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Abstract. We address the problem of cyclic termgraph rewriting. We
propose a new framework where rewrite rules are tuples of the form
(L, R, 7,0) such that L and R are termgraphs representing the left-hand
and the right-hand sides of the rule, 7 is a mapping from the nodes of L
to those of R and o is a partial function from nodes of R to nodes of L.
7 describes how incident edges of the nodes in L are connected in R. 7 is
not required to be a graph morphism as in classical algebraic approaches
of graph transformation. The role of ¢ is to indicate the parts of L to
be cloned (copied). Furthermore, we introduce a new notion of cloning
pushout and define rewrite steps as cloning pushouts in a given category.
Among the features of the proposed rewrite systems, we quote the ability
to perform local and global redirection of pointers, addition and deletion
of nodes as well as cloning and collapsing substructures.

1 Introduction

Complex data-structures built by means of records and pointers, can formally be
represented by termgraphs [E,@,. Roughly speaking, a termgraph is a first-
order term with possible sharing and cycles. The unravelling of a termgraph
is a rational term. Termgraph rewrite systems constitute a high-level frame-
work which allows one to describe, at a very abstract level, algorithms over
data-structures with pointers. Thus avoiding, on the one hand, the cumbersome
encodings which are needed to translate graphs (data-structures) into trees in
the case of programing with first-order term rewrite systems and, on the other
hand, the many classical errors which may occur in imperative languages when
programing with pointers.

Transforming a termgraph is not an easy task in general. Many different ap-
proaches have been proposed in the literature which tackle the problem of ter-
mgraph transformation. The algorithmic approach such as [Q] defines in details
every step involved in the transformation of a term-graph by providing the cor-
responding algorithm. This approach is too close to implementation techniques.



In [l], equational definition of term-graphs are exploited to define termgraph
transformation. These transformations are obtained up to bisimilar structures
(two termgraphs are bisimilar if they represent the same rational term). Un-
fortunately, bisimilarity is not a congruence in general (e.g., the lengths of two

bisimilar but different circular lists are not bisimilar).

A more abstract approach to graph transformation is the algebraic one, first
proposed in the seminal paper [E] It defines a rewrite step using the notion
of pushouts. The algebraic approach is quite declarative. The details of graph
transformations are hidden thanks to pushout constructs. There are mainly two
different algebraic approaches, namely the double pushout (DPO) and the single
pushout (SPO) approaches.

In the DPO approach [ﬂ,@], a rule is defined as a pair of graph morphisms
L «— K — R where L, K and R are graphs and the arrows represent graph
homomorphisms. A graph G rewrites into a graph H, iff there exists a homomor-
phism (a matching) m : L — G and a graph D such that the left and the right
squares of the diagram of Fig.m are pushouts.

Lée— K - R L T
a ! , | |-
G ¢ ! D . > H G 4
Fig. 1. Double pushout: a rewrite step Fig. 2. Single pushout: a rewrite step

In general, D is not unique. Sufficient conditions may be given such as dangling
and identification conditions in order to ensure existence of pushout comple-
ment. The DPO approach is easy to grasp since morphisms are supposed to be
completely defined. However, this approach fails, in general, to specify rules with
deletion of nodes. For example, if we consider the rule f(x) — f(b) which can
be translated into the span f(z) « Ky — f(b) for some graph Ky, and apply
that rule on f(a), then because of pushout properties f(a) is rewritten into a
termgraph H which contains a. However, f(b) is the only desired result for H.

In the SPO approach [IE,E,H,E], arule is a partial graph morphism L — R. When
a (total) graph morphism m : L — G exists, G can rewrite to a graph H iff the
square of Fig E is a pushout. This approach is appropriate to specify deletion
of nodes thanks to partial homomorphisms. However, in the case of termgraphs,
some care should be taken when a node is deleted. Indeed, deletion of a node
causes automatically the deletion of its incident edges. This is not sound in the
case of termgraphs since each function symbol should have as many successors
as its arity.



In this paper, we investigate a new approach to the definition of rewrite relations
over cyclic termgraphs. We are interested in rewrite relations, R, over termgraphs
such that (¢,t') belongs to R, iff ¢’ is obtained from t by performing a series of
actions of the six following kinds :(i) addition of new nodes, (ii) redirection of
particular edges, (iii) redirection of all incident edges of a particular node (iv)
deletion of nodes (v) cloning of nodes and (vi) collapsing of nodes. In order
to deal with these features in a single framework, we propose a new algebraic
approach to define such rewrite relations. Our approach departs from the SPO
and the DPO approaches. A rewrite rule is defined as a tuple (L, R, 7,0) such
that, L and R are termgraphs, respectively the left-hand side and the right-
hand side of the rule. 7 is a mapping from the nodes of L into the nodes of R
(7 has not to be a graph morphism). 7(n) = n’ indicates that incident edges of
n are to be redirected towards n’. ¢ is a partial function from unlabeled nodes
of R into nodes of L. Roughly speaking, o(n) = p indicates that node n should
be instantiated as p (parameter passing). We show that whenever a matching
m : L — G exists, then the termgraph G rewrites into a termgraph H. We define
the termgraph H as an initial object of a given category. The construction of H
could be seen as a generalization of that of pushouts. We call it cloning pushout.

The paper is organized as follows. In the next section we introduce the basic
definitions of graphs and morphisms that we consider in the paper. In section E,
we introduce a first simplified version of our rewriting approach. This first step
prevents from the cloning of substructures. Then, in section E, we give the full
definition of rewriting, including cloning possibility, and illustrate our approach
through several examples in section E Concluding remarks are given in section E

2 Graphs

In this section we give some technical definitions that we use in the paper. We
assume the reader is familiar with category theory. The missing definitions may
be consulted in [Ld].

Throughout this paper, a signature {2 is fixed. Each operation symbol w € (2 is
endowed with an arity ar(w) € N. For each set X, the set of strings over X is
denoted X*, and for each function f : X — Y, the function f* : X* — Y™ is

defined by f*(z1...2z,) = f(21) ... f(xn).

Definition 21 (Graph) A termgraph, or simply a graph G = (N, D, L,S) is
made of a set of nodes N and a subset of labeled nodes D C N, which is the
domain for a labeling function £ : D — §2 and a successor function S : D — N*,
such that for each labeled node n, the length of the string S(n) is the arity of
the operation £(n). For each labeled node n the fact that w = £(n) is written
n:w, and each unlabeled node n may be written as n:e, so that the symbol e is
a kind of anonymous variable.

A graph homomorphism, or simply a graph morphism g : G — H, where
G = (Ng,Dg,LG,S¢) and H = (Ng, Dy, Ly,Su) are graphs, is a function



g : Ng — Ny which preserves the labeled nodes and the labeling and suc-
cessor functions. This means that g(Dg) C Dy, and for each labeled node n,
Li(g(n)) = La(n) and Sp(g(n)) = g*(Sg(n)) (the image of an unlabeled node
may be any node). This yields the category Gr of graphs.

We denote by Set the classical category of sets.

Definition 22 (Node functor) The node functor | —|: Gr — Set maps each
graph G = (N, D, L,S) to its set of nodes |G| = N and each graph morphism
g : G — H to its underlying function |g| : |G| — |H].

We may denote g instead of |g| since the node functor is faithful, which means
that a graph morphism is determined by its underlying function on nodes. The
faithfulness of the node functor implies that a diagram of graphs is commutative
if and only if its image by the node functor is commutative, as a diagram of sets.
It may be noted that the node functor preserves pullbacks, because it has a left
adjoint, and that it does not preserve pushouts.

The following definition introduces a new notion of graphic functions. These
functions are used to relate graphs involved in a rewrite step, in addition to
classical graph homomorphisms.

Definition 23 (Graphic functions) Let G and H be graphs and v : |G| —
|H| a function. For each node n of G, v is graphic at n if either n is unlabeled
or both n and y(n) are labeled, Ly (v(n)) = Lg(n) and Sg(y(n)) = v*(Sa(n)).
And ~ is strictly graphic at n if either both n and (n) are unlabeled or both n
and y(n) are labeled, Ly (y(n)) = La(n) and Sg(v(n)) = v*(Sa(n)). For each
set of nodes I' of G, v is graphic (resp. strictly graphic) on I" if 7 is graphic
(resp. strictly graphic) at every node in I'.

It should be noted that the property of being graphic (resp. strictly graphic) on
I" involves the successors of the nodes in I', which may be outside I

Ezample 1. Let us consider the graphs G1 and G2 given respectively in Fig
and Fig@. Let It = {1,3}, Iz ={1,2,3} and I'5 = {1,2,3,4}. Let v : |G| — |H|
be the function defined by v = {1 — a,2 — b,3 — ¢, 4 +— d}. It is easy to check
that ~ is graphic on I, v is strictly graphic on I7, 7 is not strictly graphic on
I and « is not graphic on 5.

1:f a:f
2:./3{\ < l-\d:.

4 : nil b: nil c:

Fig.3. G1 Fig.4. G2



Clearly, a function v : |G| — |H| underlies a graph morphism g : G — H if and
only if it is graphic on |G|. The next straightforward result will be useful.

Lemma 24 Let G, H, H' be graphs and let v : |G| — |H|, 7' : |G| — |H'|,
n: |H| — |H'| be functions such that v' =no-~y. Let I' be a set of nodes of G. If
~ is strictly graphic on I and 7' is graphic on I', then n is graphic on ~(I").

3 Rewriting without cloning

Roughly speaking, in the context of graph rewriting, a rewrite rule has a left-
hand side graph L and a right-hand side graph R, and a rewrite step applied to
a graph G with an occurrence of L returns a graph H with an occurrence of R,
by replacing L by R in G. We deal with termgraphs, so that a labeled node p in
G outside L and with its i-th successor p’ in L must have some i-th successor n’
in H. For this purpose, we introduce a “target” function 7, from the nodes of L
to the nodes of R, and we decide that n’ must be 7(p’). The aim of this section
is to define this process precisely. The definitions and results in this section are
simplified versions of those in the next section.

In this section, a rewrite rule is tuple (L, R, 7) made of two graphs L and R and
a (total) function 7 : |L| — |R|. A morphism of rewrite rules from T = (L, R, T)
to Ty = (L1, R1,7) is a pair of graph morphisms (m,d) with m : L — Ly,
d: R — Ry such that |d| o7 =71 0 |m]|.

In this paper, the illustrations take place either in the category Set of sets or in
a heterogeneous framework where the points stand for graphs, the solid arrows
for graph morphisms and the dashed arrows for functions on nodes. So, a rewrite
rule T = (L, R, 7) can be illustrated as follows:

It can be noted that each graph morphism ¢ : L — R determines a rewrite rule
where 7 = |t|. In this case, for each graph morphism m : L. — G the pushout of ¢
and m in the category Gr is defined as the initial object in the category of cones
over t and m. Let us generalize this definition to any rewrite rule T = (L, R, 7)
and any graph morphism m : L — G. A heterogeneous cone over T and m is
made of a graph H, a function 7 : |G| — |H| and a graph morphism d : R — H
such that Th = (G, H,71) is a rewrite rule, (m,d) : T — T} is a morphism of
rewrite rules and 7 is graphic on |G| — |m(L)|.

L-------9R
| |
G---—--- S H

A morphism of heterogeneous cones over T and m,say h : (H,1,d) — (H',11,d’),
is a graph morphism h : H — H’ such that |h| o7 = 71 and h od = d’. This



yields the category Hr ,,, of heterogeneous cones over T" and m. A heterogeneous
pushout of T and m is defined as an initial object in the category Hr .

When a heterogeneous pushout exists, its initiality property implies that it is
unique up to an isomorphism of heterogeneous cones. A matching of a graph L
is a graph morphism m : L — G such that |m| is injective. It is easy to prove
the existence of a heterogeneous pushout of a rewrite rule T'= (L, R, 7) and a
matching m : L — G, as follows. Let (P) denote the following pushout of 7 and
|m| in Set:

|L| = IR
’”'l l
|G| H

T1

Then H = 7 (|G| — |m(L)|) + d(JR|), and in addition the restriction of 7 :
|G| —|m(L)| — m1(|G|—|m(L)]) is bijective and the restriction of § : |R| — §(|R|)
is bijective. Hence, a graph H with set of nodes H is defined simply by imposing
that 7y is strictly graphic on |G| —|m(L)| and that ¢ is strictly graphic on |R|. It
follows that § = |d| for a graph morphism d : R — H and that (H, 71, d) forms a
heterogeneous cone over 1" and m. Now, let us consider any heterogeneous cone
(H',7{,d") over T and m. Because of the pushout of sets (P), there is a unique
function 7 : |H| — |H'| such that no 7 = 7{ and no |d| = |d'|. In addition,
it follows from lemma P4 that 7 is graphic on 7;(I") and also on d(|R|). So, 1
underlies a graph morphism h : H — H’. Since the node functor is faithful, it
follows that (H,71,d) is a heterogeneous pushout of T and m.

Now, given a rewrite rule T' = (L, R, 7) and a matching m : L — G, the corre-
sponding rewrite step builds the graph morphism d : R — H, obtained from the
heterogeneous pushout of 7" and m. It can be noted that d is a matching of R.

The induced rewrite relation over termgraphs is unfortunately not satisfactory.
Consider for instance the rule f(z) — g(x, ). Informally, the application of such
a rule on the termgraph 1: f(2: a) can yield either the termgraph 1: ¢(2: a,2)
or the termgraph 1 : ¢(2 : a,3 : a) according to the way the term g(z,x)
is represented as a termgraph. However, the application of the definition of a
rewrite step, as given above, suggests to rewrite the termgraph 1 : f(2: a) into
1:g(2: e,2) by means of the following rule (1: f(z:e),1:g(z:e,z),7={1+—
1,2 — x}). The node 2 is not labeled in the reduced termgraph. This reflects
the fact that the instance of x cannot be substituted or cloned in the right-hand
side. We overcome this drawback in the next section.

4 Rewriting with cloning

In this section, the definitions and results of the previous section are generalized
in order to add a “cloning” process. Indeed, in the resulting graph H from
section E there is no node in R with its image outside R. This is an issue, which
is solved in this section thanks to the notion of “clone”. Roughly speaking, a clone



of a labeled node p in G is a node n in H with the same label and “the same”
successors as p, where “the same” successors are defined via the target function
7 from the previous section. The definition of a rewrite rule is generalized so that
it yields the information about the way the images of the nodes in L must be
cloned by images of nodes in R. The main result is theorem @: under relevant
definitions and assumptions, for each rewrite rule 7' and matching m there is
a cloning pushout of T and m, which can be built explicitly from a pushout of
sets. Since each node in L may have an arbitrary number of clones (maybe no
clone at all), and a node in R cannot be a clone of more than one node in L, the
relation between the nodes in L and their clones in R takes the form of a partial
function from |R| to |L|. In this paper, partial functions are denoted with the
symbol “—7" the domain of a partial function o is denoted Dom(o), and the
composition of partial functions is defined as usual.

Definition 41 (Clones) Let G and H be graphs and 7 : |G| — |H| a function.
Then p € |H| is a T-clone of ¢ € |G| when: p is labeled if and only if ¢ is labeled,
and then Lp (p) = La(g) and Su(p) = 77(S¢(q))-

Definition 42 (Rewrite rule) A rewrite rule is tuple (L, R, 7, 0) made of two
graphs L and R, a function 7 : |L| — |R| and a partial function o : |R| — |L|
such that each node n in the domain of ¢ is unlabeled or is a 7-clone of o(n).
A morphism of rewrite rules, from T = (L, R,7,0) to Ty = (L1,R1,71,01) is a
pair of graph morphisms (m,d) with m : L — L; and d : R — R; such that
|d| o7 =71 o |m|, d(Dom(c)) € Dom(o1) and |m| oo = o7 o |d| on Dom(o).

In the previous section, we have dealt with the simple case where the domain of
o is empty.

In the sequel, a rewrite rule T'= (L, R, 7,0) will be illustrated as follows:

or depicted as opposite, where the lines 7 and ¢ contain the definitions
of the functions 7 and o.

IR

Ezample 2 (if-then-else).
Below, we give the rewrite rules which define the If-then-else operator as it
behaves in classical imperative languages.

T7:1—52—53—54—5 T7T:1—52—5,3—54—5
c:5—3 c:5—4

1:4f 1:af
/ \!,0\4:0 /3%{0\4:0

2 :true 3 2: false




The definition of 7 ensures that the if-then-else expression is replaced by its
value 7(1) = 5. The definition of o indicates that the value of the if-then-else is
its second (resp. third) argument specified by o(5) = 3 (resp. o(5) = 4) in the
rules above. Notice that if o were defined as the empty function, the if-then-else
expression would evaluate to an unlabeled node.

Ezample 3 (Cloning data-structures). In this example we give the rules to clone
natural numbers, encoded with succ and zero. The clone of zero is done using
the following rule:

T:1— 2,22
0:3—2,2—2

1:clone|2: zero 3: zero
2: zero

One can note that the condition on the labeled nodes (ie 7-clones, see def. @)
in the domain of ¢ is verified. This rule redirects all edges from 1 to 2, while the
edges adjacent to 2 remain unchanged.

The second rule is defined as follows:

7:1—4,2— 23— 3
c:3—3
1:clone— 2 : succ| 2: succ 4 : succ

3:e 3:e<—5:clone

Notice that, in this case, it is not possible to define o(4) = 2 because sucessor
of 4 in R is labeled by clone and successor of 2 in L is labeled by succ, thus
breaking the 7-clone condition.

Definition 43 (Cloning cone) Let T = (L, R, 7,0) be a rewrite rule and m :
L — G a graph morphism. A cloning cone over T and m is a tuple (H,1,d, 01)
made of a graph H, a function 71 : |G| — |H|, a graph morphism d : R — H and
a partial function oy : |H| — |G| such that T1 = (G, H,71,01) is a rewrite rule,
(m,d) : T — T is a morphism of rewrite rules, 7y is graphic on |G| —|m(L)| and
nq is a 11-clone of oy (nq) for each ny in the domain of ;.

]

) ~
L------->R
m ,0;1\ d
J/]// \\
G-=-—m—- SH

A morphism of cloning cones over T and m,say h : (H,11,d,01) — (H',71,d’,0%),
is a graph morphism h : H — H’ such that |h|omy = 7, hod = d’, h(Dom(o1)) C



Dom(o}) and o] o |h| = o1 on Dom(oy).
This yields the category Cr,y, of cloning cones over 7' and m.

Definition 44 (Cloning pushout) Let T'= (L, R, 7,0) be a rewrite rule and
m : L — G a graph morphism. A cloning pushout of T' and m is an initial object
in the category Cr,y, of cloning cones over 1" and m.

When a cloning pushout exists, its initiality implies that it is unique up to an
isomorphism of cloning cones. In theorem §§ we prove the existence of a cloning
pushout of T" and m under some injectivity assumption on m.

Definition 45 (Matching) A matching with respect to a rewrite rule T' =
(L, R, T,0) is a graph morphism m : L — G such that if m(p) = m(p’) for distinct
nodes p and p’ in L then 7(p) and 7(p’) are in Dom(c) and o(7(p)) = o(7(p’))
in L.

Proposition 46 Let T = (L, R, 7,0) be a rewrite rule and m : L — G a match-
ing with respect to T'. Then the pushout of 7 and |m| in Set:

1L ———— R

| l,;

G ————H

satisfies:

H=m()4+AQ)+ (%)
where I' = |G| — |m(L)|, ¥ = Dom(o), A = |R| — X and:
— the restriction of 71 : I' — (") is bijective,
— the restriction of § : A — 0(A) is bijective,

— and the restriction of 6 : X — §(X) is such that if 6(n) = §(n') for distinct
nodes n and n' in X then o(n) = o(n’) in L.

In addition, there is a unique partial function o1 : H — |G| with domain §(X)
such that |m|oo =01 04.

Proof. Clearly H = 71 (I") + §(|R|) with the restriction of 71 : I' — 7 (I") bijec-

tive. If 6(n) = o(n’) for distinct nodes n and n’ in R, then there is a chain from
n to n’ made of pieces like this one:

D p
NN
n p1 n



with n,n" € |R|, p,p’ € |L|, p1 € |G|, and it can be assumed that n # n’
and p # p'. Since m is a matching, 7 and 7’ are in X' and o(n) = o(n’). The
decomposition of H follows.

Now, let n; € 6(X) and let us choose some n € X such that n; = §(n). If o1
exists, then o1(n1) = 01(6(n)) = m(c(n)). On the other hand, if n’ € X is
another node such that n; = §(n), then we have just proved that o(n) = o(n’),
so that m(o(n)) does not depend on the choice of n, it depends only on n;. So,
there is a unique o1 : H — |G| as required, it is defined by o1(n1) = m(o(n))
for any n € X such that ny = d(n).

Proposition 47 Let m : L — G be a matching with respect to a rewrite rule
T = (L, R, 7,0). The pushout of 7 and |m| in Set, with o1 as in proposition [{4,
underlies a cloning cone over T and m.

Proof. First, let us define a graph H with set of nodes H. According to proposi-
tion @, and with the same notations, a graph H with set of nodes H is defined
by imposing that 7 is strictly graphic on I', that § is strictly graphic on A, and
that each node n; € §(X) is a 71-clone of g1, where ¢ = o1(n1).

Now, let us prove that § underlies a graph morphism d : R — H. Since ¢
is graphic on A, we have to prove that § is also graphic on X. Let n € X
and n; = d(n). If n is unlabeled there is nothing to prove, otherwise let ¢ =
o(n), then ¢ is labeled, Lr(n) = L1(q) and Sg(n) = 7*(Sr(¢)). Then m(q) =
m(o(n)) = 01(6(n)) = ¢1, and from the fact that m is a graph morphism we
get L1.(q) = La(q1) and |m|*(Sr(q)) = Sc(q1). The definition of H imposes
La(q1) = Lu(ny) and 75 (Sa(q1)) = Su(n1). Altogether, Lr(n) = L (n1) and
Su(n1) = (77 (Im|*(Sa(q))) = 6*(7*(Sa(q))) = 6*(Sr(n)), so that indeed ¢ is
also graphic on Y.

Finally, it is easy to check that this yields a cloning cone over T and m.

Theorem 48 Given a rewrite rule T = (L, R, T,0) and a matching m : L — G
with respect to T, the cloning cone over T and m defined in proposition @ s a
pushout of T and m.

Proof. The cloning cone over T' and m from proposition @ is denoted (m,d) :
T — Ty with Ty = (G, H, 11, 01). Let us consider any cloning cone over T and m,
say (m,d’) : T — Ty with T{ = (G’, H', 11, 0}). Since (m, d) underlies a pushout
of sets, there is a unique function n : |H| — |H’| such that n o |d| = |d’| and
nor = 7,. Let ¥ = Dom(o) and X7 = Dom(o1). Because the node functor is
faithful, the result will follow if we can prove that n(3;) C 3| and o] on = o
on X, and that n underlies a graph morphism.

We have n(Xy) = n(d(X)) = &'(X) C X4, and for each ny; € Xy, let n € ¥
such that n; = d(n), then on one hand o (n(n1)) = o1 (n(d(n))) = o1(d'(n)) =
m(o(n)) and on the other hand o1(n1) = o1(d(n)) = m(o(n)), hence as required
o1(n(n)) = o1(n1).

In order to check that n underlies a graph morphism h : H — H’, we use the



decomposition of H from proposition @ and the construction of the cloning cone
(m, d) in proposition @ It follows immediately from lemma @ that 7 is graphic
on 71(I') and also on d(A). Let us prove that n is graphic on Xy. Let n; € X,
¢1 = o1(n1) and n} = n(n1). Then ¢1 = o7 (n}) because o} on = o1. So, ny is a 11-
clone of ¢; and n} is a 7{-clone of the same node ¢;. This means that L (n)) =
La(q1) = L (n1) and that Spr(nh) = (71)"(Sa(a1)) = 7" (11 (Se (1)) = 0™ (m).
So, n is graphic on X1, and since d(X) C X, it follows that 7 is graphic on d(X).
Altogether, 1 is graphic on the whole of |H|, which means that n = |h| for a
graph morphism h : H — H’. This concludes the proof.

Definition 49 (Rewrite step) Given a rewrite rule T = (L, R, 7,0) and a
matching m : L — G with respect to T, the corresponding rewrite step builds
the graph morphism d : R — H, obtained from the cloning pushout of 7" and m.

Ezample 4. We go back to the rule f(x) — g(z,z) discussed at the end of
section E This rule can be represented in our framework in different manners
according to the way the term g(z, x) is represented as a termgraph and also to
the way the functions 7 and ¢ are defined. We give below two different rules. Let
G be the termgraph 1: f(2: a). The first rule (Rulel) rewrites the termgraph G
into 1: g(2: a,2), while the second rule (Rule2) rewrites G into 1: g(2: a,3 : a).
The node 2 and 3in 1: ¢g(2: a,3 : a) are clones of node 2 in G.

T:1—1,2—2 T:1—1,2—2
g:2 2 g:2+—2,3—2
1:f l:9 1:f|1:9
2:0 2:0 2:0(2:0 )
Fig. 5. Rulel Fig. 6. Rule2
5 Examples

In this section, we give some illustrating examples. We represent a | T
rewrite step G — H performed using a rewrite rule (L, R,7,0) as in | o:
the figure opposite. We assume in the given examples that the matching |L|R
morphism m : L — G is such that m(i) = i. G

Insertion in a circular list

In this example we give a rule which defines the insertion of an element at the
head of a circular list of size greater that one. In this rule, node 3 is the head



of the list, and 6 is the last element of the list. Notice that, in R, the pointer to
the head of the list, the second argument of node 6, has been moved from 3 to
the new node 11 in R. The definition of 7 is such that all pointers to the head
of the list are moved from 3 to 11 (7(3) = 11). We apply the rule on a circular

list of four items.

T:1 11,3 11,i—iforic {2,4,5,6,7}

0:2—24—45—5T—T7

l:ins>3:cons—4:e
1 1~
2:0 5:e 6:cons—>T7:e

11:consP3:cons—>4 : e
1

2:0 5:e¢  G:cons—=7:e

2:e¢—1:ins¢<—=0:h

3:cons>4:cons—>8:cons—6:cons
4 1 1 4
5: 9:b 10:¢ 7:d

a

2:e¢—11:cons 0:h
3:cons—4:cons—8:cons—>6:cons
1 1 1 4
5: 9:b 10:¢ 7:d

a

Appending linked lists

We now consider the rules for the operation “+”
which appends two linked lists. The lists are supposed
to be built with the constructors cons, and nil. The
base case is defined when the first argument is nil as

in the rule opposite.

When the first argument of + is a list
different from nil, we call an auxiliary
function denoted “+1”, of arity 3. The
role of this function is to go through the
first list until the end and concatenate
the two lists just by pointer redirection.
The first call to the operation +1 is done
by the rule opposite:

7:1—3,2—3,3—3
c:3—3
1:+—3:0

l

2 :nil

T:i—iforie{1,2,3,4,5}
0:3—3,4—4,5—5
l1:+—5:e] 1:4+1—5:e

L L

2:cons—3:e|2:cons—3: e

] !

4:e 4:e

The second argument of +1 is used to go through the list starting at node 2 to
get the last element of the list. This is implemented by the following rule :

T:i—dforie{1,2,3,4,56,7, 8}

0:2—2,6—6,5—57T—78—8

1:4+41——8: e

L
2:0 3:cons—4:cons—5: e

] 1

G:eo 7:e

1:41—>8: e

]

2:0 4:cons—>5H: e

l

7:

3 :cons

1

G:eo °

The last case for operation +1, is implemented as follows. We simply redirect
the second edge from 3 to 4 (which is nil) towards 6 (e.g., 7(4) = 6), which is




the head of the second list to append. The overall result of the operation +1, is
the head of first list, node 2 : e. This is implemented by (1) = 2.

T:4—6,1— 20— iforie {2,356}
0:2—2,6—6,5—5
1:41—>6:0 2:0 3:cons—6:e

L 1

2:0 3:cons —4:nil 5:e

L

5:e

Memory freeing

In this example we show how we can free the memory used by a circular list. As
we are concerned with termgraphs where every function symbol has a fixed arity,
it is not possible to create dangling pointers nor to remove useless pointers. This
constraint is expressed by the fact that every node in a left-hand side L must
have an image in the right-hand side R by 7.

The operation free has two arguments. The first one is a particular node labeled
by a constant null. This constant is dedicated to be the target of the edges which
were pointing the freed nodes. The second argument of free is the list of cells
to be freed.

Below, we give a rule defining the operation free in the case of a list with at
least two different elements. We also illustrate its application on a list of length
two.

T7:5—2,3—2i—iforie{l,2,4}

c:4—4
1: free—3:cons—4:e 1: free—4:e
2 : null 5:e 2 : null

0:h—>1:f7’ee—>3:con5:4:cons 0:h—1: free—4: cons

Gl-b W L

2 : null 5:a 2 : null 6:b

Notice that pointers incident to nodes 3 and 5 are redirected towards 2.

There are two cases for lists with one element. The following rule specifies the
case where the last element of the list is obtained after freeing other elements
of the list. We illustrate the rewrite rule on the graph obtained earlier (up to
renaming of nodes).



T:i— 2fori e {1,2,3,4}
o:

1: free—3: cons 2 : null
2 : null 4:e
0:h—1: free—3:cons|0:h

S L] Sy

2 : null 4:0b 2 :null

Finally, because of the injectivity condition on matching, we have to consider
the special case of lists of size one. This is done by the following rule:

Tii—2fori e {1,2,3,4}
P

1:free%3:co@ 2 : null

. ]

2 : null 4:e

6 Conclusion

We have proposed a new way to define termgraph rewrite rules. Rules are quite
simple. A rule is a tuple (L, R, 7,0) where L and R are termgraphs representing
the left-hand and the right-hand sides of the rule, 7 is a mapping from the nodes
of L to those of R and o is a partial function from nodes of R to nodes of L. T
describes how incident edges of the nodes in L are connected in R. It should be
noted that 7 is not required to be a graph morphism as in the classical algebraic
graph transformation approaches [E,E] As for o, it is useful only when one needs
to clone some parts of L. We defined rewrite steps as pushouts in an appropriate
category as shown in section E

The proposed rewrite systems offer the possibility to transform cyclic termgraphs
either by performing local edge redirections or global edge redirections, as defined
in [E] following a DPO approach, but provides also new features not present in
[ﬂ] such as cloning or deletion of nodes.

Besides the algorithmic approaches to termgraph transformation (e.g. [ﬂ]), a cat-
egorical framework dedicated to cyclic termgraph transformation could be found
in [E] where the authors propose, following ﬂﬂ], a 2-categorical presentation of
termgraph rewriting. They almost succeeded to represent the full operational
view of termgraph rewriting as defined in [ﬂ}, but differ on rewriting circular
redexes. For example, the application of the rewrite rule f(z) — x on the ter-
mgraph n : f(n) yields the same termgraph (i.e. n : f(n)) according to [H] but
yields an unlabeled node, say p : e, according to . The definition of rewrite
rules that we propose in this paper allows us to make a clear distinction between
the two behaviours. The rule (n: f(m : e),p:e,7={n+— p,m+— pho={})



behaves as in [E] when applied on n : f(n), whereas the behaviour described in
[E] can be obtained by simply declaring that node p is a clone of node m via o
as in the following rule (n: f(m:e),p: e, 7={n+—p,m— p},o={p— m}).

Future works include the generalization of the proposed systems to other graphs
less constrained than termgraphs. This would allow us to require from 7, in a
rule (L, R, 7,0), to be a partial function like in the single pushout approach [E]
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