n}, ∀i∈J, (Pi,H)
χ

−−→(P′
i,H′

i) and ∀i∈{1,...,n}\J, (Pi,H)
/

−−→
(flow[{Pi,i∈{1,...,n}}],H)

χ
−−→(flow[{P ′

i}i∈J
S

{Pi}i∈{1,...,n}\J],
S

i
H′

i)

(P,H)
/

−−→

(scope(P,EH),H)
/

−−→(terminate,∅)

(P,H)
χ

−−→(P ′,H′)

(scope(P,EHd),H)
χ

−−→((scope(P,EHd−1),H′)
if d > 1

(P,H)
χ

−−→(P ′,H′)

(scope(P,EH1),H)
χ

−−→(Q,H′)

∀ i ∈ {1, . . . , m},∀ (?mi, Pi) ∈ EH ∀a∈Exp
S

{tau,/}, (P 6
a−−→)

(scope(P,EH),H)
?mi−−−−→(Pi,H∪SM(mi))

∀ j ∈ {1, . . . , m}, ∀ (ej , Rj) ∈ EH (P,H)
ej

−−−→(p′,H′)

(scope(P,EH),H)
tau−−−−→(Rj ,H′)

∀ e ∈ Exc, (e,−) 6∈ EH, (P,H)
e−−→

(scope(P,EH),H)
e−−→(empty,H′)

Table 1. Operational Semantics for Structured Activities

Distributed Behavioural Adaptation of Semantic Services 19

B Additional Figures and Tables

partner message required UoS candidate provider messages (partner)

w1 m11a ∅ ∅
w2 m21 {o, v} {m42a (w4), m41a (w4), m31b (w3)}

m22 {d} {m11b (w1)}
w3 m31a {m} {m41a (w4)}

m32b {d} ({d} n) {m11b (w1)}
w4 m41b {s, v} ({s, v} i) {m23 (w2)}

m42b {s, v} ({s, v} i) {m23 (w2)}

Table 2. Dependency between messages (used in step iii(a))

partner message provided UoS candidate requester messages (interested partner)

w1 m11b {d} {m22 (w2), m32b (w3)}
w2 m23 {s, v} {m41b (w4), m42b (w4)}
w3 m32a ∅ ∅

m31b {o} {m21 (w2)}
w4 m41a {m, v} {m21 (w2), m31a (w3)}

m42a {o, v} {m21 (w2)}

Table 3. Interested partners (used in step iii(b))

20 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar

!w1.m11a

!w2c.w1.m11b

?w1.m11b /

!w3c.w1.m11b !w2c.w1.m11b

!w3c.w1.m11b

dBMeter Adaptor TIOLTS

!w4c.w2.m23

/

!w2.m21
?w2c.x2w4.m42a

?w2c.w1.m11b

?w2c.x1w4.m41a

?w2c.w1.m11b

?w2c.x1w4.m41a

?w2c.x2w4.m42a

?w2c.w1.m11b

?w2c.w3.m31b

!w2.m21

?w2c.w1.m11b !w2.m22 ?w2.m23

HF Adaptor TIOLTS

?w3c.x1w4.m41a

!w2c.w3.m31b ?w3.m31b

?x1w3.m32a!w3.m31a !x1w3.m32b

/

?x1w3.m32a!w3.m31a

?w3c.w1.m11b

/

?w3c.w1.m11b ?w3c.w1.m11b ?w3c.w1.m11b

?w3c.x1w4.m41a

/

Trans Adaptor TIOLTS

!w2c.x2w4.m42a

!x1w4.m41b

?x2w4.m42a

/

?w4c.w2.m23

!w3c.x1w4.m41a

!w2c.x1w4.m41a

!w2c.x1w4.m41a

!w3c.x1w4.m41a

?x1w4.m41a

?w4c.w2.m23 !x2w4.m42b

PDA Adaptor TIOLTS

