N

N

Parameter Space Exploration of Agent-Based Models

Benoit Calvez, Guillaume Hutzler

» To cite this version:

Benoit Calvez, Guillaume Hutzler. Parameter Space Exploration of Agent-Based Models. Knowledge-
Based Intelligent Information and Engineering Systems: 9th International Conference (KES 2005),
2005, Australia. pp.633—-639, 10.1007/11554028 88 . hal-00340481

HAL Id: hal-00340481
https://hal.science/hal-00340481
Submitted on 18 Jul 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00340481
https://hal.archives-ouvertes.fr

Parameter Space Exploration of Agent-Based
Models

Benoit Calvez and Guillaume Hutzler

Universite d’Evry-Val d’Essonne/CNRS
LaMI, UMR 8042
523, Place des Terrasses 91000 Evry, France
{bcalvez,hutzler}@lami.univ-evry.fr

Abstract. When developping multi-agent systems (MAS) or models in
the context of agent-based simulation (ABS), the tuning of the model
constitutes a crucial step of the design process. Indeed, agent-based mod-
els are generally characterized by lots of parameters, which together
determine the global dynamics of the system. Moreover, small changes
made to a single parameter sometimes lead to a radical modification of
the dynamics of the whole system. The development and the parameter
setting of an agent-based model can thus become long and tedious if
we have no accurate, automatic and systematic strategy to explore this
parameter space.

That’s the development of such a strategy that we work on suggesting
the use of genetic algorithms. The idea is to capture in the fitness func-
tion the goal of the design process (efficiency for MAS that realize a
given function, realism for agent-based models, etc.) and to make the
model automatically evolve in that direction. However the use of genetic
algorithms (GA) in the context of ABS raises specific difficulties that
we develop in this article, explaining possible solutions and illustrating
them on a simple and well-known model: the food-foraging by a colony
of ants.

1 Introduction

Agent-based simulation (ABS) is interested in the modelling and the simulation
of complex systems. Its aim is to reproduce the dynamics of real systems by
modelling the entities as agents, whose behavior and interactions are defined. A
first validation of such models is obtained by comparing the resulting dynamics,
when the model is simulated, with that of the real system (measured thanks to
experimental data). Similarly, Multi-Agent Systems (MAS) are designed so as to
accomplish a given function in a collective and decentralized way. The validation
of the system is thus given by the fact that the function is realized and that it is
efficient. In both cases, one of the crucial aspects of the design process lies in the
tuning of the model. Indeed, this kind of model is generally characterized by lots
of parameters which together determine the global dynamics of the system. The
search space is thus gigantic. Moreover, the behavior of these complex systems

2 Benoit Calvez and Guillaume Hutzler

is often chaotic: on the one hand small changes made to a single parameter
sometimes lead to a radical modification of the dynamics of the whole system;
on the other hand some emergent phenomena are only produced in very specific
conditions and won’t occur if these conditions are not met. The solution space
can thus be very small. As a consequence, the development and the parameter
setting of an agent-based model may become long and tedious if we have no
accurate, automatic and systematic strategy to explore the parameter space.

The approach that we suggest is to consider the problem of the development
and the validation of ABS or MAS models as an optimization problem. The
validation can thus be reformulated as the identification of a parameter set
that optimizes some function. The optimization function for ABS would be the
distance between the artificial model that we simulate and the real system. The
optimization function for MAS would be the efficiency in the realization of the
function. Given the large dimensionality of the problem, optimization techniques
such as Genetic Algorithms (GA) can then be used to explore the parameter
space and find the best parameter set with respect to the optimization function.
However the use of genetic algorithms in this context is not so simple, as we will
explain.

In section two we present the problematics related to the parameter tun-
ing of an agent-based simulation. Then in section three we present the general
framework of genetic algorithms and show the difficulties that arise from the
application of these techniques to agent-based simulation.

2 Parameter tuning

2.1 Parameters of agent-based models

In the context of agent-based simulation, a model and the simulator with which
it is executed include lots of parameters. These parameters can be of different
natures. Some parameters are peculiar to the simulator: the discretization step
for the modeling of time and space for instance can be a fixed feature of the sim-
ulator. As a consequence, these parameters can generally not be modified by the
user. For this reason, we do not include this type of parameters in our parameter
space. We only include the parameters that are specific to the model. Some of
them can be extracted from the knowledge of the field (either experimental or
theoretical) and can thus be associated to fixed values. Other parameters have
to be kept variable, which can be for different reasons: on the one hand, the
knowledge of the field is generally not exhaustive (which is the reason why we
build a model and simulate it); on the other hand, this knowledge may not be
directly compatible with the model. In this case, a common approach can be to
try some values and simulate the model to see how it behaves globally. What we
propose is to have a general approach to automate this long and tedious process.

2.2 Objective

Depending on the motivation of the modeling work, the criteria used to explore
the parameter space will also be different. This motivation may be to model

Parameter Space Exploration of Agent-Based Models 3

and simulate a real system, but it can be to study the discrete models that
may produce a given emergent phenomenon. Finally, the motivation may be to
propose models that perform best in the realization of a specific function.

In the first case, we want to check if the simulated model correctly grasps
the behavior of the real system. The validation of the model will thus be to
have a behavior identical to (as close as possible) experimental knowledge. The
search problem can be seen as the search of the parameter set that minimizes
the distance between real and simulated data.

Having a similar behavior can also mean that specific emergent phenomena
known to occur in a real system can be observed in the simulation. Emerging
ant lines for example, will only occur if the chemical trails leaved by the ants
behind them (see next paragraph) have specific properties, as we will see in next
section. The emergence of this phenomenon will thus be associated to specific
parameter values, and the search problem will consist in searching the different
ranges of parameters where an emergent phenomenon is observable. In some
cases, choosing slightly different values may lead to completely different results
during the simulation, which complicates a manual exploration of the parameter
space and justifies the development of automatic techniques.

2.3 Example

We will present the parameter setting of an agent-based model with the example
of ant foraging (search for food), in which ants leave chemical trails behind them
when coming back to the nest with food (we use the multi-agent programmable
modeling environment NetLogo [I] and its ” Ants” model).

In this model, two parameters condition the formation of chemical trails. The
first one is the diffusion rate of the chemical, which corresponds to the fact that
a given proportion of the chemical will be diffused to the neighboring patches
(regions of the environment) at the next time step. This is used to simulate
the diffusion of the chemical in the atmosphere. The second parameter is the
evaporation rate of the chemical, which corresponds to the fact that a given
proportion of the chemical will disappear from the patch at the next time step.
This is used to simulate the evaporation of the chemical in the atmosphere.

For example, we can be interested more precisely in the dynamics of ant lines.
Table[l|shows three models with small modifications for the two parameters. We
can obtain different dynamics: the difference lies in the way that food sources
are exploited. In model 1, food sources are exploited in turn while in model 3,
they are all exploited at the same time. As a result, we observe one, two or three
ants lines.

2.4 Previous work

Different methods have already been proposed to explore automatically the pa-
rameter space of discrete models. In the NetLogo platform for instance, the
“BehaviorSpace” [tool allows to explore automatically and systematically the
parameter space. This space is a Cartesian product of values that each parame-
ter can take. However when we have lots of parameters (real-valued parameters

4 Benoit Calvez and Guillaume Hutzler

Model 1{Model 2|Model 3 1 c T ’?‘
Diffusion rate | 40 50 60 . %

Evaporation rate 15 15 20

Model 1 Model 2 Model 3

Fig. 1. Models with slightly different parameters.

for example), the parameter space becomes huge and the systematic exploration
becomes impossible.

Other methods have been proposed, which differentially explores the whole
parameter space, focusing on the most interesting areas. That’s the case of the
method developed by Brueckner and Parunak [2]. They use a “parameter sweep
infrastructure”, which is similar to the “BehaviorSpace” tool of NetLogo . How-
ever, to avoid a systematic exploration, they use searcher agents and introduce
the fitness notion. The aim of a searcher agent is to travel in the parameter space
to look for the highest fitness. Starting from a given location in the parameter
space, searcher agents have two choices: move or simulate. Each agent chooses
according to the confidence of the fitness estimate (proportional to the number
of simulations at this point) and the value of the fitness. If it chooses to move,
it heads for the neighboring region with highest fitness. A disadvantage of this
method is that searcher agents may head for local fitness maxima.

3 Use of genetic algorithms

As the tuning of the parameters of a model is a strongly combinatorial problem,
we propose to use genetic algorithms, which generally provide good results on
problems of this kind.

3.1 Choice of the fitness function

If we consider the exploration of the parameter space as an optimization prob-
lem, we need to define very carefully the function that will have to be maximized
by the algorithm. This fitness function is of fundamental importance since the
models that will be selected are the one that perform best with respect to this
function. In the context of agent-based simulation, the choice of the fitness func-
tion is problematic for several reasons: as a first thing, it is not the result of a
computation but the dynamics of a process that has to be assessed; secondly,
emergent phenomena may be difficult to characterize quantitatively since they
are often related to a subjective interpretation by a human observer.

Quantitative vs. qualitative. Validating an agent-based model by assessing
the distance between the simulation and the real system can be done either
quantitatively or qualitatively.

Parameter Space Exploration of Agent-Based Models 5

0 Emergence of ants lines Disintegration

Y

t=30 t=60 t=210 t=420 t =600

Fig. 2. Ant foraging at different time-steps

In the quantitative case, data are measured in the simulation and compared
to data measured in similar conditions in the real system. The distance between
the simulation and the real system is then the Euclidean distance between the
two data vectors. If we try to select models that are optimized for the realiza-
tion of some function, the fitness function can also be directly measured by the
performance of the system for that function.

In the qualitative case, what is important is that a given emergent phe-
nomenon be present in the simulation: for example, the ants line. The difficulty
is then to translate this observation into a quantitative measure (the fitness
function). In some cases, the characterization of such emergent phenomena may
not be so simple since it may be the result of a subjective interpretation by an
observer, which cannot be captured easily by a quantitative measure.

A dynamic process. In classical optimization problem, the fitness function
corresponds to the result of a computation. Therefore, the question of the time
at which the measure should be made doesn’t make sense: the measure is done
when the computation has ended. On the contrary, agent-based simulations are
dynamic processes that evolve along time and generally never end.

We can clearly see in the example given in the previous section that the
evaluation of the fitness function generally has to be done at a given time-step
of the simulation. The choice of this time-step is not neutral and may greatly
influence the performance of the genetic algorithm and the resulting model.

Figure [2] shows the foraging simulation at five different time-steps. We can
see that the ant lines are not present during all the simulation. This example
shows the difficulties to choose the time-steps for the evaluation.

3.2 Computation of the fitness function

Time. Since no mathematical model can anticipate the dynamics of an agent-
based model without executing it, the computation of the fitness function re-
quires one or even several simulations. This means that the time required to
compute the fitness function will be significant. We must therefore find methods
to reduce either the number of chromosomes, the time to converge towards an
optimum or the time to compute the fitness function. We mainly studied the
last possibility through distributed computation and fitness approximation.

6 Benoit Calvez and Guillaume Hutzler

Distributed computation. Since the different models are independent from each
other, the evaluation of their fitness is also independent. Therefore each eval-
uation of the fitness (that is to say each agent-based simulation) can be done
on a different computer. We can thus have several computers to simulate the
models and use the master-slave parallel genetic algorithms [3], which improves
the performance as compared to standard GA.

Fitness approrimation. Fitness approximation comes to approximate the result
of the simulation by a mathematical model, such as a neural network or a poly-
nomial for instance. We tried this approach by training a neural network with
test data. After the learning phase, we used it to compute the fitness, with the
generation-based control approach, in which the whole population of 1 genera-
tions is evaluated with the real fitness function in every A generations [4]. The
results however were not so good and this approach has been temporarily aban-
doned. We suspect in that case that the approximation was not good enough to
obtain satisfying results but this has to be explored in more details.

Stochasticity. Two agent-based simulations can generally bring slightly differ-
ent results even if the underlying model is exactly the same due to the stochastic-
ity of the model and of the simulator. One simulation is not enough to evaluate
the fitness function: it can only be considered as an estimate for the fitness.

In such noisy environments, a first solution is to increase the size of the
population [5]. To multiply the number of the simulated models reduces the
effect of the stochasticity. A second solution is to simulate each model several
times to improve the evaluation of the fitness function. Both solutions greatly
increase the number of simulations, thus the time, of the genetic algorithm.

Another solution is to use the same technique as with fitness approxima-
tion. A solution to the stochasticity problem is then to estimate the fitness of
each model with one simulation, and each n generations of the GA (n to choose
according to the stochasticity of the model and the desired quality of the esti-
mation), to estimate the fitness of each model with x simulations.

We use the elitism genetic algorithm [6] that is to say we keep the best
chromosomes during the algorithm, which allows to continuously improve the
solution. Our implemented genetic algorithm replace only 25 % of the population
at each generation. Every 3 generations, we estimate the fitness of the models
with more simulations. The interest to choose these values is to keep always the
best chromosomes.

4 Discussion & Conclusion

We applied the method to some simple examples: the ant foraging with different
fitness functions (both quantitative and qualitative). We do not show the results
because of the lack of space. As we could already see with the study of the
stochasticity, we obtained very different results depending on the choice of the
fitness function. The models are strongly optimized for a specific fitness function

Parameter Space Exploration of Agent-Based Models 7

and may not perform so well with another one. The optimization creates a loss
of the flexibility of the dynamics of the agent-based model. A possible solution
would be to use several different initial conditions to evaluate the fitness function.
This would however increase again the time necessary to run the algorithm.

The optimization by the genetic algorithm also depends on the constraints
imposed to the agents in the model. If a model has lots of constraints (fewer
resources for example), it is necessary that it optimizes its global functioning.
On the contrary, if the resources are abundant, the pressure on the model to
adapt and optimize its functioning will be weaker. As a result, the use of our
approach will be mostly beneficial when constraints on the model are high.

The next step is to apply the method to a more complex example. We began
a work for the simulation of the glycolysis and the phosphotranferase systems
in Escherichia coli. In this work, we are interested in testing the hypothesis of
hyperstructures [7]. The hyperstructures are dynamic molecular complexes, en-
zyme complexes in the case of this work. These complexes allow to improve the
behavior of a cell : more flexibility, quicker adaptation. In our study, we have 25
kinds of molecules (or agents). There are altogether about 2200 agents in the sim-
ulation. We want to study the potential interest of hyperstructures for the cell.
To do this we make the rates of enzymes association and dissociation variable.
In this context, the simulation of a model lasts about 10 minutes, which imposes
to use the methods described in this article like the distributed computation. To
explore this complex example, we will need to develop additional strategies to
reduce the parameter space (e.g. by introducing coupling between parameters),
to accelerate the evaluation of the fitness function (e.g. by developing approxima-
tion methods), and to accelerate the convergence of the algorithm (e.g. by using
interactive evolutionary computation). Finally, another important perspective is
to explore the effect of varying dynamically the simulation conditions so as to
produce more versatile models.

References

1. Tisue, S., Wilensky, U.: Netlogo: Design and Implementation of a Multi-Agent
Modeling Environment. Proceedings of Agent 2004 (2004)

2. Brueckner, S., Parunak, H.V.D.: Resource-Aware Exploration of the Emergent Dy-
namics of Simulated Systems. AAMAS 2003 (2003) 781-788

3. Cant-Paz, E., Goldberg, D.E.: Efficient parallel genetic algorithms: theory and
practice. Computer Methods in Applied Mechanics and Engineering 186 (2000)

4. Jin, Y., Olhofer, M., Sendhoff, B.: A Framework for Evolutionary Optimization with
Approximate Fitness Functions. IEEE Transactions on Evolutionary Computation
6 (2002) 481-494

5. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of
populations. Complex System 6 (1992)

6. Beker, T., Hadany, L.: Noise and elitism in evolutionary computation. In: Soft
Computing Systems - Design, Management and Applications. (2002) 193-203

7. Amar, P., Bernot, G., Norris, V.: Modelling and Simulation of Large Assemblies of
Proteins. Proceedings of the Dieppe spring school on Modelling and simulation of
biological processes in the context of genomics (2002) 36-42

	Parameter Space Exploration of Agent-Based Models
	Benoît Calvez cl@@auth, Guillaume Hutzler

