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Abstract
In this paper we introduce p−Ferrer diagram, note that 1− Ferrer diagram are the usual

Ferrer diagrams or Ferrer board, and corresponds to planar partitions. To any p−Ferrer
diagram we associate a p−Ferrer ideal. We prove that p−Ferrer ideal have Castelnuovo
mumford regularity p + 1. We also study Betti numbers , minimal resolutions of p−Ferrer
ideals. Every p−Ferrer ideal is p−joined ideals in a sense defined in a fortcoming paper
[M], which extends the notion of linearly joined ideals introduced and developped in the
papers [BM2], [BM4],[EGHP] and [M]. We can observe the connection between the results
on this paper about the Poincaré series of a p−Ferrer diagram Φand the rook problem,
which consist to put k rooks in a non attacking position on the p−Ferrer diagram Φ.

1 Introduction

We recall that any non trivial ideal I ⊂ S has a finite free resolution :

0 → Fs
Ms→ Fs−1 → .... → F1

M1→ I → 0

the number s is called the projective dimension of S/I and the Betti numbers are defined
by βi(I) = βi+1(S/I) = rankFi+1. By the theorem of Auslander and Buchsbaum we know
that s = dimS − depth (S/I). We will say that the ideal I has a pure resolution if
Fi = Sβi(−ai) for all i = 1, ..., s. This means that I is generated by elements in degree a1,
and for i ≥ 2 the matrices Mi in the minimal free resolution of I have homogeneous entries
of degree ai − ai−1.

We will say that the ideal I has a p−linear resolution if its minimal free resolution is
linear, i.e. I has a pure resolution and for i ≥ 2 the matrices Mi have linear entries.

If I has a pure resolution, then the Hilbert series of S/I is given by:

HS/I(t) =
1 − β1t

a1 + ... + (−1)sβst
as

(1 − t)n

where n = dim S. Since a1 < ... < as it the follows that if I has a pure resolution then the
Betti numbers are determined by the Hilbert series.

p−Ferrer partitions and diagrams. The 1−Ferrer partition is a nonzero natural inte-
ger λ, a 2−Ferrer partition is called a partition and is given by a sequence λ1 ≥ ... ≥ λm > 0
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of natural integers, a 3−Ferrer partition is called planar partition. p−Ferrer partitions are
defined inductively Φ : λ1 ≥ λ2 ≥ ... ≥ λm, where λj is a p−1Ferrer partition for j = 1, ...,m,
and the relation ≤ is also defined recursively: if λi : λi,1 ≥ ... ≥ λi,s, λi+1 : λi+1,1 ≥ ... ≥
λi+1,s′ we will say that λi ≥ λi+1 if and only if s ≥ s′ and λi,j ≥ λi+1,j for any j = 1, ..., s′.
Up to my knowledge there are very few results for p−Ferrer partitions in bigger dimensions.

To any p−Ferrer partition we associate a p−Ferrer diagram which are subsets of INp.
The 1-Ferrer diagram associated to λ ∈ IN is the subset {1, ..., λ}. Inductively if Φ : λ1 ≥
λ2 ≥ ... ≥ λm, is a p−Ferrer partition, where λj is a p − 1-Ferrer partition for j = 1, ...,m,
we associate to Φ the p−Ferrer diagram Φ = {(η, 1), η ∈ λ1} ∪ ...∪ {(η,m), η ∈ λm}. Ferrer
p−diagrams can also be represented by a set of boxes labelled by a p−uple (i1, ..., ip) of
non zero natural numbers, they have the property that if 1 ≤ i′1 ≤ i1, ..., 1 ≤ i′p ≤ ip, then

the box labelled (i′1, ..., i
′
p) is also in the p−Ferrer diagram. We can see that for two Ferrer

diagrams: Φ1 ≥ Φ2 if and only if the set of boxes of Φ1 contains the set of boxes of Φ2.

Example 1 The following picture corresponds to the 3−Ferrer diagram given by:

4 3 2 2
3 2 1 0
2 0 0 0
2 0 0 0

Example 2 The following picture corresponds to the 3−Ferrer diagram given by:

5 4 4 3 2
4 4 3 3 1
4 4 3 1 0
2 1 1 0 0
2 1 0 0 0
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Definition 1 Given a p−Ferrer diagram (or partition) Φ we can associated a monomial
ideal IΦ in the following way. Let consider the polynomial ring K[x(1), x(2), ..., x(p)] where

x(i) stands for the infinitely set of variables :x(i) = {x
(i)
1 , x

(i)
2 , ...}, we define inductively the

ideal IΦ

1. For q = 2 let Φ : λ ∈ IN∗, then IΦ is the ideal generated by the variables x
(1)
1 , x

(1)
2 , ..., x

(1)
λ .

2. For q = 2 let λ1 ≥ λ2 ≥ ... ≥ λm be a 2−Ferrer diagram, then IΦ is an ideal in the
ring of polynomials K[x1, ..., xm, y1, ..., yλ1 ] generated by the monomials xiyj such that

i = 1, ...,m and j = 1, ..., λi. In this case x
(1)
j = yj, x

(2)
j = xi.

3. For p > 2 let λ1 ≥ λ2 ≥ ... ≥ λm be a Ferrer diagram, where λj is a p − 1Ferrer dia-
gram. Let Iλj

⊂ K[Λ] be the ideal associated to λj , where K[Λ] s a polynomial ring in

a finite set of variables then IΦ is an ideal in the ring of polynomials K[x
(p)
1 , ..., x

(p)
m ,Λ]

generated by the monomials x
(p)
i yj such that i = 1, ...,m and yj ∈ Iλi

. That is

IΦ = (
m⋃

i=1

{x
(p)
i } × Iλi

).

We can observe the connection between the results on this paper about the Poincaré series of
a p−Ferrer diagram Φand the rook problem, which consist to put k rooks in a non attacking
position on the p−Ferrer diagram Φ. This will be developped in a forthcoming paper.

2 p−Ferrer’ ideals

Lemma 1 Let S be a polynomial ring, Γ2...,Γrbe non empty disjoint sets of variables, set Ai
the ideal generated by Γi+1, ...,Γr. Let B2 ⊂ ... ⊂ Br be a sequence of ideals (not necessarily
distinct), generated by the sets B2 ⊂ ... ⊂ Br. We assume that no variable of Γ2 ∪ ... ∪ Γr
appears in B2, ..., Br, then

A1 ∩ (A2,B2) ∩ ... ∩ (Br) = (
r⋃

2

Γi × Bi)
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where for two subsets A,B ⊂ S, we have set A × B = {a b | a ∈ A, b ∈ B}.

Proof Let remark that if Γ is a set of variables and P ⊂ S is a set of polynomials such
that no variable of Γ appears in the elements of P then (Γ) ∩ (P ) = (Γ × P ). Moreover if
Γ1,Γ2 are disjoint sets of variables and P ⊂ S is a set of polynomials such that no variable
of Γ1,Γ2 appears in the elements of P then (Γ1,Γ2) ∩ (Γ1, , P ) = (Γ1,Γ2 × P ).

We prove by induction on the number k the following statement:

A1 ∩ (A2,B2) ∩ ... ∩ (Ak,Bk) = (Ak,
k⋃

2

Γi × Bi).

If k = 2, it is clear that Γ2 × B2 ⊂ A1 ∩ (A2,B2), now let f ∈ A1 ∩ (A2,B2), we can write
f = f1 + f2, where f1 ∈ (A2), f2 ∈ (Γ2) and no variable of A2 appears in f2, it follows that
f2 ∈ (Γ2) ∩ (B2) = (Γ2 × B2).

Suppose that

A1 ∩ (A2,B2) ∩ ... ∩ (Ak,Bk) = (Ak,
k⋃

2

Γi × Bi),

we will prove that

A1 ∩ (A2,B2) ∩ ... ∩ (Ak+1,Bk+1) = (Ak+1,
k+1⋃

2

Γi × Bi).

Since Γi ⊂ Aj, for j < i, and Bi ⊂ Bj for i ≤ j, we have
⋃k+1

2 Γi × Bi ⊂ (Aj ,Bj) for
1 ≤ j ≤ k, so we have the inclusion ” ⊃ ”.

By induction hypothesis we have that

A1 ∩ (A2,B2) ∩ ... ∩ (Ak+1,Bk+1) = (Ak,
k⋃

2

Γi × Bi) ∩ (Ak+1,Bk+1).

Now let f ∈ (Ak,
k⋃

2

Γi × Bi) ∩ (Ak+1,Bk+1). we can write f = f1 + f2 + f3, where

f3 ∈ (
⋃k

2 Γi × Bi) ⊂ Bk+1, f1 ∈ Ak+1, and f2 ∈ (Γk+1), and no variable of Γk+1 ∪ ... ∪ Γr

appears in f2, this would imply that f2 ∈ (Γk+1) ∩ Bk+1 = (Γk+1 × Bk+1).

Definition 2 Let λm+1 = 0, δ0 = 0, δ1 be the highest integer such that λ1 = ... = λδ1 , and
by induction we define δi+1 as the highest integer such that λδi+1 = ... = λδi+1

, and set l
such that δl−1 = m. For i = 0, ..., l − 2 let

∆l−i = {x
(p)
δi+1, ..., x

(p)
δi+1

},Pl−i = Iλδi+1
.
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So we have: Φ = {(η, 1), η ∈ λ1} ∪ ... ∪ {(η,m), η ∈ λm} and

IΦ = (
l⋃

i=2

∆i × Pi) = (
m⋃

i=1

{x
(p)
i } × Iλi

).

where for all i, Pi is a set of generators of Pi.
The following Proposition is an immediate consequence of the above lemma :

Proposition 1 1. We have the following decomposition (probably redundant):

IΦ = (x
(p)
1 , ..., x(p)

m ) ∩ (x
(p)
1 , ..., x

(p)
m−1,Iλm

)... ∩ (x
(p)
1 , ..., x

(p)
i−1,Iλi

) ∩ ...(Iλm
),

2. Let Di = (
⋃l

j=i+1 ∆j), and Qi = (Di,Pi). Then

IΦ = Q1 ∩ Q2 ∩ ... ∩ Ql.

3. The minimal primary decomposition of IΦ is obtained inductively. Let Iλδi
= Q

(i)
1 ∩...∩

Q
(i)
ri be a minimal prime decomposition, where by induction hypothesis Q

(i)
j is a linear

ideal, then the minimal prime decomposition of IΦ is obtained from this decomposition
by putting out unnecessary components.

Example 3 let P2 = (c, d) ∩ (e), P3 = (c, d) ∩ (c, e) ∩ (e, f) and

IΦ = (a, b) ∩ (a,P2) ∩ P3

then
IΦ = (a, b) ∩ (a, e) ∩ (c, d) ∩ (c, e) ∩ (e, f)

is its minimal prime decomposition.

Proposition 2 Let I ⊂ R be a p−Ferrer ideal then reg (I) = p = reg (R/I) + 1.

Proof For any two ideals J1,J2 ⊂ S we have the following exact sequence:

0 → S/J1 ∩ J2 → S/J1 ⊕ S/J2 → S/(J1 + J2) → 0

From [B-S, p. 289]

reg (S/J1 ∩ J2) ≤ max{ reg (S/J1 ⊕ S/J2), reg (S/(J1 + J2)) + 1}

in our case we take J1 =
⋂k

i=1 Qi,J2 = Qk+1, so that reg (S/(
⋂k

i=1 Qi + Qk+1)) =
reg (S/(Dk + Pk+1)) = reg (S′/(Pk+1)) = p − 1, where S = S′[Dk]. It then follows that

reg (S/(
⋂l

i=1 Qi)) ≤ p, on the other hand (
⋂l

i=1 Qi)) is generated by elements of degree p,

this implies reg (S/(
⋂l

i=1 Qi)) = p.
We will show that in fact projdim (S/Iλ) is the number of diagonals in a p−Ferrer

diagram.
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Definition 3 Let Φ : λ1 ≥ λ2 ≥ ... ≥ λm be a p−Ferrer diagram. We will say that the

monomial in the p−Ferrer ideal (or diagram) x
(p)
αp x

(p−1)
αp−1 ...x

(1)
α1 is in the αp +αp−1 + ...+α1−

p+1 diagonal. Let sΦ(k) be the number of elements in the k−diagonal of Φ, we will say that

the k−diagonal of Φ is full if sΦ(k) =
(k−1+p−1

p−1

)
, which is the number of elements in the

k−diagonal of INp, let remark that by the definition of p−Ferrer diagram if the k−diagonal
of Φ is full then the j−diagonal of Φ is full for all j = 1, ..., k.

Lemma 2 1. We have the formula

sΦ(k) =
m∑

i=1

sλi
(k − (i − 1)),

2. Let df(Φ) be the number of full diagonals of Φ, then

df(Φ) = min{df(λi) + i − 1 | i = 1, ...,m}

3. Let δ(Φ) be the number of diagonals of Φ, then

δ(Φ) = max{δ(λi) + i − 1 | i = 1, ...,m},

and δ(Φ) = maxl
i=2{δ(Pi) + dimDi−1 − 1}.

Proof The first item counts the number of elements in the k−diagonal of Φ by counting
all the i− slice pieces. The second item means that the k−diagonal of Φ is full if and only
if the k − (i − 1)−diagonal of the i− slice piece is full, and finally the third item means
there is an element in the k−diagonal of Φ if and only if there is at least one element in the
k − (i − 1)−diagonal of the i−slide piece of Φ, for some i.

Remark that δ(Φ) = maxl
i=2{δ(Pi) + dimDi−1 − 1}, since maxδ1

i=1{δ(λi) + i − 1} =

δ(λ1) + δ1 − 1 = δ(Pl) + dimDl−1 − 1, maxδ2
i=δ1+1{δ(λi) + i− 1} = δ(λδ1+1) + δ1 + δ2 − 1 =

δ(Pl−1) + dimDl−2 − 1, and so on.

Theorem 1 Let consider a p−Ferrer diagram Φ and its associated ideal IΦ in a polynomial
ring S. Let n = dimS, c = htIΦ, d = n − c. For i = 1, ..., d − depth S/I, let sd−i be the
numbers of elements in the c + i diagonal of Φ. Then :

1. c the height of IΦ is equal to the number of full diagonals.

2. For j ≥ 1 we have

βj(S/IΦ) =

(
c + p − 1

j + p − 1

)(
j + p − 2

p − 1

)
+

d−1∑

i=0

si

(
n − i − 1

j − 1

)

3. projdim (S/IΦ) = δ(Φ).

Proof
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1. We prove the statement by induction on p, if p = 1 and Φ = λ ∈ IN, then Iφ =
(x1, ..., xλ) is an ideal of height λ and df(λ) = λ. Now let p ≥ 2, since

IΦ = (x
(p)
1 , ..., x(p)

m ) ∩ (x
(p)
1 , ..., x

(p)
m−1,Iλm

)... ∩ (x
(p)
1 , ..., x

(p)
i−1,Iλi

) ∩ ...(Iλm
),

we have that
htIΦ = min{ htIλi

+ i − 1},

by induction hypothesis htIλi
= df(λi) so

htIΦ = min{df(λi) + i − 1} = df(Φ).

2. The proof is by induction on the number of generators µ(IΦ) of the ideal IΦ. The
statement is clear if µ(IΦ) = 1.

Suppose that µ(IΦ) > 1. Let π be a generator of IΦ being in the last diagonal of Φ,

so we can write π = x
(p)
i g for some i, where g ∈ Iλi

is in the last diagonal of λi. By
definition of a p−Ferrer tableau, the ideal generated by all the generators of IΦ except

x
(p)
i g is a p-Ferrer ideal and we denoted it by IΦ′ .

In the example 1 we can perform several steps :

4 3 2 2 4 3 2 1 4 3 2 1 4 3 2 1
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0
2 0 0 0 −→ 2 0 0 0 −→ 2 0 0 0 −→ 2 0 0 0
2 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0

Φ Φ′ Φ′′ Φ′′′

let denote αp := i, so that

x
(p)
i g = x(p)

αp
x(p−1)

αp−1
...x(1)

α1

For any k and 1 ≤ β < αk we have that x
(p)
αp x

(p−1)
αp−1 ...x

(k)
β ...x

(1)
α1 ∈ IΦ′ , so we have that

({x
(p)
1 , ..., x

(p)
αp−1}, ..., {x

(1)
1 , ..., x

(1)
α1−1}) ⊂ IΦ′ : x(p)

αp
...x(1)

α1
.

On the other hand let Π ∈ IΦ′ : x
(p)
αp ...x

(1)
α1 a monomial, we can suppose that no

variable in ({x
(p)
1 , ..., x

(p)
αp−1}, ..., {x

(1)
1 , ..., x

(1)
α1−1}) appears in Π, so Πx

(p)
αp ...x

(1)
α1 ∈ IΦ′

implies that there is a generator of IΦ′ of the type x
(p)
βp

...x
(1)
β1

such that βi ≥ αi for

all i = 1, ..., p, this is in contradiction with the fact that x
(p)
αp x

(p−1)
αp−1 ...x

(1)
α1 is in the last

diagonal of Φ and doesn’t belongs to IΦ′ . In conclusion we have that

IΦ′ : x(p)
αp

...x(1)
α1

= ({x
(p)
1 , ..., x

(p)
αp−1}, ..., {x

(1)
1 , ..., x

(1)
α1−1})
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is a linear ideal generated by αp + ... + α1 − (p) variables. Let remark that since

x
(p)
αp x

(p−1)
αp−1 ...x

(1)
α1 is in the last diagonal the number of diagonals δ(Φ) in Φ is αp + ... +

α1 − p + 1.

We have the following exact sequence :

0 → S/(IΦ′ : (x
(p)
i g))(−p)

×x
(p)
i

g
−→ S/(IΦ′) → S/(IΦ) → 0,

by applying the mapping cone construction we have that

βj(S/IΦ) = βj(S/IΦ′) +

(
δ(Φ) − 1

j − 1

)
, ∀j = 1, ..., projdim (S/IΦ).

By induction hypothesis the number of diagonals in Φ′ coincides with projdim (S/IΦ′).
The number of diagonals in Φ′ is either equal to the number of diagonals in Φ mi-
nus one, or equal to the number of diagonals in Φ. In both cases we have that
si(Φ) = si(Φ

′) for i = d − 1, ..., n − (δ(Φ) − 1), sn−(δ(Φ))(Φ
′) = sn−(δ(Φ))(Φ) − 1, and

si(Φ) = si(Φ
′) = 0 for i < n − (δ(Φ)).

Let c′ = htIΦ′ , It then follows that

βj(S/IΦ′) =

(
c′ + p − 1

j + p − 1

)(
j + p − 2

p − 1

)
+

d−1∑

i=0

si(Φ
′)

(
n − i − 1

j − 1

)
, ∀j = 1, ..., projdim (S/IΦ′).

By induction hypothesis projdim (S/IΦ′) = δ(Φ′). We have to consider two cases:

(a) δ(Φ) = c, this case can arrive only if the c diagonal of Φ is full, so

c′ = c − 1, sn−c(Φ
′) =

(
c − 1 + p − 1

p − 1

)
− 1, δ(Φ) = δ(Φ′) = c

∀1 ≤ j ≤ c, βj(S/IΦ) = βj(c− 1, p)+ (

(
c − 1 + p − 1

p − 1

)
− 1)

(
c − 1

j − 1

)
+

(
c − 1

j − 1

)
.

∀1 ≤ j ≤ c, βj(S/IΦ) = βj(c − 1, p) +

(
c − 1 + p − 1

p − 1

)(
c − 1

j − 1

)
= βj(c, p).

Let remark that by induction hypothesis βj(S/IΦ′) = 0 for j > c, this implies
that projdim (S/IΦ) = c = δ(Φ).

(b) δ(Φ) > c, in this case c′ = c

βj(S/IΦ) =

(
c + p − 1

j + p − 1

)(
j + p − 2

p − 1

)
+

d−1∑

i=0

si(Φ)

(
n − i − 1

j − 1

)

and projdim (S/IΦ) = projdim (S/IΦ′) equals the number of diagonals in Φ.
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In particular it follows that if the number of diagonals in Φ′ is equal to the number of
diagonals in Φ minus one, projdim (S/IΦ) = projdim (S/IΦ′) + 1 is the number of
diagonals in Φ. If the number of diagonals in Φ′ is equal to the number of diagonals
in Φ, then projdim (S/IΦ) = projdim (S/IΦ′) equals the number of diagonals in Φ.

Proposition 3 ara (IΦ) = cd(IΦ) = projdim (S/IΦ).

Proof Recall that a monomial in the p−Ferrer ideal (or tableau) x
(p)
αp x

(p−1)
αp−1 ...x

(1)
α1 is

in the αp + αp−1 + ... + α1 − p + 1 diagonal. Let Kj the set of all monomials in the
Ferrer tableau lying in the j diagonal and let Fj =

∑
M∈Kj

M , we will prove that for

any M ∈ Kj , we haveM2 ∈ (F1, ..., Fj). If j = 2 , let M = x
(p)
αp x

(p−1)
αp−1 ...x

(1)
α1 , with

αp + αp−1 + ... + α1 − p + 1 = 2, then

MF2 = M2 +
∑

(x(p)
αp

x(p−1)
αp−1

...x(1)
α1

)M ′

One monomial M ′ ∈ K2, M ′ 6= M can be written

x
(p)
βp

x
(p−1)
βp−1

...x
β

(1)
1

with βp + βp−1 + ...+ β1 − p + 1 = 2, this implies that βi = 1 for all i except one value
i0, for which βi0 = 2 and also αj = 1 for all j except one value j0, for which αj0 = 2.

Since M ′ 6= M we must have x
(P )
1 x

(p−1)
1 ...x

(1)
1 divides MM ′.

Now let j ≥ 3, let M = x
(p)
αp x

(p−1)
αp−1 ...x

(1)
α1 , with αp + αp−1 + ... + α1 − p + 1 = j, then

MF2 = M2 +
∑

(x(p)
αp

x(p−1)
αp−1

...x(1)
α1

)M ′

One monomial M ′ ∈ Kj , M ′ 6= M can be written

x
(p)
βp

x
(p−1)
βp−1

...x
β

(1)
1

with βp+βp−1+...+β1−p+1 = j, let i0 such that βi0 6= αi0 if βi0 < αi0 then
M

x
(i0)
αi0

x
(i0)
βi0

∈

Ki for some i < j, and if βi0 > αi0 then
M ′

x
(i0)
βi0

x(i0)
αi0

∈ Ki for some i < j,in both cases

MM ′ ∈ (Ki) for some i < j. As a consequence ara (IΦ) ≤ projdim (S/IΦ), but IΦ

is a monomial ideal, so by a Theorem of Lyubeznik cd(IΦ) = projdim (S/IΦ), and
cd(IΦ) ≤ ara (IΦ), so we have the equality ara (IΦ) = projdim (S/IΦ). Let remark
that the equality cd(IΦ) = projdim (S/IΦ) can be recovered by direct computations
in the case of p−Ferrer ideals.

The reader should consider the relation between our theorem and the following result from
[EG]:
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Proposition 4 If R := S/I is a homogeneous ring with p−linear resolution over an infinite
field, and xi ∈ R1 are elements such that xi+1 is a non zero divisor on (R/(x1, ..., xi))/H

0
m(R/(x1, ..., xi),

where m is the unique homogeneous maximal ideal of S, then

1. si(R) = length(H0
m(R/(x1, ..., xi)p−1), for i = 0, ..., dim R − 1.

2. If R is of codimension c, and n := dim S, the Betti numbers of R are given by:

for j = 1, ..., n − depth (R) βj(R) = βj(c, p) +
d−1∑

i=0

si

(
n − i − 1

j − 1

)
,

where βj(c, p) =
(c+p−1
j+p−1

)(j+p−2
p−1

)
are the betti numbers of a Cohen-Macaulay ring having

p−linear resolution, of codimension c.

We have the following corollary:

Corollary 1 If R := S/I is a homogeneous ring with p−linear resolution over an infinite
field,of codimension c, and n := dimS, then

βj(c, p) ≤ βj(R) ≤ βj(n − depth (R), p).

Proof As a consequence of the above proposition we have that si ≤

(
n − (i + 1) + p − 1

p − 1

)

so that

βj(c, p) ≤ βj(R) ≤ βj(c, p) +
d−1∑

i=0

(
n − (i + 1) + p − 1

p − 1

)(
n − i − 1

j − 1

)

By direct computations we have that βj(c, p) +

(
n − d + p − 1

p − 1

)(
n − d

jℓ − 1

)
= βj(c + 1, p),

which implies

βj(c, p) ≤ βj(R) ≤ βj(c + 1, p) +
d−2∑

i=0

(
n − (i + 1) + p − 1

p − 1

)(
n − i − 1

j − 1

)
,

by repeating the above computations we got the corollary.

3 Hilbert series of ideals with p−linear resolution.

Let I ⊂ S be an ideal with p−linear resolution, it follows from [EG], that the Hilbert series
of S/I is given by

HS/I(t) =

p−1∑

i=0

(
c + i − 1

i

)
ti − tp

( d∑

i=1

sd−i(1 − t)i−1
)

(1 − t)d

10



where d = n − c In the case where the ring S/I is Cohen-Macaulay, we have :

HS/I(t) =

p−1∑

i=0

(
c + i − 1

i

)
ti

(1 − t)d

Definition 4 For any non zero natural numbers c, p, we set

h(c, p)(t) :=
p−1∑

i=0

(
c + i − 1

i

)
ti.

Remark that the h−vector of the polynomial h(c, p)(t) is log concave, since for i = 0, ..., p−3,
we have that (

c + i − 1

i

)(
c + i + 1

i + 2

)
≤ (

(
c + i

i + 1

)
)2.

Lemma 3 For any non zero natural numbers c, p, we have the relation

1 − h(c, p)(1 − t)tc = h(p, c)(t)(1 − t)p,

in particular h(c, p)(t) (1 − t)c = 1 − h(p, c)(1 − t) tp, h(c, p)(t) (1 − t)c ≡ 1 modtp.

Proof Let I be a square free monomial ideal having a p−linear resolution, such that S/I
is a Cohen-Macaulay ring of codimension c, let J := I∗ be the Alexander dual of I, it
then follows that S/J is a Cohen-Macaulay ring of codimension p which has a c−linear
resolution.

HS/I(t) =
h(c, p)(t)

(1 − t)n−c
=

1 − BS/I(t)

(1 − t)n

HS/J (t) =
h(p, c)(t)

(1 − t)n−p
=

1 − BS/J (t)

(1 − t)n

and by Alexander duality on the Hilbert series we have that : 1 − BS/I(t) = BS/J (1 − t)
but h(c, p)(t)(1 − t)c = 1 − BS/I(t) and h(p, c)(t)(1 − t)p = 1 − BS/J (t), so BS/J (1 − t) =
1 − h(p, c)(1 − t)(t)p, so our claim follows from these identities.

Corollary 2 Let I ⊂ S be any homogeneous ideal, c = ht(I), d = n− c and p the smallest
degree of a set of generators. Then we can write HS/I(t) as follows

HS/I(t) =

h(c, p)(t) − tp
( δ(I)∑

i=1

sδ(I)−i(1 − t)i−1
)

(1 − t)d
,

where the numbers s0, ..., sδ(I)−1 are uniquely determined.

11



1. Let J be a square free monomial ideal such that S/J is a Cohen-Macaulay ring of
codimension p, let I := J ∗ be the Alexander dual of J , it then follows that S/I has
a p−linear resolution. Let c = codim (S/I). Then

HS/I(t) =

h(c, p)(t) − tp
( d∑

i=1

sd−i(1 − t)i−1
)

(1 − t)n−c
,

HS/J (t) =

h(p, c)(t) + tc
( d∑

i=1

sd−it
i−1
)

(1 − t)n−p

2. Let I be any square free monomial ideal c = codim (S/I), p the smallest degree of a
set of generators of I. Let J := I∗ be the Alexander dual of I, then p = codim (S/J ),
c is the smallest degree of a set of generators of J and

HS/I(t) =

h(c, p)(t) − tp
( δ(I)∑

i=1

sδ(I)−i(1 − t)i−1
)

(1 − t)n−c
,

HS/J (t) =

h(p, c)(t) + tc
( δ(I)∑

i=1

sδ(I)−it
i−1
)

(1 − t)n−p
.

Proof Since 1, t, ..., tp, tp(1 − t), ..., tp(1 − t)k, ..., are linearly independent the numbers si
are uniquely defined.

HS/I(t) =
hS/I(t)

(1 − t)n−c
=

1 − BS/I(t)

(1 − t)n

HS/J (t) =
hS/J (t)

(1 − t)n−p
=

1 − BS/J (t)

(1 − t)n

by Alexander duality on the Hilbert series we have that :

BS/J (t) = 1 − BS/I(1 − t) = (h(c, p)(1 − t) − (1 − t)p
( δ(I)∑

i=1

sδ(I)−it
i−1
)
)tc,

but h(c, p)(1 − t)tc = 1 − h(p, c)(t) (1 − t)p, so

1 − BS/J (t) = (h(p, c)(t) + tc
( δ(I)∑

i=1

sδ(I)−it
i−1
)
)(1 − t)p.

This proves the claim.
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Theorem 2 1. For any M−vector h = (1, h1, ...) there exists Φ a p−Ferrer tableau such
that hi counts the number of elements in the i−diagonal of Φ.

2. the h−vector of any p−regular ideal is the h−vector of a p−Ferrer ideal.

3. For any M−vector h = (1, h1, ...) we can explicitely construct a p−Ferrer tableau Φ
such that h = (1, h1, ...) is the h−vector of I∗

Φ.

Proof

1. Let h = (1, h1, ...) be the h−vector of S/J , by Macaulay, [S] 2.2 theorem h is obtained
as the M−vector of a multicomplex Γ, where hi counts the monomials of degree i in
Γ. We establish a correspondence between multicomplex Γ and p− Ferrer ideals:

Suppose that Γ is a multicomplex in the variables x1, ..., xn, to any monomial xα1
1 ...xαn

n ∈
Γ we associated the vector (α1 + 1, ..., αn + 1) ∈ (IN∗)n, let Φ be the image of Γ. By
definition Γ is a multicomplex if and only if for any u ∈ Γ, and if v divides u then
v ∈ Γ, this property is equivalent to the property:

For any (α1 + 1, ..., αn + 1) ∈ Φ and (β1 + 1, ..., βn + 1) ∈ (IN∗)n such that βi ≤ αi for
all i then (β1 +1, ..., βn +1) ∈ Φ. That is Φ is a p−Ferrer tableau, such that hi counts
the number of elements in the i−diagonal of Φ.

2. Let I ⊂ S be any graded ideal with p−linear resolution, let Gin(I) be the generic
initial, by a theorem of Bayer and Stillman, Gin(I) has a p−linear resolution, on the
other hand they have the same Hilbert series, and from the remark in the introduction
they have the same betti numbers. Gin(I) is a monomial ideal, we can take the
polarisation P (Gin(I)), this is a square free monomial having p−linear resolution and
the same betti numbers as Gin(I), the Alexander dual P (Gin(I))∗ is Cohen-Macaulay
of codimension p , so there exists a Ferrer tableau Φ such that the h−vector of
S/P (Gin(I))∗ is the generating function of the diagonals of Φ, moreover the h−vector
of S/P (Gin(I))∗coincides with the h−vector of S/(IΦ)∗. By the above proposition
the h−vector of S/P (Gin(I))∗ determines uniquely the h−vector of S/P (Gin(I)),
and the last one coincides with the h−vector of S/IΦ.

3. Let recall from [S] how to associate to a M−vector h = (1, h1, ..., hl) a multicomplex
Γh. For all i ≥ 0 list all monomials in h1 variables in reverse lexicographic order, let
Γh,i be set of first hi monomials in this order, and Γh =

⋃i=l
i=0 Γh,i, in the first item we

have associated to a multicomplex a p−Ferrer tableau Φ such that hi is the number
of elements in the i−diagonal of Φ. By the second item the h−vector of S/(IΦ)∗ is
exactly h.

Example 4 We consider the h−vector, (1, 4, 3, 4, 1), following [S], this h−vector corre-
sponds to the multicomplex

1;x1, ..., x4;x
2
1, x1x2, x

2
2;x

3
1, x

2
1x2, x1x

2
2, x

2
3;x

4
1,

and to the following p−Ferrer ideal IΦ generated by:

s1t1u1v1,

13



s2t1u1v1, s1t2u1v1, s1t1u2v1, s1t1u1v2,

s3t1u1v1, s2t2u1v1, s1t3u1v1,

s4t1u1v1, s3t2u1v1, s2t3u1v1, s1t4u1v1,

s5t1u1v1,

IΦ has the following prime decomposition:

(v1, v2) ∩ (u1, v1) ∩ (s1, v1) ∩ (t1, v1) ∩ (u1, u2) ∩ (s1, u1) ∩ (t1, u1)∩

∩(t1, t2, t3, t4) ∩ (t1, t2t3, s1) ∩ (t1, t2, s1, s2) ∩ (s1, s2, s3, s4, s5)

and I∗
Φ is generated by

v1v2, u1v1, s1v1, t1v1, u1u2, s1u1, t1u1,

t1t2t3t4, t1t2t3s1, t1t2s1s2, s1s2s3s4s5

and the h−vector of S/(IΦ)∗ is (1, 4, 3, 4, 1).

4 Examples

Let S = K[x1, ..., xn] be a polynomial ring. Let α ∈ IN∗, for any element P ∈ S we set

P̃ (x) = P (xα
1 , ..., xα

n), more generally for any matrix with entries in S we set M̃ be matrix

obtained by changing the entry Pi,j of M to P̃i,j.

Lemma 4 Suppose that

F • : 0 → Fs
Ms→ Fs−1 → .... → F1

M1→ F0 → 0

is a minimal free resolution of a graded S−module M , then

F̃ • : 0 → F̃s
M̃s→ F̃s−1 → .... → F̃1

M̃1→ F̃0 → 0

is a minimal free resolution of a graded S−module M̃ . If F • is a pure free resolution, that is
Fi = Sβi(−ai) for all i = 0, ..., s, then F̃ • is also pure and F̃i = Sβi(−aiα) for all i = 0, ..., s.

Corollary 3 1. Let Φ(p, c) be the p− Ferrer diagram Cohen-Macaulay of codimension

c. Let Φ̃(p, c) be the Ferrer p− Ferrer diagram obtained from Φ(p, c) by dividing any
length unit into α parts, then the Alexander dual I∗

Φ̃(p,c)
has a pure resolution of type

(0, cα, ..., (c + p − 1)α).
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2. Let consider any sequence 0 < a1 < a2, suppose that β0 − β1t
a1 + β2t

a2 is the Betti
polynomial of a Cohen-Macaulay module of codimension 2, then we must have:

a1 = cα, a2 = (c + 1)α, β1 =
a2

a2 − a1
β0, β2 =

a1

a2 − a1
β0.

if a2 − a1 is a factor of a2, a1 then we can write

a1 = cα, a2 = (c + 1)α, β1 = (c + 1)β0, β2 = cβ0,

with c a natural number. In particular a module obtaining by taking β0 copies of
I∗

Φ̃(2,c)
, has a pure resolution of type (0, cα, (c + 1)α).

Example 5 Let S = K[a, b, c], consider the free resolution of the algebra S/(ab, ac, cd):

0 −→ S2




a 0
−d b
0 −c




−→ S3 (cd ac ab )
−→ S −→ 0

then we have a pure free resolution

0 −→ S2β0 M1−→ S3β0 M0−→ Sβ0 −→ 0,

where

M1 =




aα 0
−dα bα

0 −cα

.
.

.
a 0

−dα bα

0 −cα




,M0 =




cαdα aαcα aαbα

.
.

.
cd aαcα aαbα




,

with the obvious notation.

Example 6 The algebra S/(ab, ae, cd, ce, ef) has Betti-polynomial 1−5t2 +5t3− t5 but has
not pure resolution.

Example 7 Magic squares Let S be a polynomial ring of dimension n!, It follows from
[S] that the toric ring of n×n magic squares is a quotient RΦn = S/IΦn , its h−polynomial
is as follows:

hRΦn
(t) = 1 + h1t + ... + hlt

d,
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where h1 = n!− (n − 1)2 − 1, d = (n − 1)(n − 2), If n = 3 we have h1 = 1, d = 2, and there
is no relation of degree two between two permutation matrices, but we have a degree three
relation. Set

M1 =




1 0 0
0 1 0
0 0 1


 , M2 =




0 0 1
1 0 0
0 1 0


 , M3 =




0 1 0
0 0 1
1 0 0


 ,

M4 =




1 0 0
0 0 1
0 1 0


 , M5 =




0 1 0
1 0 0
0 0 1


 , M6 =




0 0 1
0 1 0
1 0 0


 ,

We can see that M1+M2+M3 = M4+M5+M6, so this relation gives a degree three generator
in IΦ3 , and in fact IΦ3 is generated by this relation. By using the cubic generators of IΦ3

we get cubic generators of IΦn for n ≥ 4, but we have also quadratic generators, for example
: 



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


+




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1




So for n ≥ 4, the smallest degree of a generator of the toric ideal IΦn is of degree 2. and
unfortunately our proposition can give only information about h1.

Example 8 The Hilbert series of the following p−Ferrer tableaux are respectively:

1 + 3t + 6t2

(1 − t)6
,

1 + 2t + 3t2 − 5t3

(1 − t)7
,

1 + 3t + 6t2 − t3

(1 − t)6
.

Let remark that
1 + 2t + 3t2 − 6t3

(1 − t)7
=

1 + 3t + 6t2

(1 − t)6
.

Example 9 The Hilbert series of the following p−Ferrer tableaux are respectively:

H(t) =
1 + t + t2 − t3(2 + 2(1 − t))

(1 − t)6
,H(t) =

1 + t + t2 − t3(2 + 3(1 − t) + (1 − t)2)

(1 − t)6
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