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Introduction

We recall that any non trivial ideal I ⊂ S has a finite free resolution :

0 → F s Ms → F s-1 → .... → F 1 M 1 → I → 0
the number s is called the projective dimension of S/I and the Betti numbers are defined by β i (I) = β i+1 (S/I) = rankF i+1 . By the theorem of Auslander and Buchsbaum we know that s = dim S -depth (S/I). We will say that the ideal I has a pure resolution if F i = S β i (-a i ) for all i = 1, ..., s. This means that I is generated by elements in degree a 1 , and for i ≥ 2 the matrices M i in the minimal free resolution of I have homogeneous entries of degree a i -a i-1 .

We will say that the ideal I has a p-linear resolution if its minimal free resolution is linear, i.e. I has a pure resolution and for i ≥ 2 the matrices M i have linear entries.

If I has a pure resolution, then the Hilbert series of S/I is given by:

H S/I (t) = 1 -β 1 t a 1 + ... + (-1) s β s t as (1 -t) n
where n = dim S. Since a 1 < ... < a s it the follows that if I has a pure resolution then the Betti numbers are determined by the Hilbert series. p-Ferrer partitions and diagrams. The 1-Ferrer partition is a nonzero natural integer λ, a 2-Ferrer partition is called a partition and is given by a sequence λ 1 ≥ ... ≥ λ m > 0 of natural integers, a 3-Ferrer partition is called planar partition. p-Ferrer partitions are defined inductively Φ : λ 1 ≥ λ 2 ≥ ... ≥ λ m , where λ j is a p-1Ferrer partition for j = 1, ..., m, and the relation ≤ is also defined recursively: if λ i : λ i,1 ≥ ... ≥ λ i,s , λ i+1 : λ i+1,1 ≥ ... ≥ λ i+1,s ′ we will say that λ i ≥ λ i+1 if and only if s ≥ s ′ and λ i,j ≥ λ i+1,j for any j = 1, ..., s ′ . Up to my knowledge there are very few results for p-Ferrer partitions in bigger dimensions.

To any p-Ferrer partition we associate a p-Ferrer diagram which are subsets of IN p . The 1-Ferrer diagram associated to λ ∈ IN is the subset {1, ..., λ}. Inductively if Φ : λ 1 ≥ λ 2 ≥ ... ≥ λ m , is a p-Ferrer partition, where λ j is a p -1-Ferrer partition for j = 1, ..., m, we associate to Φ the p-Ferrer diagram Φ = {(η, 1), η ∈ λ 1 } ∪ ... ∪ {(η, m), η ∈ λ m }. Ferrer p-diagrams can also be represented by a set of boxes labelled by a p-uple (i 1 , ..., i p ) of non zero natural numbers, they have the property that if 1 ≤ i ′ 1 ≤ i 1 , ..., 1 ≤ i ′ p ≤ i p , then the box labelled (i ′ 1 , ..., i ′ p ) is also in the p-Ferrer diagram. We can see that for two Ferrer diagrams: Φ 1 ≥ Φ 2 if and only if the set of boxes of Φ 1 contains the set of boxes of Φ 2 .

Example 1 The following picture corresponds to the 3-Ferrer diagram given by: 4 3 2 2 3 2 1 0 2 0 0 0 2 0 0 0 Example 2 The following picture corresponds to the 3-Ferrer diagram given by: 5 4 4 3 2 4 4 3 3 1 4 4 3 1 0 2 1 1 0 0 2 1 0 0 0 Definition 1 Given a p-Ferrer diagram (or partition) Φ we can associated a monomial ideal I Φ in the following way. Let consider the polynomial ring K[x (1) , x (2) , ..., x (p) ] where x (i) stands for the infinitely set of variables :

x (i) = {x (i) 1 , x (i)
2 , ...}, we define inductively the ideal I Φ 1. For q = 2 let Φ : λ ∈ IN * , then I Φ is the ideal generated by the variables x

(1) 1 , x (1) 2 , ..., x (1) λ . 2. For q = 2 let λ 1 ≥ λ 2 ≥ ... ≥ λ m be a 2-Ferrer diagram, then I Φ is an ideal in the ring of polynomials K[x 1 , .
.., x m , y 1 , ..., y λ 1 ] generated by the monomials x i y j such that i = 1, ..., m and j = 1, ..., λ i . In this case x

(1) 

j = y j , x (2) 
j = x i . 3. For p > 2 let λ 1 ≥ λ 2 ≥ ... ≥ λ m be a Ferrer diagram, where λ j is a p -1Ferrer dia- gram. Let I λ j ⊂ K[Λ]
I Φ = ( m i=1 {x (p) i } × I λ i ).
We can observe the connection between the results on this paper about the Poincaré series of a p-Ferrer diagram Φand the rook problem, which consist to put k rooks in a non attacking position on the p-Ferrer diagram Φ. This will be developped in a forthcoming paper.

p-Ferrer' ideals

Lemma 1 Let S be a polynomial ring, Γ 2 ..., Γ r be non empty disjoint sets of variables, set A i the ideal generated by Γ i+1 , ..., Γ r . Let B 2 ⊂ ... ⊂ B r be a sequence of ideals (not necessarily distinct), generated by the sets B 2 ⊂ ... ⊂ B r . We assume that no variable of Γ 2 ∪ ... ∪ Γ r appears in B 2 , ..., B r , then

A 1 ∩ (A 2 , B 2 ) ∩ ... ∩ (B r ) = ( r 2 Γ i × B i )
where for two subsets A, B ⊂ S, we have set

A × B = {a b | a ∈ A, b ∈ B}.
Proof Let remark that if Γ is a set of variables and P ⊂ S is a set of polynomials such that no variable of Γ appears in the elements of P then (Γ) ∩ (P ) = (Γ × P ). Moreover if Γ 1 , Γ 2 are disjoint sets of variables and P ⊂ S is a set of polynomials such that no variable of Γ 1 , Γ 2 appears in the elements of P then (Γ 1 , Γ 2 ) ∩ (Γ 1 , , P ) = (Γ 1 , Γ 2 × P ).

We prove by induction on the number k the following statement:

A 1 ∩ (A 2 , B 2 ) ∩ ... ∩ (A k , B k ) = (A k , k 2 Γ i × B i ). If k = 2, it is clear that Γ 2 × B 2 ⊂ A 1 ∩ (A 2 , B 2 ), now let f ∈ A 1 ∩ (A 2 , B 2 ), we can write f = f 1 + f 2 , where f 1 ∈ (A 2 ), f 2 ∈ (Γ 2 ) and no variable of A 2 appears in f 2 , it follows that f 2 ∈ (Γ 2 ) ∩ (B 2 ) = (Γ 2 × B 2 ). Suppose that A 1 ∩ (A 2 , B 2 ) ∩ ... ∩ (A k , B k ) = (A k , k 2 Γ i × B i ),
we will prove that

A 1 ∩ (A 2 , B 2 ) ∩ ... ∩ (A k+1 , B k+1 ) = (A k+1 , k+1 2 Γ i × B i ).
Since Γ i ⊂ A j , for j < i, and B i ⊂ B j for i ≤ j, we have k+1

2 Γ i × B i ⊂ (A j , B j
) for 1 ≤ j ≤ k, so we have the inclusion " ⊃ ".

By induction hypothesis we have that

A 1 ∩ (A 2 , B 2 ) ∩ ... ∩ (A k+1 , B k+1 ) = (A k , k 2 Γ i × B i ) ∩ (A k+1 , B k+1 ). Now let f ∈ (A k , k 2 Γ i × B i ) ∩ (A k+1 , B k+1 ). we can write f = f 1 + f 2 + f 3 , where f 3 ∈ ( k 2 Γ i × B i ) ⊂ B k+1 , f 1 ∈ A k+1
, and f 2 ∈ (Γ k+1 ), and no variable of Γ k+1 ∪ ... ∪ Γ r appears in f 2 , this would imply that

f 2 ∈ (Γ k+1 ) ∩ B k+1 = (Γ k+1 × B k+1 ).
Definition 2 Let λ m+1 = 0, δ 0 = 0, δ 1 be the highest integer such that λ 1 = ... = λ δ 1 , and by induction we define δ i+1 as the highest integer such that λ δ i +1 = ... = λ δ i+1 , and set l such that δ l-1 = m. For i = 0, ..., l -2 let

∆ l-i = {x (p) δ i +1 , ..., x (p) δ i+1 }, P l-i = I λ δ i+1 .
So we have: Φ = {(η, 1), η ∈ λ 1 } ∪ ... ∪ {(η, m), η ∈ λ m } and

I Φ = ( l i=2 ∆ i × P i ) = ( m i=1 {x (p) i } × I λ i ).
where for all i, P i is a set of generators of P i .

The following Proposition is an immediate consequence of the above lemma :

Proposition 1 1. We have the following decomposition (probably redundant):

I Φ = (x (p) 1 , ..., x (p) m ) ∩ (x (p) 1 , ..., x (p) m-1 , I λm )... ∩ (x (p) 1 , ..., x (p) i-1 , I λ i ) ∩ ...(I λm ), 2. Let D i = ( l j=i+1 ∆ j ), and 
Q i = (D i , P i ).
Then

I Φ = Q 1 ∩ Q 2 ∩ ... ∩ Q l .
3. The minimal primary decomposition of

I Φ is obtained inductively. Let I λ δ i = Q (i) 1 ∩...∩ Q (i)
r i be a minimal prime decomposition, where by induction hypothesis Q (i) j is a linear ideal, then the minimal prime decomposition of I Φ is obtained from this decomposition by putting out unnecessary components.

Example 3 let P 2 = (c, d) ∩ (e), P 3 = (c, d) ∩ (c, e) ∩ (e, f ) and I Φ = (a, b) ∩ (a, P 2 ) ∩ P 3 then I Φ = (a, b) ∩ (a, e) ∩ (c, d) ∩ (c, e) ∩ (e, f )
is its minimal prime decomposition.

Proposition 2 Let I ⊂ R be a p-Ferrer ideal then reg (I) = p = reg (R/I) + 1.

Proof For any two ideals J 1 , J 2 ⊂ S we have the following exact sequence:

0 → S/J 1 ∩ J 2 → S/J 1 ⊕ S/J 2 → S/(J 1 + J 2 ) → 0 From [B-S, p. 289] reg (S/J 1 ∩ J 2 ) ≤ max{ reg (S/J 1 ⊕ S/J 2 ), reg (S/(J 1 + J 2 )) + 1}
in our case we take

J 1 = k i=1 Q i , J 2 = Q k+1 , so that reg (S/( k i=1 Q i + Q k+1 )) = reg (S/(D k + P k+1 )) = reg (S ′ /(P k+1 )) = p -1, where S = S ′ [D k ]. It then follows that reg (S/( l i=1 Q i )) ≤ p, on the other hand ( l i=1 Q i ))
is generated by elements of degree p, this implies reg (S/( l i=1 Q i )) = p. We will show that in fact projdim (S/I λ ) is the number of diagonals in a p-Ferrer diagram.

Definition 3 Let Φ : λ 1 ≥ λ 2 ≥ ... ≥ λ m be a p-Ferrer diagram. We will say that the monomial in the p-Ferrer ideal (or diagram)

x (p) αp x (p-1) α p-1 ...x (1) α 1 is in the α p + α p-1 + ... + α 1 - p + 1 diagonal. Let s Φ (k) be the number of elements in the k-diagonal of Φ, we will say that the k-diagonal of Φ is full if s Φ (k) = k-1+p-1 p-1
, which is the number of elements in the k-diagonal of IN p , let remark that by the definition of p-Ferrer diagram if the k-diagonal of Φ is full then the j-diagonal of Φ is full for all j = 1, ..., k.

Lemma 2

1. We have the formula

s Φ (k) = m i=1 s λ i (k -(i -1)),
2. Let df (Φ) be the number of full diagonals of Φ, then

df (Φ) = min{df (λ i ) + i -1 | i = 1, ..., m} 3. Let δ(Φ) be the number of diagonals of Φ, then δ(Φ) = max{δ(λ i ) + i -1 | i = 1, ..., m},
and

δ(Φ) = max l i=2 {δ(P i ) + dim D i-1 -1}.
Proof The first item counts the number of elements in the k-diagonal of Φ by counting all the i-slice pieces. The second item means that the k-diagonal of Φ is full if and only if the k -(i -1)-diagonal of the i-slice piece is full, and finally the third item means there is an element in the k-diagonal of Φ if and only if there is at least one element in the k -(i -1)-diagonal of the i-slide piece of Φ, for some i. 1. c the height of I Φ is equal to the number of full diagonals.

Remark that δ(Φ) = max l i=2 {δ(P i ) + dim D i-1 -1}, since max δ 1 i=1 {δ(λ i ) + i -1} = δ(λ 1 ) + δ 1 -1 = δ(P l ) + dim D l-1 -1, max δ 2 i=δ 1 +1 {δ(λ i ) + i -1} = δ(λ δ 1 +1 ) + δ 1 + δ 2 -1 = δ(P l-1 ) + dim D l-2 -1,
2. For j ≥ 1 we have

β j (S/I Φ ) = c + p -1 j + p -1 j + p -2 p -1 + d-1 i=0 s i n -i -1 j -1 3. projdim (S/I Φ ) = δ(Φ).
Proof 1. We prove the statement by induction on p, if p = 1 and Φ = λ ∈ IN, then I φ = (x 1 , ..., x λ ) is an ideal of height λ and df (λ) = λ. Now let p ≥ 2, since

I Φ = (x (p) 1 , ..., x (p) m ) ∩ (x (p) 1 , ..., x (p) m-1 , I λm )... ∩ (x (p) 1 , ..., x (p) i-1 , I λ i ) ∩ ...(I λm ),
we have that htI Φ = min{ htI λ i + i -1}, by induction hypothesis htI

λ i = df (λ i ) so htI Φ = min{df (λ i ) + i -1} = df (Φ).
2. The proof is by induction on the number of generators µ(I Φ ) of the ideal

I Φ . The statement is clear if µ(I Φ ) = 1. Suppose that µ(I Φ ) > 1.
Let π be a generator of I Φ being in the last diagonal of Φ, so we can write π = x (p) i g for some i, where g ∈ I λ i is in the last diagonal of λ i . By definition of a p-Ferrer tableau, the ideal generated by all the generators of I Φ except x (p) i g is a p-Ferrer ideal and we denoted it by I Φ ′ .

In the example 1 we can perform several steps :

4 3 2 2 4 3 2 1 4 3 2 1 4 3 2 1 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 2 0 0 0 -→ 2 0 0 0 -→ 2 0 0 0 -→ 2 0 0 0 2 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 Φ Φ ′ Φ ′′ Φ ′′′ let denote α p := i, so that x (p) i g = x (p) αp x (p-1) α p-1 ...x (1)
α 1

For any k and 1 ≤ β < α k we have that x

(p) αp x (p-1) α p-1 ...x (k) β ...x (1) 
α 1 ∈ I Φ ′ , so we have that ({x

(p) 1 , ..., x (p) 
αp-1 }, ..., {x

1 , ..., x

(1)

α 1 -1 }) ⊂ I Φ ′ : x (p) αp ...x (1) α 1 .
On the other hand let Π ∈ I Φ ′ :

x (p) αp ...x (1) 
α 1 a monomial, we can suppose that no variable in ({x

(p) 1 , ..., x (p) αp-1 }, ..., {x (1) 1 , ..., x (1) α 1 -1 }) appears in Π, so Πx (p) αp ...x (1) α 1 ∈ I Φ ′ implies that there is a generator of I Φ ′ of the type x (p) βp ...x (1)
β 1 such that β i ≥ α i for all i = 1, ..., p, this is in contradiction with the fact that x (p) αp x (p-1) α p-1 ...x (1)
α 1 is in the last diagonal of Φ and doesn't belongs to I Φ ′ . In conclusion we have that

I Φ ′ : x (p) αp ...x (1) α 1 = ({x (p) 1 , ..., x (p) 
αp-1 }, ..., {x

1 , ..., x

(1)

α 1 -1 })
is a linear ideal generated by α p + ... + α 1 -(p) variables. Let remark that since

x (p) αp x (p-1) α p-1 ...x (1)
α 1 is in the last diagonal the number of diagonals δ(Φ) in Φ is α p + ... + α 1 -p + 1. We have the following exact sequence :

0 → S/(I Φ ′ : (x (p) i g))(-p) ×x (p) i g -→ S/(I Φ ′ ) → S/(I Φ ) → 0,
by applying the mapping cone construction we have that

β j (S/I Φ ) = β j (S/I Φ ′ ) + δ(Φ) -1 j -1 , ∀j = 1, ..., projdim (S/I Φ ).
By induction hypothesis the number of diagonals in Φ ′ coincides with projdim (S/I Φ ′ ).

The number of diagonals in Φ ′ is either equal to the number of diagonals in Φ minus one, or equal to the number of diagonals in Φ. In both cases we have that

s i (Φ) = s i (Φ ′ ) for i = d -1, ..., n -(δ(Φ) -1), s n-(δ(Φ)) (Φ ′ ) = s n-(δ(Φ)) (Φ) -1, and s i (Φ) = s i (Φ ′ ) = 0 for i < n -(δ(Φ)). Let c ′ = htI Φ ′ , It then follows that β j (S/I Φ ′ ) = c ′ + p -1 j + p -1 j + p -2 p -1 + d-1 i=0 s i (Φ ′ ) n -i -1 j -1 , ∀j = 1, ..., projdim (S/I Φ ′ ).
By induction hypothesis projdim (S/I Φ ′ ) = δ(Φ ′ ). We have to consider two cases:

(a) δ(Φ) = c, this case can arrive only if the c diagonal of Φ is full, so

c ′ = c -1, s n-c (Φ ′ ) = c -1 + p -1 p -1 -1, δ(Φ) = δ(Φ ′ ) = c ∀1 ≤ j ≤ c, β j (S/I Φ ) = β j (c -1, p) + ( c -1 + p -1 p -1 -1) c -1 j -1 + c -1 j -1 . ∀1 ≤ j ≤ c, β j (S/I Φ ) = β j (c -1, p) + c -1 + p -1 p -1 c -1 j -1 = β j (c, p).
Let remark that by induction hypothesis β j (S/I Φ ′ ) = 0 for j > c, this implies that projdim (S/I

Φ ) = c = δ(Φ). (b) δ(Φ) > c, in this case c ′ = c β j (S/I Φ ) = c + p -1 j + p -1 j + p -2 p -1 + d-1 i=0 s i (Φ) n -i -1 j -1
and projdim (S/I Φ ) = projdim (S/I Φ ′ ) equals the number of diagonals in Φ.

In particular it follows that if the number of diagonals in Φ ′ is equal to the number of diagonals in Φ minus one, projdim (S/I Φ ) = projdim (S/I Φ ′ ) + 1 is the number of diagonals in Φ. If the number of diagonals in Φ ′ is equal to the number of diagonals in Φ, then projdim (S/I Φ ) = projdim (S/I Φ ′ ) equals the number of diagonals in Φ.

Proposition 3 ara (I Φ ) = cd(I Φ ) = projdim (S/I Φ ).

Proof Recall that a monomial in the p-Ferrer ideal (or tableau)

x (p) αp x (p-1) α p-1 ...x (1)
α 1 is in the α p + α p-1 + ... + α 1 -p + 1 diagonal. Let K j the set of all monomials in the Ferrer tableau lying in the j diagonal and let F j = M ∈K j M , we will prove that for

any M ∈ K j , we haveM 2 ∈ (F 1 , ..., F j ). If j = 2 , let M = x (p) αp x (p-1) α p-1 ...x (1) α 1 , with α p + α p-1 + ... + α 1 -p + 1 = 2, then M F 2 = M 2 + (x (p) αp x (p-1) α p-1 ...x (1) α 1 )M ′ One monomial M ′ ∈ K 2 , M ′ = M can be written x (p) βp x (p-1) β p-1 ...x β (1) 1 with β p + β p-1 + ... + β 1 -p + 1 = 2,
this implies that β i = 1 for all i except one value i 0 , for which β i 0 = 2 and also α j = 1 for all j except one value j 0 , for which α j 0 = 2. Since M ′ = M we must have x The reader should consider the relation between our theorem and the following result from [EG]:

(P ) 1 x (p-1) 1 ...x (1) 1 divides M M ′ . Now let j ≥ 3, let M = x (p) αp x (p-1) α p-1 ...x (1) α 1 , with α p + α p-1 + ... + α 1 -p + 1 = j, then M F 2 = M 2 + (x (p) αp x (p-1) α p-1 ...x (1) α 1 )M ′ One monomial M ′ ∈ K j , M ′ = M can be written x (p) βp x (p-1) β p-1 ...x β (1) 1 with β p +β p-1 +...+β 1 -p+1 = j, let i 0 such that β i 0 = α i 0 if β i 0 < α i 0 then M x (i 0 ) α i 0 x (i 0 ) β i 0 ∈ K i for some i < j, and if β i 0 > α i 0 then M ′ x (i 0 ) β i 0 x (i 0 ) α i 0 ∈ K i for some i < j,in both cases M M ′ ∈ (K i ) for some i < j.
Proposition 4 If R := S/I is a homogeneous ring with p-linear resolution over an infinite field, and x i ∈ R 1 are elements such that x i+1 is a non zero divisor on (R/(x 1 , ..., x i ))/H 0 m (R/(x 1 , ..., x i ), where m is the unique homogeneous maximal ideal of S, then 1. s i (R) = length (H 0 m (R/(x 1 , ..., x i ) p-1 ), for i = 0, ..., dim R -1. 2. If R is of codimension c, and n := dim S, the Betti numbers of R are given by:

for j = 1, ..., n -depth (R) β j (R) = β j (c, p) + d-1 i=0 s i n -i -1 j -1 , where β j (c, p) = c+p-1 j+p-1 j+p-2 p-1
are the betti numbers of a Cohen-Macaulay ring having p-linear resolution, of codimension c.

We have the following corollary:

Corollary 1 If R := S/I is a homogeneous ring with p-linear resolution over an infinite field,of codimension c, and n := dim S, then

β j (c, p) ≤ β j (R) ≤ β j (n -depth (R), p).
Proof As a consequence of the above proposition we have that

s i ≤ n -(i + 1) + p -1 p -1 so that β j (c, p) ≤ β j (R) ≤ β j (c, p) + d-1 i=0 n -(i + 1) + p -1 p -1 n -i -1 j -1
By direct computations we have that

β j (c, p) + n -d + p -1 p -1 n -d jℓ -1 = β j (c + 1, p),
which implies

β j (c, p) ≤ β j (R) ≤ β j (c + 1, p) + d-2 i=0 n -(i + 1) + p -1 p -1 n -i -1 j -1 ,
by repeating the above computations we got the corollary.

3 Hilbert series of ideals with p-linear resolution.

Let I ⊂ S be an ideal with p-linear resolution, it follows from [EG], that the Hilbert series of S/I is given by

H S/I (t) = p-1 i=0 c + i -1 i t i -t p d i=1 s d-i (1 -t) i-1 (1 -t) d
where d = n -c In the case where the ring S/I is Cohen-Macaulay, we have :

H S/I (t) = p-1 i=0 c + i -1 i t i (1 -t) d
Definition 4 For any non zero natural numbers c, p, we set

h(c, p)(t) := p-1 i=0 c + i -1 i t i .
Remark that the h-vector of the polynomial h(c, p)(t) is log concave, since for i = 0, ..., p-3, we have that

c + i -1 i c + i + 1 i + 2 ≤ ( c + i i + 1 ) 2 .
Lemma 3 For any non zero natural numbers c, p, we have the relation

1 -h(c, p)(1 -t)t c = h(p, c)(t)(1 -t) p , in particular h(c, p)(t) (1 -t) c = 1 -h(p, c)(1 -t) t p , h(c, p)(t) (1 -t) c ≡ 1 modt p .
Proof Let I be a square free monomial ideal having a p-linear resolution, such that S/I is a Cohen-Macaulay ring of codimension c, let J := I * be the Alexander dual of I, it then follows that S/J is a Cohen-Macaulay ring of codimension p which has a c-linear resolution.

H S/I (t) = h(c, p)(t) (1 -t) n-c = 1 -B S/I (t) (1 -t) n H S/J (t) = h(p, c)(t) (1 -t) n-p = 1 -B S/J (t) (1 -t) n
and by Alexander duality on the Hilbert series we have that :

1 -B S/I (t) = B S/J (1 -t) but h(c, p)(t)(1 -t) c = 1 -B S/I (t) and h(p, c)(t)(1 -t) p = 1 -B S/J (t), so B S/J (1 -t) = 1 -h(p, c)(1 -t)(t)
p , so our claim follows from these identities.

Corollary 2 Let I ⊂ S be any homogeneous ideal, c = ht(I), d = n -c and p the smallest degree of a set of generators. Then we can write H S/I (t) as follows

H S/I (t) = h(c, p)(t) -t p δ(I) i=1 s δ(I)-i (1 -t) i-1 (1 -t) d ,
where the numbers s 0 , ..., s δ(I)-1 are uniquely determined.

1. Let J be a square free monomial ideal such that S/J is a Cohen-Macaulay ring of codimension p, let I := J * be the Alexander dual of J , it then follows that S/I has a p-linear resolution. Let c = codim (S/I). Then

H S/I (t) = h(c, p)(t) -t p d i=1 s d-i (1 -t) i-1 (1 -t) n-c , H S/J (t) = h(p, c)(t) + t c d i=1 s d-i t i-1 (1 -t) n-p
2. Let I be any square free monomial ideal c = codim (S/I), p the smallest degree of a set of generators of I. Let J := I * be the Alexander dual of I, then p = codim (S/J ), c is the smallest degree of a set of generators of J and

H S/I (t) = h(c, p)(t) -t p δ(I) i=1 s δ(I)-i (1 -t) i-1 (1 -t) n-c , H S/J (t) = h(p, c)(t) + t c δ(I) i=1 s δ(I)-i t i-1
(1 -t) n-p .

Proof Since 1, t, ..., t p , t p (1 -t), ..., t p (1 -t) k , ..., are linearly independent the numbers s i are uniquely defined.

H S/I (t) = h S/I (t) (1 -t) n-c = 1 -B S/I (t) (1 -t) n H S/J (t) = h S/J (t) (1 -t) n-p = 1 -B S/J (t)
(1 -t) n by Alexander duality on the Hilbert series we have that :

B S/J (t) = 1 -B S/I (1 -t) = (h(c, p)(1 -t) -(1 -t) p δ(I) i=1 s δ(I)-i t i-1 )t c , but h(c, p)(1 -t)t c = 1 -h(p, c)(t) (1 -t) p , so 1 -B S/J (t) = (h(p, c)(t) + t c δ(I) i=1 s δ(I)-i t i-1 )(1 -t) p .
This proves the claim.

Theorem 2 1. For any M -vector h = (1, h 1 , ...) there exists Φ a p-Ferrer tableau such that h i counts the number of elements in the i-diagonal of Φ.

2. the h-vector of any p-regular ideal is the h-vector of a p-Ferrer ideal.

3. For any M -vector h = (1, h 1 , ...) we can explicitely construct a p-Ferrer tableau Φ such that h = (1, h 1 , ...) is the h-vector of I * Φ .

Proof 1. Let h = (1, h 1 , ...) be the h-vector of S/J , by Macaulay, [S] 2.2 theorem h is obtained as the M -vector of a multicomplex Γ, where h i counts the monomials of degree i in Γ. We establish a correspondence between multicomplex Γ and p-Ferrer ideals: Suppose that Γ is a multicomplex in the variables x 1 , ..., x n , to any monomial x α 1 1 ...x αn n ∈ Γ we associated the vector (α 1 + 1, ..., α n + 1) ∈ (IN * ) n , let Φ be the image of Γ. By definition Γ is a multicomplex if and only if for any u ∈ Γ, and if v divides u then v ∈ Γ, this property is equivalent to the property: For any (α 1 + 1, ..., α n + 1) ∈ Φ and (β 1 + 1, ..., β n + 1) ∈ (IN * ) n such that β i ≤ α i for all i then (β 1 + 1, ..., β n + 1) ∈ Φ. That is Φ is a p-Ferrer tableau, such that h i counts the number of elements in the i-diagonal of Φ.

3. Let recall from [S] how to associate to a M -vector h = (1, h 1 , ..., h l ) a multicomplex Γ h . For all i ≥ 0 list all monomials in h 1 variables in reverse lexicographic order, let Γ h,i be set of first h i monomials in this order, and Γ h = i=l i=0 Γ h,i , in the first item we have associated to a multicomplex a p-Ferrer tableau Φ such that h i is the number of elements in the i-diagonal of Φ. By the second item the h-vector of S/(I Φ ) * is exactly h.

Example 4 We consider the h-vector, (1,4,3,4,1), following [S], this h-vector corresponds to the multicomplex

1; x 1 , ..., x 4 ; x 2 1 , x 1 x 2 , x 2 2 ; x 3 1 , x 2 1 x 2 , x 1 x 2 2 , x 2 3 ; x 4 1 ,
and to the following p-Ferrer ideal I Φ generated by:

s 1 t 1 u 1 v 1 , s 2 t 1 u 1 v 1 , s 1 t 2 u 1 v 1 , s 1 t 1 u 2 v 1 , s 1 t 1 u 1 v 2 , s 3 t 1 u 1 v 1 , s 2 t 2 u 1 v 1 , s 1 t 3 u 1 v 1 , s 4 t 1 u 1 v 1 , s 3 t 2 u 1 v 1 , s 2 t 3 u 1 v 1 , s 1 t 4 u 1 v 1 , s 5 t 1 u 1 v 1 ,
I Φ has the following prime decomposition:

(v 1 , v 2 ) ∩ (u 1 , v 1 ) ∩ (s 1 , v 1 ) ∩ (t 1 , v 1 ) ∩ (u 1 , u 2 ) ∩ (s 1 , u 1 ) ∩ (t 1 , u 1 )∩ ∩(t 1 , t 2 , t 3 , t 4 ) ∩ (t 1 , t 2 t 3 , s 1 ) ∩ (t 1 , t 2 , s 1 , s 2 ) ∩ (s 1 , s 2 , s 3 , s 4 , s 5 )
and

I * Φ is generated by v 1 v 2 , u 1 v 1 , s 1 v 1 , t 1 v 1 , u 1 u 2 , s 1 u 1 , t 1 u 1 , t 1 t 2 t 3 t 4 , t 1 t 2 t 3 s 1 , t 1 t 2 s 1 s 2 , s 1 s 2 s 3 s 4 s 5
and the h-vector of S/(I Φ ) * is (1, 4, 3, 4, 1).

Examples

Let S = K[x 1 , ..., x n ] be a polynomial ring. Let α ∈ IN * , for any element P ∈ S we set P (x) = P (x α 1 , ..., x α n ), more generally for any matrix with entries in S we set M be matrix obtained by changing the entry P i,j of M to P i,j .

Lemma 4 Suppose that

F • : 0 → F s Ms → F s-1 → .... → F 1 M 1 → F 0 → 0
is a minimal free resolution of a graded S-module M , then

F • : 0 → F s Ms → F s-1 → .... → F 1 M 1 → F 0 → 0 is a minimal free resolution of a graded S-module M . If F • is a pure free resolution, that is F i = S β i (-a i )
for all i = 0, ..., s, then F • is also pure and F i = S β i (-a i α) for all i = 0, ..., s. 2. Let consider any sequence 0 < a 1 < a 2 , suppose that β 0 -β 1 t a 1 + β 2 t a 2 is the Betti polynomial of a Cohen-Macaulay module of codimension 2, then we must have:

a 1 = cα, a 2 = (c + 1)α, β 1 = a 2 a 2 -a 1 β 0 , β 2 = a 1 a 2 -a 1 β 0 .
if a 2 -a 1 is a factor of a 2 , a 1 then we can write

a 1 = cα, a 2 = (c + 1)α, β 1 = (c + 1)β 0 , β 2 = cβ 0 ,
with c a natural number. In particular a module obtaining by taking β 0 copies of

I * Φ(2,c)
, has a pure resolution of type (0, cα, (c + 1)α).

Example 5 Let S = K[a, b, c], consider the free resolution of the algebra S/(ab, ac, cd):

0 -→ S 2   a 0 -d b 0 -c   -→ S 3 ( cd ac ab ) -→ S -→ 0
then we have a pure free resolution

0 -→ S 2β 0 M 1 -→ S 3β 0 M 0 -→ S β 0 -→ 0,
where

M 1 =                 a α 0 -d α b α 0 -c α . . . a 0 -d α b α 0 -c α                 , M 0 =        c α d α a α c α a α b α . . . cd a α c α a α b α       
, with the obvious notation.

Example 6 The algebra S/(ab, ae, cd, ce, ef ) has Betti-polynomial 1 -5t 2 + 5t 3 -t 5 but has not pure resolution.

Example 7 Magic squares Let S be a polynomial ring of dimension n!, It follows from [S] that the toric ring of n × n magic squares is a quotient R Φn = S/I Φn , its h-polynomial is as follows: h R Φn (t) = 1 + h 1 t + ... + h l t d , where h 1 = n! -(n -1) 2 -1, d = (n -1)(n -2), If n = 3 we have h 1 = 1, d = 2, and there is no relation of degree two between two permutation matrices, but we have a degree three relation. Set We can see that M 1 +M 2 +M 3 = M 4 +M 5 +M 6 , so this relation gives a degree three generator in I Φ 3 , and in fact I Φ 3 is generated by this relation. By using the cubic generators of I Φ 3 we get cubic generators of I Φn for n ≥ 4, but we have also quadratic generators, for example :

   
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

    +    
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

    =    
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

    +    
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1

   
So for n ≥ 4, the smallest degree of a generator of the toric ideal I Φn is of degree 2. and unfortunately our proposition can give only information about h 1 .

Example 8 The Hilbert series of the following p-Ferrer tableaux are respectively:

1 + 3t + 6t 2 (1 -t) 6 , 1 + 2t + 3t 2 -5t 3 (1 -t) 7 , 1 + 3t + 6t 2 -t 3 (1 -t) 6 .

Let remark that 1 + 2t + 3t 2 -6t 3 (1 -t) 7 = 1 + 3t + 6t 2 (1 -t) 6 .

Example 9 The Hilbert series of the following p-Ferrer tableaux are respectively:

H(t) = 1 + t + t 2 -t 3 (2 + 2(1 -t))
(1 -t) 6 , H(t) = 1 + t + t 2 -t 3 (2 + 3(1 -t) + (1 -t) 2 ) (1 -t) 6

  be the ideal associated to λ j , where K[Λ] s a polynomial ring in a finite set of variables then I Φ is an ideal in the ring of polynomials K[x i y j such that i = 1, ..., m and y j ∈ I λ i . That is

  and so on.Theorem 1 Let consider a p-Ferrer diagram Φ and its associated ideal I Φ in a polynomial ring S. Let n = dim S, c = htI Φ , d = n -c. For i = 1, ..., d -depth S/I, let s d-i be the numbers of elements in the c + i diagonal of Φ. Then :

  As a consequence ara (I Φ ) ≤ projdim (S/I Φ ), but I Φ is a monomial ideal, so by a Theorem of Lyubeznik cd(I Φ ) = projdim (S/I Φ ), and cd(I Φ ) ≤ ara (I Φ ), so we have the equality ara (I Φ ) = projdim (S/I Φ ). Let remark that the equality cd(I Φ ) = projdim (S/I Φ ) can be recovered by direct computations in the case of p-Ferrer ideals.

  Φ(p, c) be the p-Ferrer diagram Cohen-Macaulay of codimension c. Let Φ(p, c) be the Ferrer p-Ferrer diagram obtained from Φ(p, c) by dividing any length unit into α parts, then the Alexander dual I * Φ(p,c) has a pure resolution of type (0, cα, ..., (c + p -1)α).

Let I ⊂ S be any graded ideal with p-linear resolution, let Gin(I) be the generic initial, by a theorem of Bayer and Stillman, Gin(I) has a p-linear resolution, on the other hand they have the same Hilbert series, and from the remark in the introduction they have the same betti numbers. Gin(I) is a monomial ideal, we can take the polarisation P (Gin(I)), this is a square free monomial having p-linear resolution and the same betti numbers as Gin(I), the Alexander dual P (Gin(I)) * is Cohen-Macaulay of codimension p , so there exists a Ferrer tableau Φ such that the h-vector of S/P (Gin(I)) * is the generating function of the diagonals of Φ, moreover the h-vector of S/P (Gin(I)) * coincides with the h-vector of S/(I Φ ) * . By the above proposition the h-vector of S/P (Gin(I)) * determines uniquely the h-vector of S/P (Gin(I)), and the last one coincides with the h-vector of S/I Φ .