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Receding horizon climate control in metal mine extraction rooms

Guillaume Sandou, Emmanuel Witrant, Sorin Olaru and Silviu-Iulian Niculescu

Abstract— This papers proposes a novel climate control strat-
egy for mine extraction rooms based on the receding horizon
optimal control scheme. Being a model-based procedure, the
development of a pertinent prediction model is one of the key-
stones. According to recent technological advances, we consider
that distributed measurements are available and provided by a
wireless network. An enhanced modeling approach, based on
stratification and sigmoid description of concentrations in the
extraction rooms, is then proposed and allows for an optimal use
of information provided by the wireless sensor network (WSN).
The complexity of the resulting model, due to the nonlinearities,
different time scales and time-delays, is handled by using an
on-line shape prediction, included in the design of an optimal
sequence of control actions over a finite horizon. Physical
and communication constraints are successfully handled at the
design stage and the resulting closed-loop system is robust with
respect to variations in the pollutant dynamics.

I. INTRODUCTION

The mining ventilation control is seen as a challenging
automation problem with objectives that rise several re-
search problems of immediate actuality, such as the wire-
less automation and the control of complex interconnected
system. Indeed, the system considered is composed of the
interconnection of fans, tarpauline tubes, extraction rooms
and a wireless network. The complexity arises from the
different physical properties - and associated dynamics - of
the subsystems. In a broader picture, all these engineering
problems imply to deal with fluid models and the connection
of different subsystems. Global control strategies are of
prime importance to deal with such problems. Indeed, it
has been established in [1] that the savings associated with
global control strategies for fluid systems (pumps, fans and
compressors) represent 22.20 % of the total manufacturing
motor system energy savings.

A. Fluid models and control over WSN

Model-based control strategies clearly have a significant
advantage, to ensure optimized performances and handle
classical control problems, such as actuation and com-
munication constraints, disturbances rejection and energy
minimization. In order to provide a global control strategy
for a large-scale interconnected system, we first present
a simplified fluid model that makes use of the available
distributed measurements. The aerodynamics in the room
environment is mainly set by the gas buoyancy and resulting
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stratification. In the extraction rooms, the pollutant sources
from trucks can be considered as forced plumes, the incom-
ing fresh air as a jet and the gas in the room as a stratified
flow. Specific simplified fluid models have been proposed
to represent such flows in [2], [3], which gave rise to an
active research field in fluid mechanics. The development of
Intelligent Buildingsautomation, and particularlyUnderfloor
Air Distribution systems [4], renewed the interest in these
models, due to the associated potential costs and energy
savings (buildings air conditioning currently represent 10 %
of all energy use in the United States).

The novel modeling approach presented in this paper
is primarily motivated by the shapes similarity of the ex-
perimental buoyancy profiles presented in [4] and related
works. Indeed, fluid stratification (relative gravity) monitored
for different inflow buoyancy, momentum and number of
sources, always exhibit sigmoid-like profile. WSN measure-
ments motivate further use of this property, as they can
be easily associated with an appropriate estimation strategy
to provide for ”on-line” shape monitoring. This provides
for an extra simplification suitable to the proposed global
approach. Establishing the control strategy on the shape
properties also has the significant advantage that, compared
with classical space discretization methods, the closed-loop
performances are structurally robust with respect to the time-
varying localization of the measurements.

B. Receding horizon control

The intrinsic complexity of the phenomena, the coupling
between the dynamics and important (time-varying) prop-
agation delays are important difficulties that have to be
taken into account in the control design. We consider in
this paper the control of the pollutants concentration in
the mining room. Classical control schemes present poor
control performances due to the presence of delays and
disturbances even if the system is open-loop stable. Two
important aspects have to be taking into consideration: the
distributed property of the pollutants concentrations and the
constraint on the level of admissible pollution at a certain
level (for example at the height of a human). The main
control objective is the minimization of the ventilation energy
(the power consumption is proportional to the cube of the
mass flow rate) while satisfying a set of constraints and
canceling the effects of delays.

We propose a receding horizon optimal control scheme
that compares different control sequences with respect to
a performance index. This index evaluates the energy con-
sumption and the concentration of pollutants over a pre-
diction window, which shifts with the time evolution. This



receding horizon principle proved its versatility on the so-
called Model Predictive Control (MPC) schemes [5].

The paper is organized as follows. First, the description
and the modeling of the system is presented in section
II. The receding horizon control strategy is depicted in
section III. Simulation results are provided in section IV,
for both unconstrained (showing the influence of the tuning
parameters of the control law) and constrained cases. A
comparison with a classical PI controller is also given.
Results are more than satisfactory and show the robustness
of the control law against the pollutant sources prediction
errors. Finally, concluding remarks and forthcoming works
are drawn in section V.

II. SYSTEM DESCRIPTION AND MODELING

We consider the underground ventilation system presented
in Figure 1, where fresh air is provided from the surface by
using a vertical ventilation shaft. A fan is connected to this
shaft and ventilates the extraction room through a tarpaulin
tube. Note that the fact that we are focusing on metal mines
is associated with the use of underground fans, which are
generally prohibited in coal mines (at least in the United
States). Distributed wireless sensors provide for chemical
measurements at different locations in the extraction room.
We consider that the sensors signals are carried to the fans
embedded control units over a wireless multi-hop network,
to account for the fact that a wired network would be difficult
to install and maintain in such environment.

Fig. 1. Stratification and sigmoid description in extraction rooms.

A. Time-delays

Two different delays are involved in this model. The first
one is a physical delay, associated to the airflow in the
tarpaulin tube, between the fan and the extraction room
(the time needed for a change of the mass flow rate due
a modification in the fan actuation to reach the extraction
room). This airflow is considered inviscid and incompress-
ible, and modeled as atime-varyingdelay τtarp(t). Indeed,
for a 1-dimensional Poiseuille laminar flow and the previous
hypotheses, the flow speedu(x, t) and temperatureT (x, t)
are obtained from Navier-Stokes equations (see, for example,
[6] or similar textbooks for details) as

∂
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where r is the gas constant per unit of mass andγ is the
ratio of specific heat coefficients. The characteristic velocities
v(x, t) are then the solutions of
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We are interested in the down-flow time-delay, which is
approximated from the previous equation as

τtarp(t) ≈ L

ū(t) +
√

rγT̄ (t)

whereL is the length of the tarpaulin tube,ū(t) andT̄ (t) are
the space-averaged flow speed and temperature, respectively.

The second source of delay is due to the distributed mea-
surements and wireless transmission between the extraction
room and the fan. This delay is time-varying and denoted
as τwsn(t), to indicate that it is related to Wireless Sensor
Network (WSN) automation. We consider that a wireless
multi-hop protocol is set, as detailed in [7], to minimize
the energy consumption of the wireless nodes according to
specific communication quality constraints. The associated
end-to-end delay writes as

τwsn(t) = h(t)F +
h(t)∑

i=1

(αi + βi)

whereh(t) is the time-varying number of hops,F contains
the propagation and transmission delays,i = 1 . . . h(t) indi-
cates the transmission node considered,αi is the time to wait
before sending a data packet (typically a random variable)
andβi is the time induced by an Automatic Repeat reQuest
(ARQ) mechanism. For simulation purposes, we consider
the experimental data presented in [8], scaled to represent
a tunnel of lengthL (initial measurements performed in a
10 m corridor, approximately).

B. Concentration profiles

The pollutants (COx or NOx) volume concentration pro-
files cj(z, t), where z ∈ [0;hroom] is the height in the
extraction room,hroom is the room height andj indicates
the pollutant considered, is approximated with the sigmoid
distribution

cj(z, t) =
αj(t)

1 + e−βj(t)(z−γj(t))

where αj(t) is the amplitude,βj(t) is the dilatation and
γj(t) is the inflection point of the distribution. Note that
any function can be approximated with the desired precision
level by a sum of such sigmoid functions: we suppose here
that one curve is sufficiently accurate for control purposes
and considering the system uncertainties. This simplified
modeling approach was proposed for distributed systems
involving smooth energy transport phenomena in [9], where
a grey-box identification method allowing for the distinction
between transient and steady-state behavior, the use of a
switched model and the conservation of global physical



properties is proposed. This method was successfully applied
to the modeling of temperature profiles in Tokamak plasmas
and validated with experimental results.

The shape parametersαj , βj , γj can be related to the
global parameters (room temperature and pressure, number
of trucks and engines power, etc.) with an appropriate
identification method. The pollutant massmj(t) in the room
is obtained from the concentration distribution thanks to the
relationship

mj(t) = Sroom

∫ hroom

0

cj(z, t)dz

= Sroom

[∫ hdoor

0

cj(z, t)dz + αj(t)∆h

]

whereSroom is the room surface,hdoor is the door height
and ∆h = hroom − hdoor. The last equality is established
by supposing that the breathing and engine levels are below
the room entrance levelhdoor. This hypothesis is reasonable
in mining ventilation applications as, typically, the ceiling is
blasted and the engines/humans enter the room only to work
on the ore at the ground level. The pollutant dynamics is set
thanks to the mass conservation law

ṁj(t) = ṁj,in(t)− ṁj,out(t)− ṁj,chem(t) (1)

whereṁj,in is the incoming pollutant mass rate due to the
engines (we neglect human contribution) given by appropri-
ate specifications anḋmj,chem is the mass variation due to
chemical reactions between componentsj and k at a rate
ηjk(z, T ) = 1 − ηkj(z, T ). The mass conservation equation
(1) sets the shape parameters dynamics with

ṁj(t) = Sroom

[∫ hdoor

0

ċj(z, t)dz + α̇j(t)∆h

]

ṁj,out(t) =
1

hdoor

∫ hdoor

0

cj(z, t)dz ×Qout

ṁj,chem(t) = Sroom

[∫ hdoor

0

ηjkcj(z, t)ck(z, t)dz

+ηjkαj(t)αk(t)∆h

]

where Qout = Starp νufan(t − τtarp) is the volume rate
of flow leaving the room,Starp is the cross section of the
tarpaulin tube andufan is the airflow speed provided by
the fan, scaled by a constantν (flow momentum losses due
to the tube geometry). We supposed here that there is no
pollutant in the tarpaulin tube and that the flow in the room
is incompressible.

The variable-step integration method described in [9] is
now introduced to obtain a differential equation representa-
tion of the distributed model
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wherei = 1 . . . N , Vint = Mint(N, 1 : N), N is the number
of discretization points andCj,i = cj(zi, t). The system
dynamics is finally represented as a set of delay differential
equations of the form:



α̇j(t)
β̇j(t)
γ̇j(t)


 = E† [ṁj,in(t)−Bj ufan(t− τtarp)−Djk]

yj(t) =
αj(t)

1 + e−βj(t)(zr−γj(t))

where† denotes the Moore-Penrose inverse andyj(t) is the
concentration of gasj at heightzr.

III. C ONTROL SCHEME

The control objective is to minimize the fan energy
consumption while ensuring an acceptable air quality in
the extraction room. Due to the height-dependent model
proposed in the previous section, the air quality objective
can be rephrased as guaranteeing a maximum pollutant
concentration at a given heightzr

max
∀j

yj(t) ≤ ȳj

whereȳj is the threshold value on pollutantj (COx, CH4,
SO2 andNxOx are classically associated with the trucks en-
gines). Communication constraints, such as delays, timeout,
packet losses and bandwidth limitations also should be taken
into account in the optimization algorithm.

A. Receding Horizon Control

Predictive control is a model-based design technique,
described in Figure 2. It is based on the on-line solution
of successive optimization problems. The idea is to solve a
scheduling optimization problem at timekT , (T : sampling
time) based on future desired outputsyj,des and prediction of
future disturbanceŝ̇mj,in (pollutant sources from trucks in
this case), to apply the first control values to the system,
to update the prediction model, and to repeat the whole
procedure at time(k + 1)T . The scheduling algorithm can
be stated as

min
ui,i∈{1,...,Nu}

∫ kT+N

kT

(
∑

j

(ŷj(τ)−yj,des(τ))2+λu2
fan(τ))dτ,



where ufan(τ) = ui if τ ∈ [kT + (i − 1)N/Nu, kT +
iN/Nu], andŷj is the prediction of future outputs, computed
from the simulation of a prediction model. For the prediction
model, predicted values of disturbancesˆ̇mj,in are of course
considered. The tuning parameters of the control law areN ,

Fig. 2. Receding horizon control synopsis.

Nu andλ. Here,N represents the prediction horizon length.
It should be chosen large enough to provide information
about the transient behavior. Next,Nu represents the number
of degrees of freedom in the control action during the
prediction horizon. A trade-off has to be found between the
increased precision (large number of degrees of freedom) and
the consequent augmented complexity of the optimal control
problem to be solved at each sampling period. Finally,λ
is the weighting factor between the control effort and the
disturbance rejection performances.

B. Implementation issues

In this paper the ”real system” will be the reference model
which has been defined in section II. Being a real-time
optimization procedure, the main implementation problems
are related to the speed of convergence of the scheduling
algorithm. This implies that the prediction model has to be
simpler than the reference model. The time varying delay
τtarp(t) is chosen as a constant equal to the maximal time
delay which may occur in the real system.

The second important issue is the feasibility of the succes-
sive optimization procedure, as the scheduling algorithm has
to be solved with the constraints defined in section III.A. If
the problem appears to be unfeasible, than one has to define
alternative strategies. This point is discussed in section IV.C.

IV. SIMULATION RESULTS

A. Unconstrained case - tuning of the control law

We consider the ventilation problem for two pollutants,
NOx and COx. The control law is tested with Matlab

7.5, its Optimization Toolbox 3.1.2and Simulink 7.0 on a
Pentium IV, 2.0 GHz. First, the unconstrained problem is
simulated (relaxing the bound constraints of section III.A).
A sampling time ofT = 5 s is chosen, as the time response
of the open loop is about50 s. Desired outputs are set
to yj,des = 0, and a null pollutant source prediction error
is supposed (̇̂mj,in = ṁj,in). This configuration highlights
the influence of the control law parameters. As discussed
in section III.B,N has to be higher than the time response
of the system and is consequently choosen asN = 50s.
We first study the influence ofλ for a fixed Nu = 2. The
optimization problem is solved in about 20 seconds. Figure
3 presents the simulation of the closed-loop system with a
predictive law with a small weightλ = 10−7. This small
weight leads to high control values, as they are not penalized,
while the rejection of pollutant gas is quite satisfactory with
small values for concentrations. Notice that the prediction
capabilities enable changes in the control action according to
the future evolution of the pollutant dejections. Decreasingλ
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Fig. 3. Simulation withN = 50; Nu = 2; λ = 1e− 7.

(Fig. 4) is associated with a decrease of the magnitude of the
control action by one order of magnitude. The increase in the
pollutant concentration is not following the same proportion
even if an increase can be noticed. This fact illustrates the
non linearity of the system, and the fact that the choice of
a linear controller such as a PI is not well suited for this
problem (see section IV.D). Forλ = 10−3 the preservation
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Fig. 4. Simulation withN = 50; Nu = 2; λ = 1e− 5.

of the control energy becomes the main objective and by
consequence a poor rejection is observed (Fig. 5). Finally,
for smallerλ, the rejection is better, but the application of
the control law is more expensive. The influence ofNu can
be seen in Fig. 6, which presents the performances of the
control law withNu = 5 changes in the control action during
the prediction horizon. The comparison betweenNu = 2
and Nu = 5 is analyzed in Fig. 7: for smallNu values,
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the control effort is concentrated in the first control actions
and the curve corresponding toNu = 2 ”reacts” well in
”advance” to the change in pollutant profile. Furthermore,
note that the number of optimization variables isNu, and
an increase inNu leads to an increase of the computational
effort which may become intractable for on-line solutions.
In the sequel, we considerN = 50 s andNu = 2 .
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Fig. 7. Comparison of control laws forNu = 2 andNu = 5.

B. Constrained case

We focus now on the constrained case. The goal is to
regulate the system, and we setyj,des = 0.025, with a
bound constraint ofyj(t) 6 0.028. Figures 8 and 9 show
simulation results forλ = 10−3, λ = 10−5. For these
results, no pollutant prediction error has been considered.
As can be seen from the figures, the constraints are satisfied.
Once again, choosingλ = 10−3 leads to poor regulation
performances, whileλ = 10−5 leads to better results, but
with larger control values. Note that the regulation problem
is multiobjective, as one needs to regulate two outputs (NOx

andCOx concentrations), by using only one control input.

C. Robustness against pollutant prediction errors

In the receding horizon strategy, one has to consider a
prediction model of the system. In our case, the prediction
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Fig. 8. Constrained case - Simulation withλ = 10−3.
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Fig. 9. Constrained case - Simulation withλ = 10−5.

model was made of the reference model, with the maximum
time delay, and prediction of pollutant sources. Feasibility
of successive optimization problems appears to be a crucial
point in the receding horizon strategies. If the sequence of
control inputs leads to an unfeasible optimization problem,
an alternative strategy has to be used. This idea of feasibility
of successive optimization problem is strongly linked to the
classical Automatic Control concept of robustness against
parametric and modeling uncertainties.

Choosing maximum time-delay values may not lead nec-
essarily to infeasibility of optimization problems since the
predictive control law reacts in advance, and a decrease
in pollutant concentrations is observed. Consequently, an
error in the time delay has just an economic influence
(higher energy consumption), but the technical behavior of
the system remains more than satisfactory. Obviously, this
is not the case for pollutant sources prediction errors, and
the control law has to be robust against these errors. In
this study, we are proposing an alternative strategy that can
be resumed as follows: If infeasibility occurs, we decide to
temporally forget the constraints and to use the unconstrained
case with a smallλ = 10−7. As seen in section IV.A,
this value leads to large values of the controller parameters
but also a decrease in pollutant concentrations. As a result,
the alternative strategy allows reaching feasibility again a
few sampling times after. We consider now one of the
worst case situations, where the pollutant source is always
underestimated: the real pollutant sources is 50% higher than
the prediction. Figure 10 gives the corresponding results. On
the bottom graph, one can see the chosen strategy: 1 (2)
meaning constrained (unconstrained) case. The constraints
are sometimes not satisfied due to important prediction
errors, but the alternative strategy proposed here allows
reaching feasibility again.
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D. Comparisons with a linear controller

In this section, a Proportional Integral (PI) controller
is defined for comparison with the proposed strategy. As
mentioned previously, the problem is multiobjective, as two
concentrations have to be controlled from one input. How-
ever, those concentrations are linked together (see section
II), and for the PI controller, only one concentration will
be regulated at0.028. A PI controller has been tuned,
C(s) = 500 (1 + 1/200s), leading to the time response of
figure 11, for a pollutant step at time 200. The PI seems
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Fig. 11. Simulation with PI for reference 0.028

to have a satisfactory behavior in this case. However, when
the reference has been set to0.035 (simulation in figure
12) the results show that a slight increase in the reference
can lead to instability, proving the lack of robustness of the
linear controller. Furthermore, note that the economic aspect
(energy consumption) can not be explicitly taken into account
by using PI controllers.
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Fig. 12. Simulation with PI for reference 0.035

E. Discussion

Finally, the updating of the prediction model (see figure
2) supposes that a non linear observer is available, so as to

estimate the states of the system from the measures given
by the WSN. In this paper, the WSN delay is not taken into
account for the design of the predictive law, so that it is
possible to measure the system states. This point will have
to be improved in future works.

V. CONCLUSIONS

In this paper, a receding horizon control law has been de-
fined for the climate control in metal mine extraction rooms
which appears to be a challenging automation problem. The
first point of the study is to define a suitable model of
the system, capturing all relevant phenomena which have
to be dealt with. From this system modeling, a prediction
model is established which can be used to define a receding
horizon control law for the system. The idea of the proposed
approach is to consider pollutant sources prediction in order
to react in advance and to reject these disturbances in the
regulation procedure. The proposed method is based on the
”on-line” solutions of optimization problems. The procedure
allows taking into account economic aspects as a penalization
term on energy consumption is added to the optimized cri-
terion. Furthermore, the approach is quite versatile as many
technical constraints and objectives can be explicitly taken
into account. Results show that the proposed strategy lead to
very satisfactory results with the possibility of weighting the
two main ”contradictory” objectives: performing an efficient
regulation, but with low energy consumption. The robustness
of the proposed method against pollutant prediction errors
has also been studied with an alternative strategy to reach
feasibility again. Finally, the proposed method leads to a
controller more robust than a classical PI controller.

Forthcoming works deal with the influence of the WSN
in the control strategy, as one has to estimate the systems
states from the measurements of the sensors to update the
prediction model.
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