
HAL Id: hal-00340276
https://hal.science/hal-00340276v3

Submitted on 27 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong Approximation of Empirical Copula Processes by
Gaussian Processes

Salim Bouzebda, Tarek Zari

To cite this version:
Salim Bouzebda, Tarek Zari. Strong Approximation of Empirical Copula Processes by Gaussian
Processes. Statistics, 2013. �hal-00340276v3�

https://hal.science/hal-00340276v3
https://hal.archives-ouvertes.fr


Strong Approximation of Empirical Copula Processes by

Gaussian Processes

Salim BOUZEBDA∗and Tarek ZARI†

L.S.T.A., Universit́e Pierre et Marie Curie-Paris 6.

175, rue du Chevaleret, 8ème étage, b̂atiment A,

75013 PARIS FRANCE

August 27, 2010

Abstract

We provide the strong approximation of empirical copula processes by a Gaussian process. In

addition we establish a strong approximation of the smoothed empirical copula processes and a

law of iterated logarithm.
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1 Introduction

The aim of the present paper is to provide the strong (almost sure) approximations of the empir-

ical copula process{An(u) : u ∈ [0, 1]d, }, defined in (1.8) below, by a single Gaussian process

{KC(u, n) : u ∈ [0, 1]d, n ≥ 1}. Precisely, we obtain the strong approximations ofAn(u) in terms

of Gaussian process in bothu andn. We will be mainly concerned with the case whereAn(·) is

generated by a sample of random vectors with dependent marginals. SupposeX = (X1, . . . , Xd) is
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a random vector with distribution functionF(·) and continuous marginalsFj(·), for j = 1, . . . , d.

Then the unique copula ofX is defined as

C(u1, . . . , ud) = F(F−
1 (u1), . . . , F

−
d (ud)) for (u1, . . . , ud) ∈ [0, 1]d (1.1)

where, forj = 1, . . . , d, F−
j (u) = inf{x : Fj(x) ≥ u}, with u ∈ [0, 1], is the quantile function of

Fj(·). In the monographs by Nelsen (2006) and Joe (1997) the readermay find detailed ingredients

of the modelling theory as well as surveys of the commonly used copulas. Copulas have proved to be

a very useful tool in the analysis of dependency structures.To be specific, copulaC(·) “couples” the

joint distribution functionF(·) to its univariate marginals, capturing as such the dependence structure

between the components ofX = (X1, . . . , Xd). This feature has motivated successful applications

in actuarial science and survival analysis (see, e.g., Frees and Valdez (1998), Cui and Sun (2004)). In

the literature on risk management and, more generally, in mathematical economics and mathematical

finance modelling, a number of illustrations are provided (refer to books of Cherubiniet al. (2004)

and McNeilet al. (2005)), in particular, in the context of asset pricing and credit risk management.

First, we introduce some definitions and notations.

Let Xi = (X1i, . . . , Xdi), i = 1, 2, . . . , be a sequence an independent replicæ of ad-dimensional

random vectorX ∈ R
d. Setting1A(·) for the indicator function ofA, we define, for eachn ≥ 1, the

empirical counterparts ofF(·), F1(·), . . . , Fd(·) andF−
1 (·), . . . , F−

d (·), respectively, by setting, for

j = 1, . . . , d,

Fn(x) =
1

n

n∑

i=1

1{Xi≤x} =
1

n

n∑

i=1

d∏

j=1

1{Xji ≤ xj}, for x ∈ R
d
, (1.2)

Fjn(x) =
1

n

n∑

i=1

1{Xji≤x} = Fn(1, . . . , 1, x, 1, . . . , 1), for x ∈ R, (1.3)

F−
jn(t) =





inf{x : Fjn(x) ≥ t} for t ∈ (0, 1),

limt↓0 F
−
jn(t) for t = 0,

limt↑1 F
−
jn(t) for t = 1.

(1.4)

SetUji := Fj(Xji) for i = 1, . . . , n, j = 1, . . . , d andUi := (U1i, . . . , Udi). It is well known that

distribution function of random vectorsUi coincides with the copulaC(·), we refer to Sklar (1959,

1973), Deheuvels (2009), Philipp and Pinzur (1980), Wichura (1973), Moore and Spruill (1975).
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For eachn ≥ 1, 0 ≤ uj ≤ 1 and1 ≤ j ≤ d, set

C̃n(u1, . . . , ud) :=
1

n

n∑

i=1

d∏

j=1

1{Uji ≤ uj} = Fn(F
−
1 (u1), . . . , F

−
d (ud)), (1.5)

Gjn(uj) :=
1

n

n∑

i=1

1{Uji ≤ uj} = Fjn{F−
j (uj)}. (1.6)

G−
jn(uj) := inf{tj ≥ 0 : Gjn(tj) ≥ uj} = Fj{F−

jn(uj)}. (1.7)

Then, withX
D
= Y which means thatX andY have the same distribution, we have

Fn(x1, . . . , xd)
D
= C̃n(F1(x1), . . . , Fd(xd))

and

(F1n(x1), . . . , Fdn(xd))
D
= (G1n(F1(x1)), . . . , Gdn(Fd(xd))).

From the definition ofF−
jn(·), j = 1, . . . , d, it follows that

F−
jn(uj)

D
= F−

j {G−
jn(uj)},

and it therefore follows that

Cn(u1, . . . , ud)
D
= C̃n(G

−
1n(u1), . . . , G

−
dn(ud)).

For the preceding distributional equality we may refer to Deheuvels (2009), Rüschendorf (2009) and

Tsukahara (2005) including the references therein. Since the copula function associated withFn(·)

is not unique, it is convenient to investigate themodified empirical copula process, which is, in turn,

uniquely defined by

An(u) = n1/2(C̃n(G
−
1n(u1), . . . , G

−
dn(ud))−C(u1, . . . , ud)), for u ∈ [0, 1]d. (1.8)

The functionCn(·) was briefly discussed by Ruymgaart (1973), pp. 6–13, in the introduction of his

doctoral thesis. Deheuvels (1979) investigated the consistency ofCn(·) and Deheuvels (1980, 1981)

obtained the exact law and the limiting process ofAn(·) when margins are independent. The em-

pirical copula processAn(·) has been studied in full generality in Stute (1984), Gaenssler and Stute

(1987) and Rüschendorf (1974, 1976). In the latter references, the normalized empirical copula

process was introduced under the namemultivariate rank order processon discrete grid. In fact,

in that paper the sequential version was more generally introduced and analyzed for nonstationary

and mixing random variables. van der Vaart and Wellner (1996) utilize the functional delta method
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to show convergence ofAn(·) in ℓ∞([a, b]2) for some0 < a < b < 1, under restrictions on the

distribution functions. Fermanianet al.(2004) extend their results by proving the weak convergence

of this process inℓ∞([0, 1]2) under minimal conditions on the copula function, which coincides with

the result obtained by Gaenssler and Stute (1987). We can refer to Deheuvels (2009) and the refer-

ences therein concerning the strong approximations for theprocessAn(·). In the last reference, a

full characterization of empirical copula in general framework is provided. In the present paper, we

are concerned with strong approximations of the empirical copula processes{An(u) : u ∈ [0, 1]d},

based uponX1, . . . ,Xn, by a single Gaussian process. We first need to introduce someGaussian

processes, which play a central role in strong approximations theory. Thed-variate Wiener process

W(y) on the unit cube ofRd (y ∈ [0, 1]d) associated with the copula functionC(·), i.e.,WC(·) is a

d-variate Gaussian process on[0, 1]d with

E(WC(u)) = 0, E(WC(u)WC(v)) = C(u ∧ v), (1.9)

whereu = (u1, . . . , ud) ∈ [0, 1]d andv = (v1, . . . , vd) ∈ [0, 1]d andWC(u1, . . . , ud) = 0 whenever

uj = 0, j = 1, . . . , d.

A d-variate Brownian bridge process on[0, 1]d associated with the copula functionC(·) is defined,

in terms ofWC(·), by setting

BC(u) := WC(u)−C(u)WC(1), (1.10)

for u ∈ [0, 1]d and1 := (1, . . . , 1). This process has continuous sample paths and fulfills

E(BC(u)) = 0, E(BC(u)BC(v)) = C(u ∧ v)−C(u)C(v), for u,v ∈ [0, 1]d. (1.11)

The interested reader may refer to Piterbarg (1996) and Adler (1990) for details on the gaussian

processes mentioned above. To state our result we need to formulate the notion of Kiefer ran-

dom field. Consider a (d + 1)-variate Gaussian processWC(u, z) on [0, 1]d × [0,∞) such that

WC(u, z) = 0 whenever any ofu1, . . . , ud or z is zero,EWC(u, z) = 0, andEWC(u, z)WC(v, t) =

min(z, t)C(u,v). Then, a (d + 1)-variate Kiefer processKC(·) on [0, 1]d × [0,∞) associated with

the copula functionC(·), can be represented as

KC(u, t) = WC(u, t)−C(u)WC(1, t)

and fullfils

E (KC(u, z)) = 0 and E (KC(u, z)KC(v, t)) = (z ∧ t) {C(u ∧ v)−C(u)C(v)} ,
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for u,v ∈ [0, 1]d ands, t ≥ 0. Clearly, for all fixedz ≥ 0, we have

z−1/2KC(u, z)
D
= BC(u).

For eachn > 0, uj ∈ [0, 1] andj = 1, . . . , d, thecopula Gaussian processis defined by

K ∗
C
(u, n) = KC(u, n)−

d∑

j=1

KC(1, . . . , 1, uj, 1, . . . , 1, n)
∂C(u)

∂uj

=: KC(u, n)−
d∑

j=1

K
(j)
C

(1, uj, 1, n)
∂C(u)

∂uj
. (1.12)

We say that the strong approximation hold for the processAn(·) with rate(bn), this means that

sup
u∈[0,1]d

|An(u)− Zn(u)| = O(bn), a.s. (1.13)

on probability space(Ω,A ,P), whereZn(·) is a sequence of gaussian processes and a deterministic

ratebn → 0. The strong approximations are quite useful and have received considerable attention

in probability theory. Indeed, many well-known probability theorems can be considered as con-

sequences of results about strong approximation of sequences of sums by corresponding Gaussian

sequences. We mention that the rates of convergence for the distributions ofsmoothfunctionals of

An(·) can be also deduced from the approximation in (1.13). The approximation by Kiefer pro-

cess is of particular interest, since any kind of law of the iterated logarithm which holds for the

partial sums of Gaussian processes may then transferred to the empirical processesAn(·). We re-

fer to Komlóset al. (1975), (DasGupta, 2008, Chapter 12), (Csörgő and Horváth, 1993, Chapter 3),

(Csörgő and Révész, 1981, Chapters 4-5) and (Shorack and Wellner, 1986, Chapter 12) for expo-

sitions and references on this problem. We refer to Csörgőand Hall (1984) for a survey of some

applications of the strong approximation and many references. There is a huge literature on the

strong approximations and their applications. It is not thepurpose of this paper to survey this exten-

sive literature.

The remaining of our paper is organized as follows. In the next section we will give our main result

concerning the strong approximation of empirical copula processes by a single Gaussian process,

which is stated in Theorem 2.1 below. In section 3 we will givesome applications of Theorem 2.1,

more precisely we will give the limit law of smoothed empirical copula processes and the law of

iterated logarithm for the empirical copula processes. Theproof of these results will be sketched in

section 4.
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2 Results

In the sequel, the precise meaning of “suitable probabilityspace” is that an independent sequence

of Wiener processes, which is independent of the originallygiven sequence of i.i.d. r.v., can be

constructed on the assumed probability space. This is a technical requirement which allows for the

construction of the Gaussian processes in our theorems, andis not restrictive since one can expand

the probability space to make it rich enough (cf. Appendix 2 in Csörgő and Horváth (1993)).

The main result to be proved here may now be stated precisely as follows.

Theorem 2.1 Assume thatC(·), associated withF(·), is twice continuously differentiable on(0, 1)d

and all the partial derivatives of second order are continuous on[0, 1]d. On a suitable probability

space, we may define the empirical copula processes{An(u) : u ∈ [0, 1]d;n > 0} in combination

with a Gaussian process{K ∗
C
(u, t) : u ∈ [0, 1]d; t ≥ 0}, in such a way that, almost surely as

n → ∞

sup
u∈[0,1]d

|
√
nAn(u)− K ∗

C
(u, n)| = O

(
n1/2−1/(4d)(logn)3/2

)
, (2.1)

whereK ∗
C
(u, t) is defined in (1.12).

The proof of Theorem 2.1 is given in Section 4.

Remark 2.2 In the particular case of independence, i.e.,

C(u) =
d∏

i=1

ui,

the process{K ∗
C
(u, n) : u ∈ [0, 1]d;n ≥ 0} is equal to

K ∗
C
(u, n) =: KC(u, n)−

d∑

j=1

K
(j)
C

(1, uj, 1, n)

d∏

i 6=j

ui, u ∈ [0, 1]d,

with mean zero and covariance functions

E (K ∗
C
(u, s)K ∗

C
(v, t)) = (s ∧ t)

{
d∏

i=1

(ui ∧ vi) + (d− 1)
d∏

i=1

uivi −
d∑

i=1

(ui ∧ vi)
∏

i 6=j

uivj

}

whereu,v ∈ [0, 1]d ands, t ≥ 0. For more details the reader may refer to Csörgő (1979). Note

that in the case whereAn(·) is generated by a sample of random vectors with independent marginals

then the limit distribution in (2.1) is free.
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Remark 2.3 Theorem 2.1 may be used to derive the limiting laws of some statistics like Kendall’s

sample rank correlation coefficient and Spearman’s sample rank correlation coefficient. More gen-

erally, let us define, for any functionJ(·) on [0, 1]3

S(C) =

∫ 1

0

∫ 1

0

J(u, v,C(u, v))dudv.

The corresponding sample quantityS(Cn) may be called Spearman type rank statistic, the inter-

ested reader may refer to Gaenssler and Stute (1987) for moredetails. To see this, suppose thatz →

J(u, v, z) has a continuous derivativeJ3(u, v, z)with supu,v,z |J3(u, v, z)| = supu,v,z |∂J(u, v, z)/∂z| <

∞. Then we can write

√
n(S(Cn)− S(C)) =

√
n

(∫ 1

0

∫ 1

0

J(u, v,Cn(u, v))dudv −
∫ 1

0

∫ 1

0

J(u, v,C(u, v))dudv

)

=

∫ 1

0

∫ 1

0

J3(u, v, δn(u, v))An(u, v)dudv,

whereδn(u, v) is a point betweenCn(u, v) andC(u, v), so thatδn → C uniformly with probability

one. Making use of Theorem 2.1 we have

∣∣∣∣
√
n(S(Cn)− S(C))−

∫ 1

0

∫ 1

0

J3(u, v,C(u, v))
1√
n

K ∗
C
(u, v, n)dudv

∣∣∣∣ = oP (1).

Corresponding to the Spearman type rank statistic, we put, for any functionJ(·) on [0, 1]3,

T(C) =

∫ 1

0

∫ 1

0

J(u, v,C(u, v))dC(u, v),

the integration being understood as multiple integral based on the bivariate copula. We callT(Cn)

a Kendall type rank statistic. Similarly, using Theorem 2.1we can obtain the limiting law of
√
n(T(Cn)− T(C)).

3 Applications

3.1 Smoothed empirical copula processes

The smoothed empirical copula function̂Cn(·) is defined by

Ĉn(u) =
1

h

∫

[0,1]d
k

(
u− v

h1/d

)
Cn(v)dv for u ∈ [0, 1]d, (3.1)

wherek(·) is a kernel function andh = h(n) is the smoothing parameter. For notational convenience,

we have chosen the same bandwidth sequence for each margins.This assumption can be dropped
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easily. Similarly to the previous section, we define the smoothed empirical copulas process by

Ân(u) :=
√
n
(
Ĉn(u)−C(u)

)
for u ∈ [0, 1]d. (3.2)

We will describe the asymptotic properties of the smoothed empirical copulas procesŝAn(·) under

the following assumptions.

(F.1). There exists a constant0 < C < ∞ such that

sup
u∈[0,1]d

∣∣∣∣
∂sC(u)

∂j1u1 . . . ∂jdud

∣∣∣∣ ≤ C, j1 + · · ·+ jd = s.

Suppose that{h(n)}n≥1 is a sequence of positive constants which satisfies the condition.

(C.1). h = h(n) → 0, nh → ∞ and
√
nhs/d → 0 asn → ∞;

and the kernel functionk(·) fulfills the following conditions.

(C.2). k(·) is a continuous density function and compactly supported;

(C.3). k(·) is of orders, i.e.,

∫

Rd

k(u)du = 1,
∫

Rd

uj1
1 . . . ujd

d k(u)du = 0, j1, . . . , jd ≥ 0, j1 + . . .+ jd = 1, . . . , s− 1,
∫

Rd

|uj1
1 . . . ujd

d |k(u)du < ∞, j1, . . . , jd ≥ 0, j1 + . . .+ jd = s.

The following corollary establishes the limiting behaviour of the smoothed empirical copulas process

Ân(·).

Corollary 3.1 Assume that(F.1) and (C.1)-(C.3) hold. Then, on a suitable probability space, we

may define the smoothed empirical copula processes{Ân(u) : u ∈ [0, 1]d;n > 0} in combination

with a Gaussian process{K ∗
C
(u, t) : u ∈ [0, 1]d; t ≥ 0}, in such a way that, asn → ∞

sup
u∈[0,1]d

∣∣∣∣Ân(u)−
1√
n

K ∗
C
(u, n)

∣∣∣∣ = oP (1). (3.3)

The proof of Corollary 3.1 is given in Section 4.

The result of Corollary 3.1 is motivated by the following remak.
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Remark 3.2 The empirical copula provides an universal way for estimation purposes. Unfortu-

nately, its discontinuous feature induces some difficulties: the graphical representations of the cop-

ula may not be satisfactory from a visual and intuitive pointof view. Moreover, there is no unique

choice for building the inverse function of marginal functions. Finally, since the empirical copula

estimator is not differentiable, it cannot, for example, beused to derive an estimate of the associated

copula density or for optimization purposes. Studies have shown that a smoothed estimator may

be preferable to the sample estimator. Firstly, smoothing reduces the random variation in the data,

resulting in a more efficient estimator. Secondly, smoothing gives a smooth curve that displays some

interesting features.

Remark 3.3 1. Corollary 3.1 remains valid when replacing the conditionthat the kernel function

k(·) having compact support in(C.2) by another condition(C.4) which content is as follows

(C.4). There exists a sequence of positive real numbersan such thatanh tends to zero whenn

tends to infinity, and
√
n

∫

{‖v‖>an}

|k(v)|dv → 0.

2. Note that the conditions of Corollary 3.1 are grouped to control the deviations between the

empirical copula processAn(·) and the smoothed empirical copula processÂn(·).

3.2 The law of iterated logarithm for empirical copula processes

From Theorem 2.1, we have almost surely

lim sup
n→∞

{(
n

2 log logn

)1/2

sup
u∈[0,1]d

|Cn(u)−C(u)|
}

= lim sup
n→∞

supu∈[0,1]d |K ∗
C
(u, n)|

(2n log log n)1/2
. (3.4)

We can state the following Corollary.

Corollary 3.4 Under the same conditions of the Theorem 2.1, we have

lim sup
n→∞

{(
n

2 log log n

)1/2

sup
u∈[0,1]d

|Cn(u)−C(u)|
}

= ρ, a.s., (3.5)

where

ρ2 = sup
u∈[0,1]d

Var (K ∗
C
(u, 1)) .

Remark 3.5 The result of Corollary 3.4 was obtained by Deheuvels (1979)(refer to Theorem 3.1)

using a different method.
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Remark 3.6 In the early 1970s there was considerable interest in multivariate rank-order statistics

we may refer to Ruymgaartet al.(1972), R̈uschendorf (1974, 1976) including the references therein.

Such statistics are of the form

Rn =
1

n

n∑

i=1

J (F1n(X1i), . . . , Fdn(Xdi)) ,

whereJ : [0, 1]d → R, is measurable function satisfying some regularity conditons. The asymp-

totic normality ofRn can be established under the weakest set of assumptions (see, Theorem 6 in

Fermanianet al.(2004)) using Theorem 2.1.

4 Proofs

Proof of Theorem 2.1.

Consider the empirical processes defined, respectively, for n ≥ 1, u ∈ [0, 1]d and0 ≤ uj ≤ 1, for

j = 1, . . . , d, by

αn(u) := n1/2(C̃n(u)−C(u)), (4.1)

αjn(uj) := n1/2{Gjn(uj)− uj}, (4.2)

βjn(uj) := n1/2{G−
jn(uj)− uj}. (4.3)

Recall the definition (1.8) ofAn(·), the empirical process of copulas can be written, foru ∈ [0, 1]d,

as follows

An(u) = n1/2(C̃n(G
−
1,n(u1), . . . , G

−
d,n(ud))−C(u1, . . . , ud))

= αn

(
G−

1,n(u1), . . . , G
−
d,n(ud)

)
+ n1/2

{
C
(
G−

1,n(u1), . . . , G
−
d,n(ud)

)

− C(u1, . . . , ud)}

= αn

(
u1 + n−1/2β1n(u1), . . . , ud + n−1/2βdn(ud)

)

+n1/2
{
C
(
u1 + n−1/2β1n(u1), . . . , ud + n−1/2βdn(ud)

)
−C(u1, . . . , ud))

}

= αn(u) +
{
αn(u+ n−1/2βn(u))− αn(u)

}

+n1/2
{
C(u+ n−1/2βn(u))−C(u)

}

= αn(u) + ∆1(u, n) + ∆2(u, n), (4.4)

where(u+ n−1/2βn(u)) = (u1 + n−1/2β1n(u1), . . . , ud + n−1/2βdn(ud)). We first evaluate the right

side term∆2(·, n) of (4.4). By differentiability assumption onC(·), we can use Taylor’s expansion
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to obtain the following

∆2(u, n) =
d∑

i=1

∂C(u)

∂ui

√
n(G−

ni(ui)− ui)

+

√
n

2

d∑

i=1

d∑

j=1

∂2C(u∗)

∂ui∂uj
(G−

ni(ui)− ui)(G
−
nj(uj)− uj),

whereu∗ lies in the interior of the line segment joining(G−
n1(u1), . . . , G

−
nd(ud)) and(u1, . . . , ud). It

follows from the definition ofαn(·) in (4.1), foruj ∈ [0, 1], j = 1, . . . , d, that

√
n(G−

ni(ui)− ui) = −
√
n
(
Gni(G

−
ni(ui))−G−

ni(ui)
)
+
√
n
(
Gni(G

−
ni(ui))− ui

)

= −αn(1, G
−
ni(ui), 1) +

√
n(Gni(G

−
ni(ui))− ui).

Using the fact that|Gni(G
−
ni(ui))− ui| ≤ 1/n and the Chung (1949)’s law of the iterated logarithm,

one finds, almost surely,

∆2(u, n) = −
d∑

i=1

∂C(u)

∂ui
αn(1, G

−
ni(ui), 1) +O(n−1/2 log logn),

uniformly in u. It is well known since the work of Stute (1982), p. 99, that wehave, almost surely,

sup
ui∈[0,1]

|αn(1, G
−
ni(ui), 1)− αn(1, ui, 1)| = O(n−1/4(log n)1/2(log log n)1/4).

Then, it follows that uniformly inu, almost surely,

∆2(u, n) = −
d∑

i=1

∂C(u)

∂ui

αn(1, ui, 1) +O(n−1/4(logn)1/2(log log n)1/4),

as was observed by Stute (1984), p. 371. We next evaluate the term∆1(·, n) in the right hand side

of (4.4). Recall that∆1(u, n) is the difference ofαn(u + n−1/2βn(u)) andαn(u). Letwn(·) be the

modulus of continuity ofαn(·), defined by

wn(a) := sup

{
αn(A) : A =

d∏

i=1

[ui, vi] ∈ [0, 1]d, with |[ui, vi]| = vi − ui ≤ ai, ∀i = 1, . . . , d

}
.

We will make use of the following fact which is a particular case of Theorem 2.1, p. 367 of Stute

(1984).

Fact 1. Let {an}n≥1 be a sequence in(0, 1) such asan ↓ 0, asn → ∞, and

i)nadn ↑ ∞, ii)nadn/ logn → ∞, iii) log(1/an)/ log log n → ∞.

Then, we have, almost surely,

lim
n→∞

{
2adn log(1/a

d
n)
}−1/2

wn(an, . . . , an) = 1.
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An application of the Chung (1949) law of the iterated logarithm shows that, for eachj = 1, . . . , d,

almost surely,

lim sup
n→∞

{
(log log n)−1/2 sup

0≤u≤1
|βjn(uj)|

}
= 2−1/2. (4.5)

From (4.5), we have almost surely for allj = 1, . . . , d andn large enough,

sup
0≤uj≤1

| n−1/2βjn(uj) |≤
(log logn)1/2

n1/2
≤ (log n)2/d

n1/d
:= an,

an application of Fact 1 shows that, asn → ∞, we have, almost surely,

sup
u∈[0,1]d

| ∆1(u, n) |≤ wn(an) = O
(
n−1/2(logn)3/2

)
.

The next fact, due to Csörgő and Horváth (1988), p. 102, provides a strong approximation result

appropriate for our need.

Fact 2. On a suitable probability space(Ω,A ,P), it is possible to define{αn(u) : u ∈ [0, 1]d},

jointly with a sequence of Gaussian process{KC(u, t) : u ∈ [0, 1]d, t ≥ 0}, in such a way that, as

n → ∞, almost surely,

sup
u∈[0,1]d

|
√
nαn(u)− KC(u, n)| = O

(
n1/2−1/(4d)(log n)3/2

)
. (4.6)

Therefore, by the triangle inequality,

sup
u∈[0,1]d

|
√
nAn(u)− K ∗

C
(u, n)| ≤ sup

u∈[0,1]d
|
√
nαn(u)− KC(u, n)|+ wn(an)

+
d∑

j=1

∣∣∣∣
∂C(u)

∂uj

∣∣∣∣ sup
0≤uj≤1

|
√
nαn(1, uj, 1)− K (j)

C
(1, uj, 1, n) |

+O(n−1/4(log n)1/2(log log n)1/4),

≤ O
(
n1/2−1/(4d)(logn)3/2

)
+O

(
n−1/2(logn)3/2

)

+O
(
n1/2−1/(4d)(logn)3/2

)
+O

(
n−1/4(logn)1/2(log log n)1/4

)
,

then, we have almost surely, asn → ∞,

sup
u∈[0,1]d

|
√
nAn(u)− K ∗

C
(u, n)| = O

(
n1/2−1/(4d)(log n)3/2

)

and thus the proof of Theorem 2.1 is complete. �
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Proof of Corollary 3.1.

First, observe that the difference between theempirical copula processAn(·) and the smoothed

empirical copula procesŝAn(·) can be controlled as follows. We have

Ân(u) =
√
n

(
1

h

∫

[0,1]d
k

(
u− v

h1/d

)
Cn(v)dv−C(u)

)

=

(
1

h

∫

[0,1]d
k

(
u− v

h1/d

)√
n(Cn(v)−C(v))

)
dv

+
√
n

(
1

h

∫

[0,1]d
k

(
u− v

h1/d

)
C(v)dv−C(u)

)

=

(
1

h

∫

[0,1]d
k

(
u− v

h1/d

)
An(v)

)
dv

+
√
n

(
1

h

∫

[0,1]d
k

(
u− v

h1/d

)
C(v)dv−C(u)

)
. (4.7)

Thus, one can derive the following

sup
u∈[0,1]d

|Ân(u)− An(u)| ≤ sup
u∈[0,1]d

∣∣∣∣∣

∫
∏d

i=1

[

ui−1

h1/d
,

ui

h1/d

]

(An(u− h1/dv)− An(u))k(v)dv

∣∣∣∣∣

+ sup
u∈[0,1]d

|An(u)|
∣∣∣∣∣

∫
∏d

i=1

[

ui−1

h1/d
,

ui

h1/d

]

k(v)dv− 1

∣∣∣∣∣

+
√
n sup

u∈[0,1]d

∣∣∣∣∣

∫
∏d

i=1

[

ui−1

h1/d
,

ui

h1/d

]

(C(u− h1/dv)−C(u))k(v)dv

∣∣∣∣∣

+
√
n sup

u∈[0,1]d
|C(u)|

∣∣∣∣∣

∫
∏d

i=1

[

ui−1

h1/d
,

ui

h1/d

]

k(v)dv − 1

∣∣∣∣∣
:= ∇1;n +∇2;n +∇3;n +∇4;n. (4.8)

We first evaluate∇3;n in the right side of (4.8). Under conditions (F.1), (C.1)-(C.3) and using Taylor

expansion of orders we get

∇3;n =
hs/d

s!

√
n sup

u∈[0,1]d

∣∣∣∣∣

∫ ∑

j1+···+jd=s

uj1
1 . . . ujd

d

∂sC(u− hnθv)

∂uj1
1 . . . ∂ujd

d

K(v)dv

∣∣∣∣∣ ,

whereθ = (θ1, . . . , θd) and0 < θi < 1. Thus a straightforward application of Lebesgue dominated

convergence theorem gives

n−1/2h−(s/d)∇3;n =
1

k!
sup

u∈[0,1]d

∣∣∣∣∣
∑

j1+···+jd=s

∂sC(u)

∂uj1
1 . . . ∂ujd

d

∫
uj1
1 . . . ujd

d K(v)dv

∣∣∣∣∣ . (4.9)

Then we have by condition (C.1) and (C.3)

∇3;n = O(n1/2hs/d) = o(1). (4.10)
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By Theorem 2.1 and almost sure continuity of the Gaussian processK ∗
C
(u, n) we have

∇1;n ≤ sup
u,v∈[0,1]d

sup
|u−v|≤h

|An(v)− An(u)|
∣∣∣∣
∫

K(v)dv

∣∣∣∣
= oP (1)O(1) = oP (1). (4.11)

We next evaluate∇2;n in the right side of (4.8). We havesupu∈[0,1]d |An(u)| = OP (1) and asn tends

to infinity (by condition (C.2))

√
n

∣∣∣∣∣

∫
∏d

i=1

[

ui−1

h1/d
,

ui

h1/d

]

k(v)dv− 1

∣∣∣∣∣ = o(1),

then

∇2;n = oP (1).

Using the same arguments we obtain

∇4;n = oP (1).

Reorganizing the above results, one finds

sup
u∈[0,1]d

|Ân(u)− An(u)| = oP (1). (4.12)

Now the Corollary follows from (4.12) in conjunction with Theorem 2.1, and the fact that

sup
u∈[0,1]d

∣∣∣∣Ân(u)−
1√
n

K ∗
C
(u, n)

∣∣∣∣ ≤ sup
u∈[0,1]d

|Ân(u)− An(u)|

+ sup
u∈[0,1]d

∣∣∣∣An(u)−
1√
n

K ∗
C
(u, n)

∣∣∣∣ .

Thus the proof of Corollary is complete. �
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