N

N

Modeling and analysis of security protocols using role
based specifications and Petri nets
Roland Bouroulet, Raymond Devillers, Hanna Klaudel, Elisabeth Pelz, Franck

Pommereau

» To cite this version:

Roland Bouroulet, Raymond Devillers, Hanna Klaudel, Elisabeth Pelz, Franck Pommereau. Modeling
and analysis of security protocols using role based specifications and Petri nets. International Con-
ference on Application and Theory of Petri Nets (ICATPN’08), Jun 2008, Xi’an, China. pp.72-91,
10.1007/978-3-540-68746-7_9 . hal-00340476

HAL Id: hal-00340476
https://hal.science/hal-00340476
Submitted on 16 Feb 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00340476
https://hal.archives-ouvertes.fr

Modeling and analysis of security protocols
using role based specifications and Petri nets

Roland Bouroulet*, Raymond Devillers?,
Hanna Klaudel*, Elisabeth Pelz* and Franck Pommereau*

*) LACL, Université Paris Est, 61 av. du Gén. de Gaulle, F-94010 Créteil.
1) Département d’Informatique, CP212, Université Libre de Bruxelles.
1) IBISC, Université d’Evry, bd Francois Mitterrand, F-91025 Evry.

Abstract. In this paper, we introduce a framework composed of a syn-
tax and its compositional Petri net semantics, for the specification and
verification of properties (like authentication) of security protocols. The
protocol agents (e.g., an initiator, a responder, a server, a trusted third
party, ...) are formalized as roles, each of them having a predefined be-
havior depending on their global and also local knowledge (including for
instance public, private and shared keys), and may interact in a poten-
tially hostile environment.

The main characteristics of our framework, is that it makes explicit,
structured and formal, the usually implicit information necessary to anal-
yse the protocol, for instance the public and private context of execution.
The roles and the environment are expressed using SPL processes and
compositionally translated into high-level Petri nets, while the context
specifying the global and local knowledge of the participants in the pro-
tocol is used to generate the corresponding initial marking (with respect
to the studied property). Finally, this representation is used to analyse
the protocol properties, applying techniques of simulation and model-
checking on Petri nets. The complete approach is illustrated on the case
study of the Kao-Chow authentication protocol.

Key words: security protocols, formal specification, process algebras,
Petri nets.

1 Introduction

In the last years, security protocols have become more and more studied for
their behaviours, causal dependencies and secrecy properties. Such protocols,
where messages are asynchronously exchanged via a network, assume an under-
lying infrastructure, composed of (asymmetric) public, private and (symmetric)
shared keys [30, 31]. In order to specify more precisely security protocols, formal
description languages have been proposed, like the Spi-Calculus in [3] or the
Security Protocol Language (SPL) in [14]. The latter is an economical process
language inspired from process algebras like the asynchronous w-Calculus [26]:
each process is defined by a term of a specialized algebra which allows to rep-
resent sequences and parallel compositions of (more or less complex) input and

output actions which may contain messages. Thus, in contrast to other nota-
tions, sending and receiving messages can and have to be explicitly specified.
However, when used to specify protocols with various agents, each of them play-
ing a proper role with respect to the (global, but also local) knowledge it may
have, an SPL presentation needs to be complemented in order to be verified.
Usually, a number of implicit information is added, concerning for instance the
global context of the protocol execution, the number and the identity of the
participants, the knowledge about encryption keys each of them has, and so on.

In this paper, we provide a solution allowing to take into account all this
important information in a structured way, making it explicit. We focus on the
specification and verification of properties (like authentication) of security pro-
tocols. The active elements of these protocols may be formalized as roles, like for
instance an initiator, a responder or a server, each of them having a predefined
behavior taking place in a given contert. They should interact in some poten-
tially hostile environment in such a way that desired properties are preserved.
Thus, in our approach, we define a framework in which a protocol is specified as
a triple composed of a number of roles, an environment and a context. The roles
and the environment are expressed using SPL processes, while the context spec-
ifies the knowledge of the participants in the protocol (including public, private
and shared keys).

Next, this specification is translated into a class of composable high-level
Petri nets. In particular, the roles and the environment are translated into S-
nets [9,10]. All these nets are composed in parallel in order to get a single net.
The context serves to define its initial marking (with respect to the studied
property). Finally, this representation is used to analyse the protocol properties,
applying techniques of simulation and model-checking [19].

With respect to previous translations into Petri nets [9, 10], the present paper
also introduces a way to use secret shared keys cryptography (while only public
key cryptography was available before), and to take into account information
about the past (like compromised old-session keys).

1.1 Case study

The approach will be illustrated on the Kao-Chow (KC) authentication protocol
[21,12], chosen as running example, involving participants exchanging messages
using shared encryption keys. It implements three roles: those for an initiator, a
responder and a server. As usual in a cryptographic context, all the participants
make use of nonces, which are newly created values used by the participants to
sign their messages.

The KC protocol between an initiator A, a responder B and a server S, allows
A and B to mutually authenticate and to share a symmetric key K, used for
secure communications after the agreement, i.e., at the end of the protocol A
and B are sure about the secrecy of their knowledge about K ;. Informally and
assuming that K,s and Kjs are symmetric keys initially known only by A and
S, and respectively by B and S, the KC protocol may be described as follows:

1.

A — S: A Bm

The initiator agent A sends to the server S its own agent name A, the name
of the agent B with which it would like to communicate, together with a
nonce m.

.S — B : {AuB7Kab7m}Ka37{AaBaKabam}KbS

Then, S sends to B a message containing the received names A and B and
the nonce m, together with the generated symmetric key K,p, first encrypted
with K, the symmetric key it shares with A, second with Kjs the one it
shares with B. This second part, B should decrypt after reception.

.B — A: {AB Kp,mlk,.,{m}lk,,n

Then, B sends to A the first part of the received message (that it cannot
decrypt because it is encrypted with K,), together with the received nonce
m encrypted with the shared (newly obtained) key K, and its own nonce
n. After reception, A decrypts the first part of the message, gets the key K
and checks it by decrypting its own nonce m.

. A — B : {n}k,

Finally, A sends back to B the nonce n encrypted with K.

This protocol suffers a similar kind of attack as the Denning Sacco freshness

attack on the Needham Schroeder symmetric key protocol, when an older session
symmetric key Ky has been compromised.

1.

A — S: ABm

2. A and B previously used the symmetric key K, and we assume from now

on that K, is compromised. So the following exchange has already occurred
and can be replayed: S — B : {A,B,m,Ku}x,..{A, B,m,Kau}k,.. An
attacker I may now impersonate S and A to force B to reuse Ky, in a
communication with what it believes to be A, while it is I.

. I(S) — B {AaBamaKab}Kasa{AuB7m7Kab}Kbs

Agent I behaves as S and replays the same message to B.

.B — I(A) : {A,Bym,Kulk,.,{m}tk,,,n

B executes the next step of the protocol and sends a message with a nonce
n' to I, believing it is A.

. I(A) - B : {n'}k,

I, knowing the symmetric key K, encrypts n’ and sends it back to B. Now

B believes to have authenticated A and pursues a secret communication with
I instead of A.

The corresponding role based specification of this protocol comprises three

roles (for one initiator, one server and one responder), each of them being formal-
ized as an SPL process together with the knowledge about keys that it knows.
The environment is represented by a generic SPL process simulating a poten-

tially agressive attacker, and the global context is empty as the protocol does not

assume any public knowledge. This specification is the basis of the compositional
translation to high-level Petri nets for model-checking and simulation.

1.2 Outline

The paper is structured as follows: The next section presents syntactical aspects
of our framework of role based specification, and their intuitive meaning. It
includes a short presentation of the SPL syntax and its intuitive semantics,
augmented by the explicit expression of keys, and the formal definition of a role
based specification which uses SPL. The three elements of such a specification
are described next, namely the initialized roles, the environment and the public
context. This syntactical part is illustrated by providing a role based specification
of the KC protocol, and its variants depending on the global context definition.

The next section introduces our Petri net (S-net) semantics of a role based
specification and its compositional construction. In particular, the translation
algorithm from SPL terms to S-nets for roles and for the environment is detailed
as well as the one giving to the nets their initial marking. Dealing with symmetric
keys, and possibly several of them between one pair of agents, needs a careful se-
mantical treatment, which is explained and illustrated on small examples. Also,
because of the modeling of a fully general environment, the translation poten-
tially leads to infinite nets. Various ways allowing to cope with this problem are
then presented and discussed.

Then, a section illustrates the use of the role based specification in order to
automatically obtain a Petri net representation of KC protocol, and relates our
verification experiences using existing model-checking tools.

Finally, we conclude by giving some indications about the directions of our
future work.

2 Role based specification with SPL

First, we briefly recall the syntax and the intuitive semantics of SPL agents,
inspired from [14].

2.1 Syntax and intuitive semantics of SPL

We assume countably infinite disjoint sets:

— of nonces (which are assumed to be numerical values) N = {n,n/,n”,...};

— of agents G = {A, B,...};

— and of indexes for processes and keys I = {i,...}, containing in particular
the natural numbers N.

We distinguish also three disjoint sets of variables:

— Vv ={u,v,w,x,y, z,...} for nonce variables;
— Ve ={X,Y,Z,...} for agent variables;
— and Vi = {¥, ¥, ¥y,...} for message variables.

—

We use the vector notation @ which abbreviates some possibly empty list of
variables ay, ..., a; (in VN UV5UVay), usually written in SPL as {a1, ..., a;}. Also,
the notation [? /@] represents the componentwise sort-preserving substitutions
a;—V;, forie{l,...1}.

The syntax of SPL is given by the following grammar:

gu= A,... | X... agent expressions
en= n,..| u. nonce expressions
k= (Pub,e,g) | (Priv,e,g) | {(Sym,e, g1, g2) key expressions
M:u= glel|k|M,My | {M}y | W messages
pu= outnew w M.p | inpat@ M.p| |lier pi processes

where

(a)

(Pub, e, g), (Priv,e, g), (Sym,e, g1, g2), where e is the actual value of the key,
are used respectively for the public key of g, the private key of g, and the
symmetric key shared by g1 and ga; we may also use indexes like (Pub, e, g, 1),
(Priv,e, g,1), (Sym,e, g1,g2,1), i € I, if we need to manage several similar
keys simultaneously. We shall denote by K the set of all possible private,
public and symmetric keys without variables in the SPL format.

A message may be a name, a nonce, a key, a composition of two messages
(M1, Ms), an encrypted message M using a key k, which is written {M }, or
a message variable. By convention, messages are always enclosed in brackets
{ }, thus allowing to distinguish between a nonce n and a message {n} only
containing it. Moreover, we denote by Msg the set of all messages without
variables formed with respect to the SPL grammar, and u(Msg) the set of
all multi-sets over it.

In the process out new @ M.p, the out-action prefixing p chooses fresh dis-
tinct nonces W = {nq,---,n;}, binds them to variables @ = {uq,...,u;}
and sends the message M[7W /%] out to the network, then the process re-
sumes as p[7/@]. It is assumed that all the variables occurring in M also
occur in @. The new construct, like in [14], ensures the freshness of values
in 7. Notice that communications are considered as asynchronous, which
means that output actions do not need to wait for inputs. By convention,
we may simply omit the keyword new in an out-action if the list 7 of ‘new’
variables is empty.

In the process in pat @ M.p, the in-action prefixing p awaits for an input
that matches the pattern M for some (sort-preserving) binding of the pat-
tern variables @, then the process resumes as p under this binding, i.e.,
as p[@ /@], where @ are the values in N UG U Msg received in the input
message. It is required that @ is an ordering of all the pattern variables
occurring in M. We may also omit the keyword pat in an in-action if the list
@ of ‘new’ variables is empty.

The process ||;c.7 p; is the parallel composition of all processes p; with i € J C
I. The particular case where J is empty defines the process nil = ||;cp pi;

all processes should end with nil but, by convention, we usually omit it
in examples. Replication of a process p, denoted !p, stands for an infinite
composition ||;en p-

We shall denote by var(p) the set of all the free variables occurring in the process
p, i.e., the variables used in p which are not bound by an in or out prefix. In order
to simplify the presentation, we assume that all the sets @ and @ of variables
occurring in the out and in prefixes of processes, as well as their sets of free
variables, are pairwise disjoint.

2.2 Role based specification

We can now introduce our approach which mostly relies on notions like “role”,
“environment”, and private and public “contexts”.

Given an SPL grammar as above, a role (i.e., a named process) is a definition
of the form 6(ay, ..., am;) £ ps, where ps is an SPL process, such that var(ps) C
{a1, ..., am;}. For short, such a role is often identified with its name §. Its context
contezts is defined as a pair (fs,(s5), where

— fo:{a1,...,am;} — GUNUMsg is a sort-preserving mapping that associates
an agent to each agent variable, a nonce (value) to each nonce variable and
a message to each message variable;

— and ls C K is a subset of keys known by the role 4.

Intuitively, ¢ is the name of an agent, ps describes its behaviour, fs defines
the instantiation of the process by fixing the values of the free variables and s
specifies the initial private knowledge of the agent (usually the agents initially
know some keys; during the execution of the protocol they will be able to learn
some more keys from the messages received through the network). We shall
denote by (§(fs),ls) an initialised role 0 together with its private context.

Besides agents, the system will also encompass some spies and the network
interconnecting all of them.

A role based specification is defined as a triple

(Initialized_Roles, Environment, Public_Context),

where

— Initialized_Roles C {(6(fs),ls) | 0 is a role} is a (finite) non-empty set of
initialised roles with their private contexts;

— Environment C {s | s is a role} defines an environment, i.e., a set of proto-
type roles (spies) whose replication and composition will allow to form more
complex attackers; note that spies do not have a context, since they have no
free variable, nor private knowledge (in order to cooperate, they make public
all they know);

— Public_Context € u(Msg) is the initial public context, i.e., a (multi-)set of
messages previously sent on the network and available to everyone (to spies
as well as to agents) when the protocol starts; it comprises usually the names
of the agents in presence, but also possibly compromised keys, etc.

Using a role based specification to express a security protocol hence consists
in defining the roles corresponding to all the participants (initiator, responder,
trusted third party, ...) and the roles corresponding to the prototypes of the po-
tential attackers (environment). Potential attackers may be described using spy
processes. Such processes will have the possibility of composing eavesdropped
messages, decomposing messages and using cryptography whenever the appro-
priate keys are available. Below we present the six basic SPL spy processes,
which refer to the standard Dolev-Yao [17] model. They are inspired from [14].
By choosing various specifications for the attacker (i.e., various combinations of
Spy processes) one can restrict or increase its power of aggressiveness.

The following six spy processes may be divided into three groups depending
on the action they perform. Thus, the first group deals with messages composi-
tion/decomposition: Spy; reads two messages from the network and issues to the
network the message composed of the two read messages, while Spy» decomposes
a message read on the network and issues its parts.

Spy, <L in pat {T {1 }. in pat{@ }{¥s}. out {¥, P>}
Spyy = in pat {Dy, Bo}H{ D1, Po}. out {P1}. out {Py}

The next group deals with encryption: Spys encrypts a message with the
public key of someone, and issues it to the network, while Spys encrypts a
message with a symmetric key, and issues it.

Spys < in pat {u, g}H{(Pub,u, g)}. in pat {¥}H{W}. out {¥} pyp.u.g)
Spys = in pat {u, g1, g2} (Sym,u, g1, g2)}. in pat{@ HP'}. out {U'} (sym u,01,02)

The last group deals with decryption thanks to some obtained keys: Spys
decrypts a message with the private key of someone if it is available, and issues
it to the network, while Spys decrypts a message with a symmetric key if it is
available, and issues it.

Spys < in pat {u, g H{{Priv,u, g)}. in pat{P}{P}{Pub,u, g). out {P}
Spye L in pat {u, g1, g2 H{(Sym, u, g1, g2) }. in pat{P' HP'} (sym,u,g1,g2)- 0ut {P'}

In case we need to manage more than one key of a kind per agent, the spy
definitions take this information into account, for example,

SpyS g n pat {’U,, g, Z}{<PUba u, g, Z>} n pat{!p}{!p} out {Lp}<Pub,u,g,i)

In this model, a general potentially very aggressive attacker is modeled by
an infinite set of spy processes running in parallel.

2.3 A role based specification of the KC protocol

The roles in our modeling of the KC protocol comprise the following SPL pro-
cess definitions, where X, X', X", ..., are agent variables in Vg, u,u’,u”, ..., are
nonce variables in Vv, and ¥ € V), is a message variable:

Init(X,Y, Z,u) = out new {x} {X,Y,x}.
m pat{y, Z} {{Xv K <Syma 2, Xa Y>a I}(Sym,u,X,Z)v {x}(Sym,z,X,Y)) y}
out {y}(Sym,z,X,Y>}

Serv(Z',u',v") = in pat {X',Y' &'} {X",Y' 2'}.
out new{w'} {{X',Y', (Sym,w', X" Y'), 2"} (sym.w.x",2'y5
{le Y/a <Syma w/a le Y/>a I/}<Sym,v’,Y’,Z’>}

Resp(Y", Z" u") =
n pat{X”, yllv w//a W} {Wv {XN, YN) <Sym7 ’LU//, X//a YN>5 y//}<Sym,u”,Y”,Z”) .
out new {:C”} {W, {yll}(Sym,w”,X”,Y”> s ,’E”}.
m {x”}(Sym,w”,X”,Y”)
A complete role based specification of the KC protocol comprising one initia-
tor A, one server S and one responder B is given by

({ (Init(A, B, S,n1), {(Sym,n1, A4, S)}),
(Serv(S,n1,n2), {{Sym,n1, A, S), (Sym,na, B, S)}),
(Resp(B, S,n2), {(Sym,n2,B,S)}) },

{ Spy1. Spya, Spya, Spys

MuU {4}, {B}{S}}),

where the roles Init(X,Y, Z,u), Serv(Z',u',v"), Resp(Y",Z",u") and Spy, are
defined as above, and M is a set of residual messages. Here we use only the
spy processes that make sense in the case of the KC protocol (for instance, Spys
deals with public key cryptography that is not involved in KC).

2.4 Different versions of the KC protocol

We will consider in the following two versions of the KC protocol and its environ-
ment. The first one will be used to check the intrinsic resistance of the protocol,
and will start from an empty initial knowledge: M =). But since the essence
of the KC protocol is to manage short term session keys, it could happen that a
key becomes compromised after some time. This may happen, for example, due
to more or less clever brute force attacks. So, we will consider a version where
M contains initially such a compromised key. Another KC variant would be a
system with various initiators and responders.

3 Petri net translation of a role based specification

3.1 The general picture

Given a role based specification, its Petri net semantics may be obtained com-
positionally using an algebra of high-level Petri nets, inspired from the S-nets

introduced in [9] and its optimised version defined in [10]. Basic (unmarked) nets
in this algebra allow to directly represent the SPL prefixes and are one-transition
nets, like those in Figures 1 and 2, where the places represent composition inter-
faces, which are either control-flow (entry, exit or internal) or buffer ones. The
labeling of the last ones (that are devoted to asynchronous communications)
may be either:

— SPL variable names (each such place storing the current value of the vari-
able);

— Ks (storing information about encryption/decryption keys privately known
by a role d);

— or {2 (storing all the messages transferred through the public network).

These nets may be composed with various composition operations:

— sequentially (N1;N2, which means that the exit places of the first net and
the entry places of the second net are combined);

— in parallel (N1]| N2, which means that both nets are put side by side);

— or replicated (IN = ||;enN).

All these operations include the merging of buffer places having the same label
in order to allow asynchronous communications.

Thus, if (6(fs5),ls) is an initialized role in a role based specification, the
process expression that describes the behavior of § allows to compositionally
construct a corresponding unmarked S-net. Its initial marking is obtained by
putting a (black) token into its entry places while the tokens in the buffer places
are put accordingly to the context (fs,1s).

If Spy is a prototype role defining a kind of activity of the environment, we
proceed similarly but implicitly assume that the parallel composition of all such
roles may be replicated. Its finite structure representation is then obtained as
an unmarked S-net, as defined in [10]. Its initial marking is defined by putting
one token in each entry place and no token elsewhere. The complete Petri net
representation of a role based specification is then a parallel composition of all
the corresponding S-nets. Its initial marking includes the markings mentioned
above and the tokens (messages) coming from the public context in the place 2.

3.2 Translation scheme
Let us assume that
({1 (f1),), s (Op(fp), 1)} {51, - - -, Sr }, Public_Context)
is a role based specification, where each role d; is defined as
di(ay,... ,améi) & D5, -

Its translation into Petri nets is defined by the following phases, where the se-
mantic function Snet will be detailed later on:

— Phase 1. Each role definition d; is translated first into an S-net Snet(d;), then
we construct a net R as the parallel composition Snet(dy)] - - -||Snet(d.,),
which merges in particular all the buffer places {2 and all the key places «s,
for the same d;;

— Phase 2. Each role definition s; (spy) is translated first into an optimized
transformed S-net Snet(s;). Then, we construct a net SPY as the parallel
composition Snet(s1)]| - - - [|Snet(s,), which encodes every possible execution
of the attackers. Note that this translation is similar for some class of speci-
fications and may be performed only once;

— Phase 3. The nets R and SPY are composed in parallel R||SPY and marked
as follows:

e the place (2 receives all the tokens (messages) from Public_Context;
e cach entry place receives a black token;
e for each initialized role §;:

+ each key place ks, receives all the tokens from [;;

% each place aj, for 0 < j < myg, receives the token f;(a;).

3.3 Petri net semantics of roles

Each role definition §(- - -) = ps may be translated compositionally into a corre-
sponding S-net, as defined in [9], providing its high-level Petri net representa-
tion. S-nets, like other high-level Petri net models, carry the usual annotations
on places (types, i.e., sets of allowed tokens), arcs (multisets of net variables)
and transitions (guards, i.e., Boolean expressions that play the role of occur-
rence conditions). S-nets have also the feature of read-arcs, which are a Petri net
specific device allowing transitions to check concurrently for the presence of to-
kens stored in their adjacent places [11]. Like other box-like models [6, 7], S-nets
are also provided with a set of operations giving them an algebraic structure.
In the version considered here, this is achieved through an additional labeling
of places which may have a status (entry, exit, internal or buffer) used for net
compositions.

The marking of an S-net associates to each place a multiset of values (tokens)
from the type of the place and the transition rule is the same as for other high-
level nets; namely, a transition ¢ can be executed if the inscriptions of its input
arcs can be mapped to values which are present in the input places of ¢ and if the
guard of t, y(¢), is true under this mapping. The execution of ¢ transforms the
marking by removing values (accordingly to the mapping of arc inscriptions) from
the input places of t and by depositing values into its output places. Read-arcs are
only used to check the presence of tokens in the adjacent places but do not modify
the marking. They are represented in figures as undirected arcs. Notice that given
a transition ¢ and a marking p, there may be several possible executions (firings),
corresponding to different mappings of variables in the inscriptions around ¢ to
values (called bindings and denoted o).

More precisely, we distinguish the following sets of tokens as types for the
places in S-nets.

— {eo} for the entry, internal and exit places;

— Msg for the buffer place labeled (2 intended to gather all the messages present
in the network, as well as for all buffer places labeled with SPL message vari-
ables (from Vi), even if the latter are intended to carry at most one message.
For implementation or efficiency reasons, the set Msg may be restricted, for
instance to a given maximal message length;

— N UG U K UMsg for all the other buffer places.

The S-net transitions always have at least one input and at least one output
control-flow place; they may be of two sorts, corresponding to the two basic
SPL actions ‘in’ and ‘out’. Arcs are inscribed by sets of net variables (denoted
a,b,c,d...). In order to avoid too complex (hence difficult to read) transition
guards in some figures, we use a shorthand allowing to put complex terms as
arc inscriptions (which has no consequences on the behavior of the net): we may
thus replace an arc annotation ¢ and a guard ¢ = f(a, b, d) by the arc annotation
f(a,b,d) and the true (or empty) guard.

v
K’RESp(Y”,Z//,’LL//)
O\ ; Jiite
% <Sym7cva7i>
O
{{d7 {b}(Sym,c,a,i>7 6}
N T~ Q

O

Fig. 1. The S-net corresponding to out new {«" H{¥, {3 }(sym,w,x7, vy, "} in the role
Resp(Y",Z" ,u").

By analogy with the two basic SPL actions, there are two basic S-nets. Each
of them has a single transition, inscribed IN or OUT, one entry and one exit
place of type {e}, one buffer place labeled {2 of type Msg, a unique key place ks
where ¢ is the role in which the modeled action occurs, and some other buffer
places, as shown in Figures 1 and 2.

For instance, the SPL output action

out new {IN}{W, {y”}<sym7w//)x//7yu), ZZ}‘N}

in the role Resp(Y”,Z" ") gives rise to the S-net represented in Figure 1.
This net may be executed if there is a token e in the entry place (denoted by
an incoming =), and if the buffer places labeled w”, ", X", Y", Z"”, ¥ and
KResp(Y",z" u), are marked (i.e., contain values). At the firing of the transition
under a binding o, a nonce' is generated and put in place x”'; the tokens existing
in places w”, y", X", Y", Z", ¥ and KRegp(y 7wy are read (but not removed);
the token e is transferred from the entry place to the exit place (denoted by an
outgoing =); and the whole message {o(d), {7(b) } (sym.o(c),0(a),o(i))> 7(€)} is put
in the message buffer f2.

O

408 O
X Q\ b d 0
to IN {{a7b7 <Symaf7 a, b>7d}<5ym,g,a,c)a{d}(Sym,f,a,b)»e} _Q

(Sym, g, a,c)

PR

RInit(X,Y,Z,u)

Fig. 2. The S-net for the ‘in’ action in the role Init(X,Y, Z, u).

The elementary SPL input action

m pat {ya Z}{{Xv K <Syma Z, Xa Y>a I}(Sym,u,X,Z)a {I}<Sym,z,X,Y)) y}

of the role Init(X,Y, Z;u) is obtained analogously and represented in Figure 2.
The message {{X,Y, (Sym, 2, X,Y), 2} sym.u,x,2)s 12} (Sym.=,x,v), ¥} has local
nonce variables y, z and u, global nonce variables z, X, Y, Z and no message
variable. At the firing of the transition, a message from {2 with the adequate pat-
tern is read, such that the existing values of z, X, Y and Z in the corresponding
places are checked (through the read-arcs) to be equal to the corresponding ele-
ments of the message, and the value of the variables y and z are decoded from
the message and put in the corresponding places.

The S-net representing a role § is defined compositionally using S-net com-
position operations and is denoted Snet(d).

We can observe, that the place (2 is part of each basic net and, through
merging, thus becomes global to each composed net, like in Figures 5, 6 and 7.

! We assume that o is such that o(e) is fresh. This can be implemented by using a
place initially marked by a set of nonce values that are consumed when a fresh one
has to be generated.

3.4 S-net semantics of the environment

The most general environment of a protocol is the most aggressive attacker, thus
an unbounded number of all sorts of spies. Its role SPY can be described as a
replication of all involved spies in parallel (for KC we have J = {1,2,4,6}, 3 and
4 being irrelevant in this context).

SPY = ! (|liesSpy,;) or equivalently SPY = |l;c; ! Spy,.

The associated net Snet(SPY) is that obtained by the infinite parallel compo-
sition of the S-nets obtained via the standard translation of the various Spy,’s.
For instance, Figure 3 shows the standard translation of our first spy.

41

Fig. 3. One copy of the S-net of Spy;.

This representation and translation of the environment presents some diffi-
culties with respect to verification: the process SPY representing all potential
attackers is infinite, as well as Snet(SPY). A way to cope with this problem
is to propose net transformations which do not essentially modify the net be-
haviour but lead to finite net and marking graph. This is possible, as shown in
[10], by proposing solutions to the following three problems, given by increasing
difficulty:

1. The composed messages do not have a bounded length.

2. The net is infinite (even for a bounded number of agents) because of repli-
cation in SPY.

3. The multiplicity of tokens in place {2 is not bounded.

The first and third ones induce infinite paths in the marking graph, the second
one infinite edge degrees. We just like to quote here the adopted solutions which
ensure finiteness.

1. The length of composed messages will be bounded by a (usually very small)
constant, which corresponds to the maximum length of valid messages in
the considered protocol; hence, the type Msg of buffer places will be a bit
restricted, but the messages not representable are useless for the protocol.

2. Replication will be replaced by iteration, in the form of a loop. Thus we
have only to consider |I| transformed Spy,;-nets which are cyclic, and where
at each cycle the buffer places which should initially be empty are emptied by
a “flush” transition. The resulting behaviour is not exactly the same as with
a true replication, since no two copies of a same spy may be simultaneously
in the middle of their work; but this has no impact on the messages they can
produce in 2.

3. The place 2 will contain a multi-set with a very small bound of multiplicities.
This can be achieved by adding a place am; (for access-memory) to each
Spy; net, containing a local copy of {2 : its type is organized as a list without
repetition, ensuring (via the guard of the upper transition) that no multiple
copies are put in the global place {2 by this Spy. (Identical copies may be
still be produced by different spies, but there is a small number of them.)
Additional places (see ss; in Figure 4) allow to force the next transitions to
use the same values as the first one when necessary.

This way, we obtain an optimized transformed spy-net for each Spy,, called
Snet(Spy,), as illustrated (for ¢ = 1) in Figure 4. Via an adequate equivalence

Fig. 4. The net Snet(Spy,), where the guard of ¢1 is ((a.b) ¢ I) Al' = 1.(a,b).

relation on these nets, it has been shown in [10], that these transformations
preserve the (interesting part of the) original behaviour: Snet(Spy,;) = ! Spy; .

By taking Snet(SPY) = ||;er Snet(Spy;) we have a finite net representation
of the complete SPY role.

4 Petri net model of the KC protocol and its verification

4.1 S-net semantics of KC agents

There are three agents involved in the KC protocol: the initiator, the server and
the responder. The first one is represented by the role Init(X,Y, Z,u), where X
denotes the name of the agent itself, Y the name of the responder and Z the
name of the server involved. The variable u denotes the value of the symmetrical
key that the initiator shares with the server. So we get for the initiator the S-net
depicted in Figure 5.

e " f
N
0 DX

{Bsym, f,0.0)

RInit(X,Y,Z,u)

ouT

Fig.5. The S-net for Init(X,Y, Z,u), where the guard of t2 is the equality M =
{{a7 b7 <Sym7 f7 a, b>7 d}(Sym,g,a,c)7 {d}(5y7n,f,a,b)7 6}.

The second one is the server, represented by the role Serv(Z’,u’,v"), whose
free variables are Z', v/, v’, denoting respectively the name of the server itself,
and two key values that the server will distribute on receiving the first message
from the initiator. The corresponding S-net is depicted in Figure 6.

(Sym, g,a,c)

(Sym, h,b, c)
KServ(Z’,u,v") (Sym, f,a,b)

Fig.6. The S-net for Serv(Z’,u',v’), where the guard of t2 is M =
{{a7 b7 <Sym7 f7 a, b>7 d}(Sym,g,a,c)7 {a7 b7 <Sym7 f7 a, b>7 d}(Sym,h,b,c)}'

Finally, the responder corresponds to the role Resp(Y",Z" u"), where Y
represents the name of the responder itself, Z” to the server and " is the value
of the key that is shared between the Z” and Y. The corresponding S-net is
shown in Figure 7.

The S-net of the complete protocol is made of the agents and the environment
Snet(SPY), as explained above.

4.2 Automated verification of KC

The next step of our approach is the automated verification of the authentication
property of KC using model-checking techniques. We used for that the Helena
analyzer [19], which is a general purpose high-level Petri net model-checker.

Starting from the role based specification, as described above, we imple-
mented in Helena the S-nets of the roles and of the environment.

We considered first the intrinsic resistance of the KC protocol, i.e., the variant
where the public context M is empty. In order to test the resistance of the
protocol in such an environment, we used a complete protocol with two agents
A, B and a server S, with the environment formed of Spyi, Spy2, Spys and
Spys.

u/l Q/ f IN K’RESp(Y” Z!")
(Sym, ¢, a, i) N

e

b g N\ {(5ym, fii.g)

(Sym, ¢, a,1)

Fig.7. The S-net for Resp(Y",Z" u”), where the guard of ¢ is M =
{d,{a,i,(Sym,c,a,i),b}sym, 1.y}, the guard of to is M' = {{d, {b} (sym,c,a.s)> €} and
the guard of t3 is M" = {e}(sym,c,a.)-

In the KC protocol, B authenticates A when it receives the last message
{n}k,, from A, while A authenticates B on receiving the message

{A7 Bv Kab; m}Kasv {m}Kabv n

That implies B authenticates after A does. In the net vocabulary, agents A
and B mutually authenticate when the exit places of Snet(Init(A, B, S,n1)) and
Snet(Resp(B, S,n2)) are marked. Therefore, a first property to check is that it
is not possible to reach a marking where the exit place of Snet(Resp(B, S, n2))
is marked while the exit place of Snet(Init(A, B, S,n1)) is not. This verification
was successfully performed: no such violating marking is reached when the initial
knowledge is empty.

The second analysis was to check if the protocol still resists when the public
context is not initially empty. It means that agents A and B have already used
the KC protocol. So, some of the messages exchanged during previous sessions

are part of the public context and we can assume also that for some reason a
previous key session is compromised and was made public by some other (brute
force, for instance) attacker. Therefore, it means in terms of the net semantics,
that the place {2 contains the messages {(Sym,ns, B, S)} and

{{Au B7 <Sym7 ns, Aa B>7 a}(Sym,rn,A,Z)u {A7 Ba <Sym7 ns, Au B>7 a}(Sym,fm,B,Z)}

together with the messages containing the names of the agents involved in the
protocol {A}, { B}, {S}, as usual.

In this case, violating markings are the same as previously: the exit place
of Snet(Resp(B, S,n2)) is marked and the exit place of Snet(Init(A, B, S,n1)) is
not. In that case we found that the violating marking was reached and therefore
this implies that the authentication property is violated. This corresponds to the
fact that the spies succeeded in convincing B that a successful new session has
been started with A, while this is not the case.

It took 29s using the Helena model-checker to compile and analyse the entire
system in both cases on an Intel® Core™Duo 2.33GHz.

5 Conclusion and future work

Security protocols are a very delicate field. Since they imply concurrent agents
communicating through a generally public and insecure medium (allowing at-
tackers to add, suppress and forge messages), they are prone to numerous forms
of weaknesses, difficult to track and discover. And indeed, it is not uncommon
that a protocol seems (sometimes “trivially”) correct and is used for years before
a flaw is discovered. A famous example of this kind is for instance the Needham-
Schroeder protocol [28], broken 17 years after its introduction [23,24].

Hence it appears necessary to use more formal and systematic ways to as-
sess such protocols [25], like for instance [2,22,13,8]. Several approaches, like
theorem provers or model-checking, were applied and sometimes offered in in-
tegrated environments like CAPSL [15] or AVISPA [1]. Also, type-checking [20,
2] has been recently used, which like model-checking has the advantage to be
completely automatic, but since security violations are defined in terms of type
inconsistencies, the security property to be proved has to be considered when
the specification is being written. Among various model-checking approaches,
one may quote for instance Mury [16,27] (based on condition/action rules and
state space exploration), Casper [18] (generating CSP specification for the FDR
model-checker) or Athena [32,33] (based on the strand space model, specialised
logic and model-checker). They are mostly not process but message transfer ori-
ented, often consider intruder implicitly and do not always explicitly express
local and global knowledge.

Since Petri nets were especially introduced to cope with concurrency prob-
lems (the interleaving semantics is often enough to do so, but true concurrent se-
mantics are also available) and to model accesses to common resources (through
places of low-level or high-level nets), and since effective tools are now available to
analyse and model-check them, we felt appealing to use this approach, like [29, 5].

We thus introduced, and illustrated on a concrete case study (the Kao-Chow
authentication protocol), a role based specification framework devoted to the
specification and verification of properties of security protocols. It is composed
of three uniformly defined parts describing the behaviour of the roles, the be-
haviour of the environment (representing a potentially aggressive attacker), and
the global and local knowledges (about agent names, messages, or public, private
and shared keys) the roles can have.

Unlike usual security protocol notations do, that is similar to what we used
in the introduction, the advantage of a role based specification is that it is fully
explicit and formal. The roles and the environment are expressed using SPL pro-
cesses provided with their private contexts, and a definition of a global context.
These SPL descriptions are then compositionally translated into high-level Petri
nets, while the context (depending on the studied property) is used to generate
the corresponding initial marking. An immediate advantage of the method is that
the obtained Petri net model can be analysed using standard model-checking or
simulation tools.

Compared to our previous approaches [9,10], the present paper introduce
novel features for the treatment of symmetric keys as well as asymmetric ones,
together with a uniform way to analyse various forms of attack contexts.

We already started to use this framework to analyse other kinds of protocols,
mixing both symmetric and asymmetric keys, and allowing other kinds of attack
contexts. This should be the subject of forthcoming papers.

References

1. Armando, A. et al.: The AVISPA tool for the automated validation of internet
security protocols and applications, CAV’2005, LNCS 3576, Springer (2005)

2. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. Journal of the ACM, 52(1), (2005)

3. Abadi, M., Gordon, A.: A calculus for cryptographic protocols. The Spi calculus.
ACM Conference on Computers and Communication Security, ACM Press, (1997)

4. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15(2) (2002)

5. Al-Azzoni, 1., Down, D.G., Khedri, R.: Modelling and verification of cryptographic
protocols using coloured Petri nets and Design/CPN. Nordic Journal of Computing,
12(3) (2005)

6. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. EATCS Monographs on
TCS, Springer, ISBN 3-540-67398-9 (2001)

7. Best, E., Fraczak, W. Hopkins, R. P., Klaudel, H., Pelz, E.: M-nets: an algebra of
high level Petri nets, with an application to the semantics of concurrent program-
ming languages. Acta Informatica, 35, Springer, (1998)

8. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In IEEE Symposium on Security and Privacy, (2006)

9. Bouroulet, R., Klaudel, H., Pelz, E.: A semantics of Security Protocol Language
(SPL) using a class of composable high-level Petri nets. ACSD’04, IEEE Computer
Society, (2004)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

Bouroulet, R., Klaudel, H., Pelz, E.: Modelling and verification of authentication
using enhanced net semantics of SPL (Security Protocol Language). ACSD’06,
IEEE Computer Society (2006)

Christensen, S., Hansen, N.D.: Coloured Petri Nets Extended with Place Capaci-
ties, Test Arcs and Inhibitor Arcs. ATPN’93, LNCS vol. 691, Springer (1993)
Clark, J., Jacob, J.: A survey of authentication protocol literature : Version 1.0.,
http://www.cs.york.ac.uk/jac/papers/drareview.ps.gz (1997)

Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security
protocols. ESOP’05, LNCS vol. 3444, Springer (2005)

Crazzolara, F., Winskel, G.: Events in security protocols. ACM Conf on Computer
and Communications Security, ACM Press (2001)

Denker, G., Millen, J.: CAPSL Integrated Protocol Environment. DISCEX’00,
IEEE Computer Society (2000)

Dill, D. L., Drexler, A.J., Hu, A. J., Han Yang, C.: Protocol Verification as a
Hardware Design Aid. IEEE International Conference on Computer Design: VLSI
in Computers and Processors (1992)

Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE, Transactions
on Information Theory IT-29 12 (1983)

Donovan, B., Norris, P., Lowe, G.: Analyzing a library of security protocols using
Casper and FDR. Workshop on Formal Methods and Security Protocols (1999)
Evangelista, S.: High Level Petri Nets Analysis with Helena. ICATPN’05, LNCS
vol. 3536, Springer, http://helena.cnam.fr/ (2005)

Gordon, A., Jeffrey, A.: Authenticity by Typing for Security Protocols. IEEE Com-
puter Security Foundations Workshop, IEEE Computer Society Press (2001)
Kao, I.-L., Chow, R.,: An efficient and secure authentication protocol using uncer-
tified keys. Operating Systems Review, ACM Press, 29(3) (1995)

Kremer, S., Raskin, J.-F.: A Game-Based Verification of Non-Repudiation and Fair
Exchange Protocols. Journal of Computer Security 11(3) (2003)

Lowe, G.: An attack on the Needham-Schroeder public key authentication protocol.
Information Processing Letters, 56(3) (1995)

Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
(FDR). TACAS’96, LNCS vol. 1055, Springer (1996)

Meadows, C.: Formal Methods for Cryptographic Protocol Analysis: Emerging
Issues and Trends. IEEE Journal on Selected Areas in Communication, Vol. 21(1)
2003

1(\/.[11116)1‘, R.: Communicating and mobile systems: The w-calculus, Cambridge Uni-
versity Press (1999)

Mitchell, J. C., Mitchell, M., Stern, U.: Automated Analysis of Cryptographic
Protocols Using Mury. IEEE Symposium on Security and Privacy, IEEE Computer
Society Press, (1997)

Needham, R.M., Schroeder, M.D.: Using Encrypton for Authentication in Large
Networks of Computers. Comm. of the ACM, 21(12) (1978)

Nieh, B.B., Tavares, S.E.: Modelling and Analyzing Cryptographic Protocols Using
Petri Nets, AUSCRYPT’92, LNCS vol. 718, Springer (1993)

Rivest, R.L. Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystem, Comm. of the ACM, 21(2) (1978)

Schneier, B.: Applied Cryptography. Wiley, ISBN 0-471-11709-7 (1996)

Thayer, F., Herzog, J.C., Guttman, J.D.: Strand Spaces: Why is a Security Protocol
Correct? IEEE Symposium on Security and Privacy (1998).

Song, D.: Athena: A new efficient automatic checker for security protocol analysis,
CSFW’99. IEEE Computer Society Press (1999)

