
HAL Id: hal-00340478
https://hal.science/hal-00340478

Submitted on 18 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ant Colony Systems and the Calibration of Multi-Agent
Simulations: a New Approach

Benoît Calvez, Guillaume Hutzler

To cite this version:
Benoît Calvez, Guillaume Hutzler. Ant Colony Systems and the Calibration of Multi-Agent Simula-
tions: a New Approach. Multi-Agents for modelling Complex Systems (MA4CS’07) Satellite Work-
shop of the European Conference on Complex Systems 2007 (ECCS’07), 2007, Germany. pp.16.
�hal-00340478�

https://hal.science/hal-00340478
https://hal.archives-ouvertes.fr

Ant Colony Systems and the Calibration of

Multi-Agent Simulations: a New Approach

Benoît CALVEZ and Guillaume HUTZLER

IBISC, FRE 2873
Université d'Évry-Val d'Essonne/CNRS

{benoit.calvez,guillaume.hutzler}@ibisc.univ-evry.fr

Abstract. In this paper, we propose a new approach for the exploration
of the parameter space of agent-based models: Adaptative Dichotomic
Optimization. Agent-based models are generally characterized by a great
number of parameters, a lot of which cannot be evaluated with the cur-
rent knowledge about the real system. The aim of the work is to provide
tools for the calibration of these models, which consists in �nding the
optimal set of parameters for a given criterion. The criterion can be for
example that the model achieves a speci�c function optimally or that the
results of the simulation are as close as possible to experimental data.
Our approach is based on the partition of the parameter space (the in-
terval of variation of each variable is divided into a �nite number of
intervals) and on a parallel exploration of the various parameters by the
agents of the model. The navigation in the parameter space is done by
grouping or dividing adaptively some of the intervals, according to an
algorithm which is adapted from Ant Colony Systems.

1 Introduction

Agent-based simulation (ABS) is interested in the modelling and the simulation
of complex systems. Its aim is to reproduce the dynamics of real systems by
modelling the entities as agents, whose behaviour and interactions are de�ned,
and which �live� in a simulated environment. A �rst validation of such models
is obtained by comparing the resulting dynamics, when the model is simulated,
with that of the real system (measured thanks to experimental data).

One of the crucial aspects of the design process lies in the tuning of the model.
Indeed, this kind of model is generally characterized by lots of parameters which
together determine the global dynamics of the system. The search space is thus
gigantic. Moreover, the behaviour of these complex systems is often chaotic: on
the one hand small changes made to a single parameter sometimes lead to a
radical modi�cation of the dynamics of the whole system; on the other hand
some emergent phenomena are only produced in very speci�c conditions and
won't occur if these conditions are not met. The solution space can thus be very
small. As a consequence, the development and the parameter setting of an agent-
based model may become long and tedious if we have no accurate, automatic
and systematic strategy to explore the parameter space.

The development of such a strategy is precisely the object of this paper,
which follows several works on the subject (see next section). All of these, how-
ever, appeared to be too limited, either because they achieved only a limited
exploration of the parameter space, or because they required a great number of
simulation runs in order to converge. The main di�erence between classical opti-
mization and the calibration of agent-based models is but that the evaluation of
a single set of parameters generally requires at least a complete simulation run,
which may take quite a long time. If the model is stochastic, it may even require
several runs for the same parameter set, in order to have a good con�dence in the
evaluation. It is thus most important that the number of evaluations be reduced
to its minimum if the method is to be usable.

The key idea of our approach is to take advantage of the natural concurrency
in agent-based models, so as to achieve a parallel exploration of the parame-
ter space. In this approach, which we call Adaptive Dichotomic Optimization
(ADO), every individual agent is instantiated with its own speci�c parameter
values, chosen in a �nite number of intervals, for each variable. The di�erent
agents of the model thus have completely di�erent settings. The basic intuition
is that the �performance� of the resulting model will be statistically better if it
includes a larger proportion of agents with �good� parameters. The intervals in
which the parameters have been chosen for the agents of a given model will thus
be rewarded depending on the performance of the model. The exploration of the
parameter space will then be re�ned adaptively by merging together adjacent
intervals with low rewards and by dividing in two intervals with high rewards.

The next section describes previous works on the subject and discusses their
respective strengths and weaknesses. We then present our approach in more
details in section 3. We present our results in section 4. We discuss our results
in section 5 before concluding in section 6.

2 Previous works

Di�erent methods have already been proposed to explore automatically the pa-
rameter space of discrete models. In the NetLogo platform for instance, the
�BehaviorSpace� [1] tool allows to explore automatically and systematically the
parameter space. This space is a Cartesian product of values that each param-
eter can take, some of them being chosen as �xed, others being limited to a
subset of all possible values. However when the model has lots of parameters,
some of which can take a good many values (real-valued parameters for exam-
ple), the parameter space becomes huge and the systematic exploration becomes
impossible. The number of values tested for each parameter will thus be very
low and the corresponding exploration limited to a very small part of the whole
parameter space.

Other methods have been proposed, which di�erentially explore the whole
parameter space, focusing on the most interesting areas. That's the case of the
method developed by Brueckner and Parunak [2]. They use a �parameter sweep
infrastructure�, which is similar to the �BehaviorSpace� tool of NetLogo . How-

ever, to avoid a systematic exploration, they use searcher agents and introduce
the notion of �tness. The aim of a searcher agent is to travel in the parameter
space to look for the highest �tness. Starting from a given location in the pa-
rameter space, searcher agents have two choices: move or simulate. Each agent
chooses according to the con�dence of the �tness estimate (proportional to the
number of simulations at this point) and the value of the �tness. If it chooses to
move, it heads for the neighboring region with highest �tness. A disadvantage
of this method is that searcher agents may head for local �tness maxima.

Another method is to add knowledge to the agent-based model, as is the
case with white box calibration [3, 4]. The principle is to use the knowledge of
the agent-based model to improve the tuning process. The aim is to reduce the
parameter space by breaking down the model into smaller submodels, which
can be done using di�erent methods (General Model Decomposition, Functional
Decomposition, . . .). Each of the submodels is then calibrated, before merging
them back to form the model. The division and fusion operations are the dif-
�cult steps of the method. The division operation, on the one hand, requires
the addition of knowledge about the model, which may not be available. The
fusion operation, on the other hand, has to merge calibrated submodels into a
calibrated higher model, which is not automatic.

Sallans et al. [5] present a work for a model with lots of parameters. Some of
these parameters are chosen based on initial trial simulations. The other param-
eters are chosen using the Metropolis algorithm, which is an adaptation of the
Markov chain Monte Carlo sampling to do a directed random walk through pa-
rameter space. This method performs well on a continuous parameter space, but
will hardly be usable when the parameter space is chaotic (a small change in the
value of a parameter may lead to a dramatically di�erent dynamical behaviour)
or if the model is stochastic.

Another approach is to consider the problem of the development and the
validation of agent-based models as an optimization problem. The validation
can thus be reformulated as the identi�cation of a parameter set that optimizes
some function. The optimization function would be for example the distance
between the arti�cial model that we simulate and the real system. To solve this
optimization problem, several authors [6�9] propose to use genetic algorithms
with di�erent variants. The use of these methods needs the computation of a
�tness function in order to assess the quality of each parameter setting. The
trouble, as we underlined in the introduction, is that the computation of the
�tness function for a single model potentially requires several simulation runs,
each of which may last for several hours. Without a powerful computational
cluster, the method is therefore di�cult to apply.

To reduce the need for simulation runs, De Wolf et al. [10] propose to couple
ABS to macroscopic analysis techniques such as the �equation-free� paradigm
developped by Kevrekidis et al. [11]. In this approach, macroscopic measures are
made during the simulations that are given to the analysis algorithm. The results
of the latter are then used to re-initialize the simulations with di�erent settings,
and the all process is iterated until a satisfactory dynamics is obtained in the

ABS. However, the approach is based on the observation of global trends that are
supposed to evolve gradually, which may not always be the case with complex
systems. More importantly, the approach requires a pretty good understanding
of the relationships between the macroscopic behaviour of the system and the
microscopic behaviour of its constituents, which is precisely what is seek in a lot
of simulations. As the authors state it, �Some of the steps in the road-map are
far from trivial, because some knowledge on how to bridge the micro-macro gap
is required.�

Finally, Klein et al. [12] propose to explore the parameter space of an agent-
based model by building a model of the agent model itself, which could establish
�a relationship between some parameters governing local behaviour and some
indicators of the global phenomenon.� The model has to be chosen appropriately,
then trained by running simulations so as to produce accurate results. To this
end, the parameter space is divided into sub-spaces, called `meshes', inside which
the behaviour of the system is supposed to be homogeneous. The main drawback
of this approach is that it introduces yet another model in the process, which
is itself only an approximation of the agent-based model, and that it requires a
preliminary phase of restriction of the domain of study, which questions about
the applicability of the approach for really complex systems.

3 ADO Global vision

The basic idea is to take advantage of the fact that agent-based simulations rely
on multiple agents. Instead of considering that all of them should be parameter-
ized in the same way, we propose to enable the parameterization of the di�erent
agents with di�erent settings. Instead of evaluating parameter settings one at
a time, we can thus evaluate several settings in parallel in a single model. The
hypothesis that we made is that if such a model behaves �correctly�, then the
agents that compose the model are considered to have adequate parameters. In
a way, the idea is similar to the principle of Ant Colony Systems [13].

The other idea is explore the parameter space di�erentially, depending on
the potential interest of the di�erent regions of the space. Taking inspiration
from dichotomic search and from octrees, we consider that a parameter space
of dimension n (n independent parameters) is initially divided into hypercubes
of dimension n. Practically, the de�nition set of each of the parameters is ini-
tially divided into a �xed number of identical intervals. Then, for each individual
parameter, depending on rewards received by the di�erent intervals, we may dif-
ferentially merge or divide the intervals. If an interval did receive high rewards,
this signals an interesting area of the parameter space. The corresponding in-
terval may thus be divided into two sub-intervals so as to have a more precise
evaluation of the interesting parameters. On the contrary, if two adjacent in-
tervals received few rewards, this signals an area of the parameter space of low
interest. The corresponding intervals may thus be merged so as to stop wasting
time on exploring this area.

When an agent is instantiated, the value of each parameter is chosen ran-
domly among the intervals that divide the de�nition set of the parameter. After
a model has been evaluated (by running a simulation and computing the �tness
of the model), the intervals in which the parameters of the agents have been
chosen are rewarded. For each parameter, and for each interval, the reward is
proportional to the global �tness of the model and to the number of agents that
have taken their parameter's value in the interval.

Fig. 1. ADO Method outline

The global process of the Adaptive Dichotomic Optimization method pro-
ceeds as follows (see �gure 1): a model is created, its �tness is computed, and
the corresponding intervals are rewarded. This is iterated several times (it can
also automatically be distributed on several computers), until the di�erent in-
tervals have received enough rewards so that it becomes signi�cant. For each
parameter independently of the others, the best interval (the one having the
largest reward) is selected and divided in two. The whole process is itself iter-
ated until it stabilizes.

3.1 Parameters

In this method, we have made the working hypothesis that the application of
the ADO algorithm on each parameter could be performed independently of
the other parameters. In this case, our parameter space is broken down into n
parameters divided into mi intervals (the size of the search space is thus about
n×R). In reality, the parameter space is a space of n dimensions (the size of the
search space is about Rn.). Without this hypothesis, in the selection phase, the
number of intervals would raise by 2n−1, which would cause serious di�culties.
With this hypothesis, the number of intervals only raise by n.

This is not to say that the parameters are mutually independant (the tuning
of one parameter will of course in�uence the tuning of the other parameters) but
that we may ignore this in the application of the algorithm. This hypothesis can
be intuitively justi�ed by the fact that we run lots of simulations with lots of

agents, which implies that the parameter space is globally covered. If we consider
a single parameter, it has been evaluated with the other parameters taking a
great number of di�erent con�gurations. Thus, if an interval has received high
rewards, we can be con�dent that this interval is interesting, disregarding the
speci�c values of the other parameters.

One could think that speci�c di�culties may arise if the tuning of the model
requires that two (or more) parameters take simultaneously a speci�c value. This
has been tested experimentally and the algorithm proved to be valid even in that
case. The hypothesis has also been tested with di�erent models, and it appeared
to remain correct for all the con�gurations. Figure 2 shows the distribution of
the parameter values for the 100 �rst simulations in the agent-based model (see
the subsection 4.1 page 10). Despite few agents (25 agents) in this model we can
see that the distribution globally covers all the space.

Fig. 2. Distribution of the parameter values for the 100 �rst simulations

3.2 Method

We have developed several variants of the ADO method, which can be di�eren-
tiated in the way the intervals are rewarded, divided or merged. In this paper,
we only present one variant for which we took inspiration from the Ant Colony
Optimization approach. We will �rst present Ant Colony Optimization before
exposing our method in detail, and the corresponding results.

Ants Colony. Ant colony algorithms[14�16] can be seen as a part of swarm
intelligence[17], that is, the design of intelligent multi-agent systems by taking

inspiration form natural collectively intelligent behaviours in social animals, es-
pecially insects.

The principle is inspired by the creation of trails of pheromones, like in the
foraging model that we used as an example (see subsection 4.1 page 10). We
drew our inspiration from a speci�c Ant colony algorithm: Ant systems [18]. In
the example of the traveling salesman problem (TSP), the algortihm is applied
on a completely connected undirected graph where the nodes represent the cities
and the edges represent the distances between the cities. A node is chosen as
starting node for the ants. Then the ants explore the graph. The probability for
ant k to go from the city i to a city j is given by:

pk
ij =


(τij)

α×(ηij)
βP

l∈Jk
i
(τij)

α×(ηij)
β if j ∈ Jk

i

0 if j 6∈ Jk
i

where τij is the quantity of pheromone, ηij is the visibility (= 1
dij

where dij is

the distance between the cities i and j) (it represents a heuristic information),
and Jk

i is a memory of already visited cities.

After the completion of a tour, each ants k lays a quantity ∆τk
ij of pheromones

on edge (i,j):

∆τk
ij =

{
Q
Lk if (i, j) ∈ T k

0 if (i, j) 6∈ T k

where T k is the tour done by ant k at iteration t, Lk is its length, Q is a
parameter.

The quantity of the pheromone is then updated so as to simulate its evapo-
ration, using the formula :

τij ← (1− ρ)τij + ∆τij

where ∆τij =
∑m

k=1 ∆τk
ij (m is the number of ants)

We can generalize the method with the ant colony optimization metaheuristic
[15]. The general schema of the ant colony optimization metaheuristic is:

while termination conditions not met do
ScheduleActivities

AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions()

end ScheduleActivities
end while

Moreover our parameter space is a continuous space. An interesting approach
in continuous spaces is the algorithm proposed by Socha [19].

The method in detail. Taking inspiration from ACS, we made a parallel
between pheromones in the ACS model and the rewards given to the intervals
in the ADO approach. More precisely, it is the mean reward which is chosen as
pheromone.

Moreover we add a heuristic information and a con�dence in this heuristic
information. For each interval, we compute the heuristic information in three
steps. In the �rst step, we create a model where all the agents are initialized
with the same parameter set, which is chosen in the following way (see �gure 3):

� for the speci�c interval, whose heuristic value we wish to estimate, we choose
the median value of the interval

� for all the other parameters, we choose the median value of the parameter

Fig. 3. Computation of heuristic information

In the second step, we simulate this model several times (because of the
stochasticity). In the last step, we calculate the heuristic information: the value
of the heuristic information is the average value of the �tness for the various
simulation runs. The con�dence in the heuristic information of an interval is
1 after its calculation. During a fusion stage, the con�dence is the average of
the two values of con�dence for the two intervals. During a division step, the
con�dence is divided in two. We compute again the heuristic information when
the con�dence is lower than a given value.

The phase in which the values of the parameter are chosen is modi�ed to
distinguish two steps. First, we choose an interval j of the parameter i with a
probability proportional to

[τij]
α × [ηij]

β

where τ is the pheromone quantity in this interval (that is to say the average
reward), η is the heuristic information, and α and β are parameters that con-
trol the relative importance of the pheromone versus the heuristic information.
Second, we choose a value in this interval with a uniform probability.

The division and fusion stages are also modi�ed. An interval j of the pa-
rameter i is divided if τij > τi + 2× σi, where σi is the standard deviation. An
interval j of the parameter i is merged if τij < τi − σi.

To summarize, we can adopt the ACS schema 3.2:

� AntBasedSolutionConstruction(): this step corresponds to the creation
phase of the simulation with the choice of the parameters values (see �gure
4);

� PheromoneUpdate(): this step corresponds to the computation of the simu-
lation and the reward of the intervals;

� DaemonActions(): this step corresponds to the update of the heuristic in-
formation.

Fig. 4. AntBasedSolutionConstruction step (inspired by ACS): for each parameter
(vertical lines), an agent (ant) chooses stochastically an interval based on its heuristic
value and on the quantity of pheromones on it; the agent adopts the center of the
chosen interval as its value for the given parameter

3.3 Solutions

After the algorithm has converged, it is necessary to compute a candidate so-
lution and to evaluate the �tness of this solution. Indeed, what the algorithm
computes is an adaptive discretization of the parameter space. But since the
discretization is achieved independently on each axe, this does not lead to a
single global solution. We therefore have to recompose such a global solution
and to evaluate its �tness. There are several possible ways to compute this �nal
solution.

A �rst possibility is, at each selection phase of the algorithm, to identify
for each parameter, the interval that received the most rewards. The global
solution will be composed by all of these intervals. The corresponding �tness
will be obtained by running a new simulation (in fact several runs because of
the stochasticity) with all the agents initialized with these parameters.

Another possibility to compute the global solution is to consider that the
solution interval for each parameter is the one that is smallest. Indeed, it is the
one that did receive the most rewards in the previous iterations of the algorithm,
and thus that got the most divided. This interval is therefore probably interesting
for the global solution. In fact, there are at least two such intervals because during
the selection phase, the interval that received the most rewards is divided into
two intervals of the same width. In the case of adjacent intervals of minimal
width, we therefore take the union of the two intervals. Then, if several intervals
of the same width remain, one of them is chosen randomly. The �nal global
�tness is computed as before.

After various tests, the latter possibility has been adopted to compute the
solution because it is less variable than the former. Indeed, it is not only de-
pendent on the rewards at the last iteration of the algorithm but also on the
rewards of the preceding iterations. In the remaining of this paper, all results
are computed with the second version.

4 Results

4.1 Model

We have tested our method on di�erent models. In this paper, we will focus on
a single model to illustrate and to test the method. To this end, we decided to
use the well-known ant foraging model, provided by the modeling environment
platform NetLogo [1, 20]. Figure 5 shows an illustration of this model. In this
very simple model, the agents are ants, and their aim is to bring food back to
their nest: the nest is located in the centre of the environment, and the items
of food are dispatched into three areas on the periphery. Initially the ant agents
leave the nest and make a random search for food. When an ant agent �nds
food, it brings it back to the nest secreting a chemical on its way. When other
ant agents feel the chemical, they follow the chemical way up to the food source,
which reinforces the presence of the chemical and �nally produces trails between
the nest and the food sources. We can observe ant lines emerging, which are
qualitatively similar to the ones that can be observed in natural conditions.

There are several parameters in this model. Among these, two global param-
eters control the way the chemicals are di�used in the environment:

� diffusion-rate: this parameter characterizes the di�usion of the chemical
in the environment.

� evaporation-rate: this parameter characterizes the evaporation of the chem-
ical.

Chemical

Ants

Nest

Food sources

Fig. 5. Example of an ABS: Ant foraging

We also designed several variants that included a larger number of parameters
in order to test our approach. This includes, for instance, the addition of a
new parameter that characterizes the speed of an ant agent. In this paper, the
main modi�cations are the addition of local parameters for the agents (these
parameters were present in the original model, but are not considered to be
parameters: they were �xed and could not be modi�ed in the original model):

� speed: this parameter characterizes the speed of an agent. It varies between
0 and 20 patches per simulation step.

� patch_ahead: this parameter characterizes the number of patches looked
ahead to �sni�� the chemical. It varies between 0 and 10 patches.

� angle_vision: this parameter characterizes the angle of vision. It varies
between 0°and 360°.

� drop_size: this parameter characterizes the initial quantity of chemical that
the agents drop in the environment when they come back to the nest with
items of food. It varies between between 0 and 200.

4.2 Results

Table 1. Optimized parameters values

Genetic ant
algorithm colony
method method

speed 7.35 7.69

patch_ahead 9.76 9.84

angle_vision 193.76 195.18

drop_size 109.89 144.99

In our example, the model have 25 ants, we simulate 500 steps. The global
parameters remain constant. We try to optimize the four local parameters. The

 450

 500

 550

 600

 650

 700

 750

 10 100 1000 10000 100000

Genetic Algorithm
Ant Colony Method

Fig. 6. Evolution of the �tness according to the number of simulation runs

Fig. 7. Evolution of divisions of parameter �speed�; the y axis corresponds to the
range of variation of the speed parameter (from 0 to 20); the x axis corresponds to
the succesive iterations of the ADO algorithm; for each iteration (vertically), one can
see how the range of variation of the parameter is divided into smaller intervals: in
particular, one can see that these intervals get smaller and smaller around the value
7.7, which indicates that the algorithm converged

Fig. 8. Evolution of divisions of an arti�cial parameter; the y axis corresponds to the
range of variation of the parameter (from 0 to 5); the x axis corresponds to the succesive
iterations of the ADO algorithm; for each iteration (vertically), one can see how the
range of the parameter is divided into smaller intervals: in this case, the whole range
remains explored until the end of the algorithm, which indicates that this parameter
has no in�uence on the �tness of the simulations

�tness is the quantity of food brought back to the nest at the end of the sim-
ulation. To compare our method with previous works, we also ran a genetic
algorithm method (described in [6]). We stop the algorithm after 10000 simu-
lations. Figure 6 shows the evolution of the �tness according to the number of
simulation runs.

The interesting result is that with few simulation runs, the Ant colony version
of the ADO method outperforms the GA method. In this example, with only
300 simulation runs, we have already a good approximation of the solution.

Moreover we have more information with the ADO method than with the
genetic algorithm method. Figure 7 presents the evolution of the division of the
�rst parameter in our ADO method. At the beginning of the algorithm, the
parameter is divided into ten equal parts, then as the method runs, the divisions
of the parameter evolve: we have a convergence of the divisions to accurate zones
of parameters. This illustrates one of the interests of this method: we start with
the entire parameter space before focusing on more interesting parts but without
forgetting though the other parts. Instead of providing only an optimal value, the
method thus provides a kind of a cartography of the parameter space. Figure 8
shows the evolution of the division of an test parameter (which is not used in the
model and whose value doesn't modify the �tness) in our ADO method. In this
case we don't have a convergence of the divisions but we have divisions spread
out over parameter range regularly, which is what is expected: the parameter
doesn't have any in�uence on the model, and whatever its value, the result is
the same for the simulation of the model.

We can then study the solution parameters obtained by the two methods.
Table 1 shows the optimized parameters. Whatever the method, the solutions
have the same characteristics: the agents move at high speed (about 7.5), with a

vision angle about 190°(forward), and with a farthest vision. The initial quantity
of chemical dropped o� is very high but without maximizing the quantity. To
summarize, the best agent is the one that moves quick, and that looks ahead
farthest, in front of it, which appears to be pretty logical.

5 Discussion

We presented the general framework of Adaptive Dichotomic Optimization and
we focused on speci�c variant inspired by Ant Systems. We applied our approach
on a simple benchmark, namely the ant foraging problem. The �rst results appear
to be rather promising as they show a quick convergence of the ADO method
towards a solution that is almost as good as the one that was found with genetic
algorithm. Both methods are easily distributable on several computers so as to
speed up the process.

The approach also share with genetic algorithms the interest of covering
the whole parameter space, but in a more exhaustive way. As compared to lo-
cal optimization techniques such as a random search or gradient descent, this
avoids the risk of being stucked in local optima. As compared to a simple clas-
sical dichotomy, this presents the advantage of breaking down the complexity
by exploring the parameter space in parallel, using the multiple agents to test
simultaneously several settings.

As compared to genetic algorithms, we can also see two major advantages
of the ADO approach. The �rst one is that convergence is very fast with few
simulation runs, whereas a great number of runs is necessary to bootstrap the ge-
netic algorithm. We can thus achieve a �rst exploration of the parameter space
with only 100 or 200 simulation runs, which is potentially interesting for the
modeller during the prototyping phase. The second advantage is that with the
ADO method, the parameter space can, at any moment of the algorithm, be
interpreted as a kind of a cartography of the parameter space, sparse intervals
corresponding to low interest regions, dense intervals corresponding to high in-
terest regions. Speci�c visualisation techniques remain to be developed so as to
take advantage of these characteristics.

Finally, we have to underline that the ADO approach works best for agents'
parameters, not so well for global parameters. However, this should not be too
problematic since agents' parameters are generally the ones that are to be esti-
mated, global parameters being estimated from experimental data.

6 Conclusion and Perspective

In this paper, we presented a new algorithm for the automatic calibration of
agent-based models. We also presented preliminary results on a simple bench-
mark with four continuous independent parameters to tune. These results sug-
gest that the method is interesting especially when the execution of simulation
runs is very costly, because of its very fast convergence. The argument is that
agent-based models present characteristics that make their calibration di�cult,

mainly because of the long time required to execute simulation runs, as compared
to the �tness functions usually used in genetic algorithms. Another character-
istics of agent-based models is that they are concurrent models, property that
we exploited so as to propose an e�cient algorithm, inspired by the principles
of dichotomic search and of ant colony systems. In addition, we underlined that
the method enables an exhaustive cartography of the parameter space, which is
a real advantage against genetic algorithms.

Further investigations still need to be undertaken to better understand the
role of the number of agents in the optimization process. We will also study the
signi�cation of the patterns of division for the parameters and develop visualiza-
tion tools in order to analyze these patterns. If a parameter shows a very densely
divided area with very small intervals, this parameter is probably an important
parameter in the dynamics of the simulation. On the contrary if the division
of a parameter is relatively homogeneous, this parameter may not be essential
for the model. Finally, we investigate the possibility to mix the di�erent ap-
proaches, namely Adaptive Dichotomic Optimization and Genetic Algorithms,
so as to combine the strengths and advantages of both methods.

In addition, we need to enlarge the set of models on which the method is
evaluated, with larger parameter spaces. We are now on the process of apply-
ing the method to �real� models, that is models with true modelling questions,
experimental data, hypothesises and theories. This will be the real test, that is,
�can our method give automatic answers to some of the modelling questions that
are raised by the modeller?�. This is the real challenge.

References

1. Wilensky, U.: Netlogo (1999) Center for Connected Learning and Computer-Based
Modeling. Northwestern University, Evanston, IL.

2. Brueckner, S.A., Parunak, H.V.D.: Resource-aware exploration of the emergent
dynamics of simulated systems. In: AAMAS '03: Proceedings of the second in-
ternational joint conference on Autonomous agents and multiagent systems, New
York, NY, USA, ACM Press (2003) 781�788

3. Fehler, M., Klügl, F., Puppe, F.: Techniques for analysis and calibration of multi-
agent simulations. In Gleizes, M.P., Omicini, A., Zambonelli, F., eds.: ESAW.
Volume 3451 of Lecture Notes in Computer Science., Springer (2004) 305�321

4. Fehler, M., Klügl, F., Puppe, F.: Approaches for resolving the dilemma between
model structure re�nement and parameter calibration in agent-based simulations.
In Nakashima, H., Wellman, M.P., Weiss, G., Stone, P., eds.: AAMAS, ACM (2006)
120�122

5. Sallans, B., P�ster, A., Karatzoglou, A., Dor�ner, G.: Simulation and validation
of an integrated markets model. J. Arti�cial Societies and Social Simulation 6(4)
(2003)

6. Calvez, B., Hutzler, G.: Automatic tuning of agent-based models using genetic
algorithms. In Antunes, L., Sichman, J.S., eds.: Proceedings of the 6th Interna-
tional Workshop on Multi-Agent Based Simulation (MABS'05). Volume 3891 of
lnai., Luis Antunes, Jaime Simao Sichman (2005) 39�50

7. Calvez, B., Hutzler, G.: Exploration de l'espace de paramètres d'un modèle à base
d'agents. In Guéré, E., ed.: 7èmes rencontres nationales des jeunes chercheurs en
intelligence arti�cielle (RJCIA 2005), Presse Universitaires de Grenoble (PUG)
(2005) 99�112

8. Rogers, A., von Tessin, P.: Multi-objective calibration for agent-based models. In:
5th Worksho on Agent-Based Simulation. (2004)

9. Narzisi, G., Mysore, V., Bud Mishra, B.: Multi-objective evolutionary optimiza-
tion of agent-based models: An application to emergency response planning. In
Kovalerchuk, B., ed.: The IASTED International Conference on Computational
Intelligence (CI 2006). (2006)

10. Wolf, T.D., Samaey, G., Holvoet, T., Roose, D.: Decentralised autonomic com-
puting: Analysing self-organising emergent behaviour using advanced numerical
methods. In: ICAC. (2005) 52�63

11. Kevrekidis, I.G., Gear, C.W., Hummer, G.: Equation-Free: The Computer-Aided
Analysis of Complex Multiscale Systems. AIChE Journal 50(7) (2004) 1346�1355

12. Klein, F., Bourjot, C., Chevrier, V.: Dynamical design of experiment with mas to
approximate the behavior of complex systems. In: MA4CS. (2005)

13. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy.
Technical Report No. 91-016, Politecnico di Milano, Italy, 1991 (1999)

14. Blum, C.: Ant colony optimization: Introduction and recent trends. Physics of
Life Reviews 2(4) (December 2005) 353�373

15. Dorigo, M., Di Caro, G.: New Ideas in Optimization. In: The Ant Colony Opti-
mization Meta-Heuristic. McGraw-Hill (1999) 11�32

16. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimiza-
tion. Arti�cial Life 5(2) (1999) 137�172

17. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence From Natural to
Arti�cial Systems. Oxford University Press (1999)

18. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part
B: Cybernetics 26(1) (1996) 29�41

19. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. In: EURO
XXI in Iceland. (2006)

20. Wilensky, U.: Netlogo ants model (1998) Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL.

