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Abstract

We provide the strong approximation of empirical copulacpsses by a Gaussian process. In
addition we establish a strong approximation of the smab#mepirical copula processes and a

law of iterated logarithm.
AMS Subject Classifications Primary 60F17 ; secondary 62G20 ; 62H10 ; 60F15.

Keywords: Empirical Copula processes ; Strong invariance prinsipl€ernel-type-estimator ;

Kiefer processes ; Gaussian processes.

1 Introduction

The aim of the present paper is to provide the strong (almost) pproximations of the empir-
ical copula proces$A,,(u) : u € [0,1]4,}, defined in [I.B) below, by a single Gaussian process
{Hc(u,n) :u€0,1]¢, n > 1}. Precisely, we obtain the strong approximationdgfu) in terms

of Gaussian process in bothandn. We will be mainly concerned with the case whétg(-) is

generated by a sample of random vectors with dependent madsgiSuppos& = (X1,..., X,) is
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fe-mail: zari.tarek@gmail.com



a random vector with distribution functidfi(-) and continuous marginals;(-), for j = 1,...,d.

Then the unique copula & is defined as
Cluy, ..., uq) = F(F (1), ..., Fy (ug)) for (uy,...,uq) € [0,1) (1.1)

where, forj = 1,...,d, F; (u) = inf{z : Fj(z) > u}, withu € [0, 1], is the quantile function of
F;(+). In the monographs by Nelsen (2006) and Joe (1997) the rezalefind detailed ingredients
of the modelling theory as well as surveys of the commonlyluwspulas. Copulas have proved to be
a very useful tool in the analysis of dependency structurese specific, copul€&(-) “couples” the
joint distribution functionF(-) to its univariate marginals, capturing as such the deperedginucture
between the components ®f = (X, ..., X;). This feature has motivated successful applications
in actuarial science and survival analysis (see, le.g.sked Valdez (1998), Cui and Sun (2004)). In
the literature on risk management and, more generally, themaatical economics and mathematical
finance modelling, a number of illustrations are provideddir to books of Cherubirgt al. (2004)
and McNeilet al. (2005)), in particular, in the context of asset pricing arebd risk management.

First, we introduce some definitions and notations.

Let X; = (Xy,...,Xa), @ = 1,2,..., be a sequence an independent replicee &damensional
random vectoX € R?. Settingl 4(-) for the indicator function of4, we define, for each > 1, the

empirical counterparts df (-), Fi(-),..., Fy(-) andF; (-),..., F, (), respectively, by setting, for

i=1,....d,
1 n 1 n d J
Fn(X) = g ZH{XZSX} = g ZH]I{XJZ < l‘j}, for x e R R (12)
i=1 i=1 j=1
1 < _
Fju(z) = E;mxﬂgx} =F,(1,...,1,2,1,...,1), for z € R, (1.3)

inf{z : Fj,(z) >t} for te(0,1),
Fiot) = < limyo F;,(t) for ¢=0, (1.4)
limyy F,(¢) for t=1.
SetU;; .= F;(X;;)fori=1,....,n, j=1,...,dandU, := (Uy,...,Uy). Itis well known that
distribution function of random vectol§; coincides with the copul&(-), we refer to Sklar (1959,

1973), Deheuvels (2009), Philipp and Pinzur (1980), Wieh{ir973), Moore and Spruill (1975).



Foreachm > 1,0 <wu; <landl <j <d, set

n d
Gl ug) = % ST U < w5} = Fu(F (), -, Fy (), (1.5)
Ginluy) = = 3" Ui < w5} = Fin Fy ()} (1.6)
G(uj) = infz{;j > 0: Gjnlly) 2wt = Fi{F},(u;)}. (1.7)

Then, withX Zz Y which means thak andY have the same distribution, we have

9 ~

F.(x1,...,2q) = Cpo(Fi(x1), ..., Fa(xq))

and
(Fin(x1), ..., Fan(za)) z (G1n(Fi(21)), .., Gan(Fy(zq))).

From the definition oiF];L(-),j =1,...,d, it follows that
_ D e
F’]n(u]) = F’] {Gjn(uj)}a

and it therefore follows that

1S

Co(us,. .., ug) Z Co(Gr,(w), ..., Gy, (ug)).

For the preceding distributional equality we may refer th®evels|(2009), Ruschendarf (2009) and
Tsukaharal (2005) including the references therein. Simeedpula function associated wikh,(-)
IS not unique, it is convenient to investigate thedified empirical copula processhich is, in turn,

uniquely defined by
A,(u) = nl/Q(én(an(ul), o, Gy (ug)) — Cluy, . .., ug)), foru € [0, 1]%. (1.8)

The functionC,,(-) was briefly discussed by Ruymgaart (1973), pp. 6—13, in ttiedaction of his
doctoral thesis. Deheuvels (1979) investigated the ctargig of C,, () and Deheuvels (1980, 1981)
obtained the exact law and the limiting process\qf-) when margins are independent. The em-
pirical copula procesa,, () has been studied in full generality/in Stute (1984), Gaenssid Stute
(1987) and _Ruschendorf (1974, 1976). In the latter refmenthe normalized empirical copula
process was introduced under the namdtivariate rank order processn discrete grid. In fact,
in that paper the sequential version was more generallgdatred and analyzed for nonstationary

and mixing random variables. van der Vaart and Wellner () 98i6ze the functional delta method



to show convergence df,(-) in £>([a,b]*) for some0 < a < b < 1, under restrictions on the
distribution functions. Fermaniaet al. (2004) extend their results by proving the weak convergence
of this process irf>°([0, 1]?) under minimal conditions on the copula function, which cides with

the result obtained by Gaenssler and Stute (1987). We canteDeheuvels (2009) and the refer-
ences therein concerning the strong approximations foptbeessA,, (). In the last reference, a
full characterization of empirical copula in general framoek is provided. In the present paper, we
are concerned with strong approximations of the empirioplita processegA,(u) : u € [0, 1)¢},
based uporX;,...,X,, by a single Gaussian process. We first need to introduce Saussian
processes, which play a central role in strong approximatibeory. Thel-variate Wiener process

W(y) on the unit cube oR? (y € [0, 1]¢) associated with the copula functi@-), i.e., W (-) is a

d-variate Gaussian process [on1]? with
EW¢g(u)) =0, E(We(u)We(v)) =C(uAnv), (1.9)

whereu = (uy,...,uy) € [0,1]2andv = (v, ...,vy) € [0,1]¢ andW¢(uy, . . ., uq) = 0 whenever
szo,jzl,...,d.
A d-variate Brownian bridge process {ih 1]¢ associated with the copula functi@-) is defined,

in terms ofW(-), by setting
Bc(u) := Wc(u) — C(u)We(1), (1.10)
foru € [0,1] and1 := (1,...,1). This process has continuous sample paths and fulfills
E(Bc(u)) =0, E(Bc(u)Be(v)) = C(uAv)—C(u)C(v), for u,ve[0,1]% (1.11)

The interested reader may refer/.to Piterbarg (1996) andrAdR90) for details on the gaussian
processes mentioned above. To state our result we neednultde the notion of Kiefer ran-
dom field. Consider ad(+ 1)-variate Gaussian proce$8c(u, z) on [0, 1]¢ x [0,00) such that
We(u, z) = 0whenever any ofiy, . . ., ug Or z is zero EWe(u, 2) = 0, andEW¢ (u, 2)We(v, t) =
min(z,t)C(u,v). Then, a { + 1)-variate Kiefer processzc(-) on [0, 1]¢ x [0, c0) associated with

the copula functiorC(-), can be represented as
Ho(u,t) = We(u,t) — C(u)We(1,t)
and fullfils
E(#c(u,2)) =0 and E(Zc(u,2)%c(v,t) = (2 At){C(urv)—C(u)C(v)},

4



foru,v € [0,1]¢ ands, ¢t > 0. Clearly, for all fixedz > 0, we have
22 A (u, 2) Z Bc(u).

For eachn > 0, u; € [0,1] andj =1, ..., d, thecopula Gaussian process defined by

HC(u)
8Uj

HG(wn) = Ho(un) =) Ho(l,...,Lu;l,... 1n)

HC(u)
8Uj

d
= Jc(u,n) — Z%j)(l,uj, 1,n)

J=1

(1.12)

We say that the strong approximation hold for the prodggs) with rate(b,,), this means that

sup |A,(u) — Z,(u)| = O(b,), a.s. (1.13)

ue0,1)4

on probability spac€?, <7, P), whereZ,(-) is a sequence of gaussian processes and a deterministic
rateb, — 0. The strong approximations are quite useful and have redeiensiderable attention
in probability theory. Indeed, many well-known probalyiltheorems can be considered as con-
sequences of results about strong approximation of seqaasfcsums by corresponding Gaussian
sequences. We mention that the rates of convergence fordinbations ofsmoothfunctionals of
A, (-) can be also deduced from the approximation[in (1.13). Thecxppation by Kiefer pro-
cess is of particular interest, since any kind of law of tlegated logarithm which holds for the
partial sums of Gaussian processes may then transferrée ntpirical processes, (). We re-
fer tolKomlbset al. (1975), (DasGupta, 2008, Chapter 12), (Csorgd and Hon®93, Chapter 3),
(Csorgd and Révész, 1981, Chapters 4-5) and (Shoratk\etiner, 1986, Chapter 12) for expo-
sitions and references on this problem. We refer to CsargbHall (1984) for a survey of some
applications of the strong approximation and many refeenclhere is a huge literature on the
strong approximations and their applications. It is notghgpose of this paper to survey this exten-

sive literature.

The remaining of our paper is organized as follows. In thea segtion we will give our main result
concerning the strong approximation of empirical copulacpsses by a single Gaussian process,
which is stated in Theorem 2.1 below. In secfion 3 we will gheene applications of Theordm P.1,
more precisely we will give the limit law of smoothed empaicopula processes and the law of
iterated logarithm for the empirical copula processes. groef of these results will be sketched in

sectiorl 4.



2 Results

In the sequel, the precise meaning of “suitable probabslisice” is that an independent sequence
of Wiener processes, which is independent of the origingileen sequence of i.i.d. r.v., can be
constructed on the assumed probability space. This is aitadirequirement which allows for the
construction of the Gaussian processes in our theoremss anad restrictive since one can expand

the probability space to make it rich enough (cf. Appendir £s80rgd and Horvath (1993)).

The main result to be proved here may now be stated precisdbllaws.

Theorem 2.1 Assume tha€(-), associated witlF(-), is twice continuously differentiable @¢f, 1)¢
and all the partial derivatives of second order are contins®n|0, 1]¢. On a suitable probability
space, we may define the empirical copula proce$ggsu) : u € [0, 1]4;n > 0} in combination
with a Gaussian proces§#¢(u,t) : u € [0,1]%¢ > 0}, in such a way that, almost surely as

n — 00

sup |v/n(u) — A ()] = O (n'? Y6 (log n)/2) (2.1)

uel0,1]¢

where #¢ (u, t) is defined in[(1.72).
The proof of Theorern 21 is given in Sectidn 4.

Remark 2.2 In the particular case of independence, i.e.,

C(u) = Hui,

the procesg.7g (u,n) : u € [0,1]%n > 0} is equal to

d d
HG(u,n) = Hc(u,n) — Z,%/éj)(l,uj, 1,n) Hui, u € [0,1)¢,

j=1 i#j
with mean zero and covariance functions

d

E (A (u,5) 2 (v, 1) = (s A1) {H(u Avi) +(d=1) H vy =y (ui Avy) Huivj}

i=1 i=1 i#j
whereu, v € [0,1]? ands, ¢+ > 0. For more details the reader may refer/to@gd (1979). Note
that in the case wherg,, (-) is generated by a sample of random vectors with independamfinals

then the limit distribution in[(Z]1) is free.



Remark 2.3 Theoreni 2]l may be used to derive the limiting laws of sontiststa like Kendall's
sample rank correlation coefficient and Spearman’s sangu correlation coefficient. More gen-

erally, let us define, for any functiof(-) on [0, 1

S(C) = /01 /01 J(u, v, Clu, v))dudv.

The corresponding sample quantifyC,,) may be called Spearman type rank statistic, the inter-
ested reader may refer to Gaenssler and Stute (1987) for deiegls. To see this, suppose that>
J(u, v, z) has a continuous derivativ€ (u, v, z) withsup, ,, . | J*(u, v, z)| = sup,,, . |0 (u, v, 2) /0z| <

co. Then we can write
Ji(S(C,) —S(C) = Vi (/01 /01 T, v, Cyy(u, v))dudy — /01 /01 J(u,v, C(u,v))dudv)
= /01 /01 I3 (u, v, 6 (u, v)) Ay (u, v)dudv,

whered,, (u, v) is a point betweelC,, (u, v) and C(u, v), so thats,, — C uniformly with probability
one. Making use of Theordm .1 we have

1
N

Corresponding to the Spearman type rank statistic, we pugry function/(-) on [0, 1]3,

‘\/E(S(Cn)—S(C))—/Ol/ong(u,v,C(u,v)) K& (u,v,n)dudv| = op(1).

T(C) = /0 1 /0 1 J(u, v, Cu, v))dC(u, v),

the integration being understood as multiple integral lshea the bivariate copula. We cdll(C,,)

a Kendall type rank statistic. Similarly, using Theorem| %& can obtain the limiting law of
vi(T(C,) — T(C)).

3 Applications

3.1 Smoothed empirical copula processes

The smoothed empirical copula functi@(-) is defined by

1 u—v

O _ 2 d
C,(u) = h/[o,udk( P17 )Cn(v)dv for u € [0,1]¢, (3.2)

wherek(-) is a kernel function anfl = h(n) is the smoothing parameter. For notational convenience,

we have chosen the same bandwidth sequence for each margissassumption can be dropped

7



easily. Similarly to the previous section, we define the siined empirical copulas process by

~

A (u) = v (Cn(u) - C(u)) for u e [0, 1]7. (3.2)

We will describe the asymptotic properties of the smoothagdidgcal copulas proces&n(-) under

the following assumptions.

(F.1). There exists a constahk ¢ < oo such that

9°C(u)

) 1<E ity = s
Oy ... dug| — Htetja=s

sup
uelo,1]d

Suppose thafh(n)},>; is a sequence of positive constants which satisfies the tondi
(C.1). h = h(n) — 0, nh — oo and/nh*/? — 0 asn — ooc;
and the kernel functioh(-) fulfills the following conditions.
(C.2). k(+) is a continuous density function and compactly supported;
(C.3). k(+) is of orders, i.e.,
/ k(u)du = 1,
R4
/ wlt . ulk(a)da =0, g1, 50>0, Gt ja=1,...,5—1,
R4
/ jult .. uld|k(u)du < oo, ji,...,5a>0, j1+ ...+ ja=s.
R4
The following corollary establishes the limiting behaviofithe smoothed empirical copulas process
Ay().

Corollary 3.1 Assume thatF.1) and(C.1)-(C.3) hold. Then, on a suitable probability space, we
may define the smoothed empirical copula proce$§e;§u) cu € [0,1]%n > 0} in combination

with a Gaussian process#¢ (u,t) : u € [0, 1]4; ¢ > 0}, in such a way that, as — oo

wp (B, (w) = = (w, )| = 0p(1). (3.3)

S _
uel0,1]4 vn
The proof of Corollary 31 is given in Sectiéh 4.
The result of Corollary 311 is motivated by the following rakn



Remark 3.2 The empirical copula provides an universal way for estimagpurposes. Unfortu-
nately, its discontinuous feature induces some difficultiee graphical representations of the cop-
ula may not be satisfactory from a visual and intuitive pahtiew. Moreover, there is no unigue
choice for building the inverse function of marginal fuoecis. Finally, since the empirical copula
estimator is not differentiable, it cannot, for exampleused to derive an estimate of the associated
copula density or for optimization purposes. Studies hdneve that a smoothed estimator may
be preferable to the sample estimator. Firstly, smoothadpuces the random variation in the data,
resulting in a more efficient estimator. Secondly, smogtlgimes a smooth curve that displays some

interesting features.

Remark 3.3 1. Corollary(3.1 remains valid when replacing the condittbat the kernel function

k(-) having compact support ifC.2) by another conditiofiC.4) which content is as follows

(C.4). There exists a sequence of positive real numbgisuch that,,h tends to zero when
tends to infinity, and

Vvn |k(v)|dv — 0.

{lIivii>an}

2. Note that the conditions of Corollaty B.1 are grouped totcol the deviations between the

empirical copula process, (-) and the smoothed empirical copula proc&s;{-).

3.2 The law of iterated logarithm for empirical copula processes

From Theoremi Z2]1, we have almost surely

. n . SUDPuelo,1]¢ | 2& (u, n)|
1 —_— C, -C =1 . 3.4
im sup { (2 o logn) usgﬁ]d Cy(u) (u)l} MU g log )12 (3.4)

We can state the following Corollary.

Corollary 3.4 Under the same conditions of the Theofem 2.1, we have
n 1/2
lim su _ sup |C,(u) — C(u =p, a.s., 3.5
n—)oop{<2loglogn) uE[OE}d‘ ( ) ( >|} g ( )

where

p?’ = sup Var (#g5(u,1)).

uelo,1]4
Remark 3.5 The result of Corollary 314 was obtained by Deheuvels (19#¥gr to Theorem 3.1)

using a different method.



Remark 3.6 In the early 1970s there was considerable interest in maltate rank-order statistics
we may refer to Ruymgaeet al.(1972)) Rischendorf (1974, 1976) including the references therein.

Such statistics are of the form
1 n
R, =—> 7 (Fuu(Xy).. . Fin(Xa1))
=1

where ¢ : [0,1]¢ — R, is measurable function satisfying some regularity conditoThe asymp-
totic normality ofR,, can be established under the weakest set of assumptionsT{ss@em 6 in

Fermanianet al.(2004)) using Theorem 2.1.

4 Proofs

Proof of Theorem[2.].

Consider the empirical processes defined, respectively, fo 1, u € [0,1]¢ and0 < u; < 1, for

j=1,...,d, by
an(u) = n'*(Cp(u) - C(w)), (4.1)
ajn(uj) = n'*{Gn(u;) — u;}, (4.2)
Bin(ug) = n'{G,(u;) — us}. (4.3)

Recall the definition[{118) ok, (-), the empirical process of copulas can be writtenyfar [0, 1]¢,
as follows
Ay(u) = n*(Co(GL, (W), ..., Gy, (ua) — Cluy, . .., ug))
= an (Grp(w),.... Gy, (ua)) +n'? {C (G, (wm),...,Gy,(uq))
— C(uy,...,uq)}
= a, (ur + 1B (), .oy ug + 12 Ban (ug))
+n' 2 {C (uy + 0B (wr), - g + 72 Ban(ua)) — Clud, - . ., uq)) }
= ay(u) + {an(u+n26,(w) - ay(u)}
+n'2{C(u+n""?B,(u)) — C(u)}
= ay(u)+ Ai(u,n) + As(u,n), (4.4)

where(u +n"28,(u)) = (u1 +n"Y2B1(u1), . . ., ug +n"2 B4, (ug)). We first evaluate the right

side termA, (-, n) of (4.4). By differentiability assumption o@'(-), we can use Taylor's expansion

10



to obtain the following

ou;
i=1
n d d 2 *
TZZ 8uj (wi) = i) (Grj(uy) — uy),
i=1 j=1
whereu* lies in the interior of the line segment joining,,; (u1), . .., G, (uq)) @and(uy, . . ., ug). It

follows from the definition ofy,(-) in (4.1), foru; € [0,1], j =1,...,d, that
Vi(Gri(w) —w) = —v/n (GulGry(w) — Gri(w)) + v/ (Gui(Gri(wi)) — ;)
= —an(1,Go(wi), 1) + Vn(Gi(Gri(w)) — wi).

Using the fact thatG.,,;(G,,;(u;)) — u;| < 1/n and the Chung (1949)’s law of the iterated logarithm,

one finds, almost surely,

As(u,n) = — Z 8C(u) an(1,Gri(u;), 1) + O(n~Y?loglogn),
uniformly in u. It is well known since the work of Stute (1982), p. 99, thathese, almost surely,

sup |an(1, G, (u;), 1) — a,(1,u;, 1)| = O(nil/‘l(log n)l/z(log log n)1/4).
uiE[O,l}

Then, it follows that uniformly im1, almost surely,

— 6C n(u, 1) + O(n’l/‘l(logn)l/z(loglogn)1/4),

as was observed hy Stute (1984), p. 371. We next evaluatertine; (-, ) in the right hand side
of (£.4). Recall that\,(u, n) is the difference ofv,(u + n~1/23,(u)) anda,,(u). Letw,(-) be the

modulus of continuity ofy,(-), defined by

d
wy(a) := sup {an(A) A= H[ui,vi] c [0,1]%, with |[u;,vi]| = vs —u; < a;,Vi=1,.. .,d} :

=1 7
We will make use of the following fact which is a particularseaof Theorem 2.1, p. 367 of Stute
(1984).

Fact 1. Let {a,},>1 be a sequence i, 1) such as:,, | 0, asn — oo, and
i\nal 1 oo, ii)nal/logn — oo, iii)log(1/ay,)/loglogn — oo.
Then, we have, almost surely,
2
hm {2a log(1/al)} n(Qny o oyan) =1

11



An application of the Chung (1949) law of the iterated lotfar shows that, for each=1,...,d,

almost surely,

lim sup {(loglogn)_l/2 sup |6jn(uj)|} =9271/2, (4.5)
0<u<1

n—oo

From (4.5), we have almost surely for gli= 1, ..., d andn large enough,

(loglogn)*?  (logn)?/

“1/23 (. —
oS0 I () IS =00 — S i

an application of Fact 1 shows that,7as+ oo, we have, almost surely,
sup | Ai(u,n) [< wy(a,) =0 (n’l/z(logn)?’/z) :
uelo,1]d
The next fact, due to Csorgd and Horvath (1988), p. 108yides a strong approximation result
appropriate for our need.
Fact 2. On a suitable probability spa¢€), <7, P), it is possible to definda,(u) : u € [0, 1]},
jointly with a sequence of Gaussian proc¢séc(u,t) : u € [0, 1]¢,¢ > 0}, in such a way that, as
n — oo, almost surely,
sup |v/ma,(u) — Ao(u,n)| = O (027149 (1og n)*2) | (4.6)

uelo,1]4

Therefore, by the triangle inequality,

sup [VitAa(u) — A n)] < sup [vinan(u) — Ho(u,n)| + wa(a,)

ueo,1)4 uel0,1]4

sup | \/ﬁan(l,uj, 1) — Ji/éj)(l,uj, 1,n) |

0<u;<1

+0 ’1/4(log n)1/2 (loglog n)1/4),

n1/2—1/(4d)(10gn)3/2) +0 (n—l/Q(log n)3/2)

o —

+ ( 1/2=1/( 4d)(logn)g/Q) +0 (n_1/4(logn)1/2(log logn)1/4)

then, we have almost surely, as— oo,
sup |vnA,(u) — #S(u,n)| =0 (n 1/2=1/( 4d)(logn)3/2)

uel0,1]¢

and thus the proof of Theordm 2.1 is complete. O

12



Proof of Corollary

First, observe that the difference between tempirical copula proces4,,(-) and the smoothed

empirical copula proces&n() can be controlled as follows. We have

Aw) = v (% /W k (%) C,(v)dv — C(u))

- (3 k(5 ) vaeus) - e
+vn <% /W k (%) C(v)dv — C(u))
= (it () )
+vn <% /W k (%) C(v)dv — C(u)) . 4.7)

Thus, one can derive the following

sup |A,(u) — A, (u)] < sup

I

uel0,1]4 uel0,1) |JTIL, [“i7 ]
+ sup |A,(u)] / . k(v)dv — 1
uefo,1)4 T, (S ]

++v/n sup / (C(u — W) — C(u))k(v)dv
uelo, ) [JIIL, 477, 5]

+v/n sup |C(u) / L k(v)dv —1
uef0.1]¢ L[]

= v1;11 + v2;n + v?;;n + V4;n- (48)

We first evaluatéd/s.,, in the right side of{(4.18). Under conditions (F.1), (C.1)&Fand using Taylor

expansion of ordes we get

/4 ; - 0° — h,0
Vi = — V/n sup / Z u{l...uzlda C(u .V)K(v)dv ,
s! uelo.) |/ s out' ... oul
wheref = (0y,...,0;) and0 < 60; < 1. Thus a straightforward application of Lebesgue dominated
convergence theorem gives
n V2ipmdy, = L sup 8C7(u) /uj1 UK (V)dv] . (4.9)
’ k! J1 Jd 1 d
Suelo,1]4 |, s ouy' ... o0uy
Then we have by condition (C.1) and (C.3)
Vi = O(n'/2h/?) = o(1), (4.10)

13



By Theoreni 2.1l and almost sure continuity of the Gaussiacga7(u, n) we have

Vin < sup  sup |A,(v)—A,(u)] ‘/K(V)dv

u,ve[0,1]4 lu—v|<h

= 0p(1)O(1) = 0p(1). (4.11)

We next evaluat® ., in the right side of[(4.8). We havep,,co 1)« |A.(u)| = Op(1) and as: tends
to infinity (by condition (C.2))

Vn / k(v)dv — 1| = o(1),
L[4 ]

then

Vo = o0p(1)
Using the same arguments we obtain

Vin = o0p(1).
Reorganizing the above results, one finds

sup |[An(u) — A, (u)| = op(1). (4.12)

ue0,1]4

Now the Corollary follows from[{4.12) in conjunction with €bren{Z.1L, and the fact that

~ 1 ~

sup |A,(u) — —=5(u,n)| < sup |A,(u)—A,(u

s (B = A < s [Ra(w) = Aafu)

1
+ sup |A,(u) — —=H5(u,n)|.
ue(o,1]4 ( ) \/ﬁ C< )

Thus the proof of Corollary is complete. O
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