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Abstract

In this paper we prove the convergence of the finite volume MultiPoint

Flux Approximation (MPFA) O scheme for anisotropic and heterogeneous

diffusion problems, under a local coercivity condition which can be easily

checked numerically. Our framework is based on a discrete hybrid varia-

tional formulation which generalizes the usual construction of the MPFA

O scheme. The novel feature of our framework is that it holds for general

polygonal and polyhedral meshes as well as for L∞ diffusion coefficients,

which is essential in many practical applications.
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Convergence analysis of the MPFA O scheme

1 Introduction

In this paper, we consider the second order elliptic equation
{

div(−Λ ∇u) = f in Ω,
u = 0 on ∂Ω,

(1)

where Ω is an open bounded connected polygonal subset of R
d, d ∈ N

∗, and
f ∈ L2(Ω). It is assumed in the following that Λ is a measurable function from
Ω to the set of square d-dimensional matrices Md(R) such that for a.e. (almost
every) x ∈ Ω, Λ(x) is symmetric and its eigenvalues are in the interval [α(x), β(x)]
with α, β ∈ L∞(Ω), and 0 < α0 ≤ α(x) ≤ β(x) ≤ β0. It results that there exists a
unique weak solution to (1) in H1

0 (Ω) denoted by ū in the following of this paper.

The MultiPoint Flux Approximation (MPFA) O method is a cell centered finite
volume discretization of such second order elliptic equations described for example
in [1] and [8]. It is a widely used scheme in the oil industry for the discretization
of diffusion fluxes in multiphase Darcy porous media flow models (see for example
[13], [14], and [18]).

Let σ be any interior face of the mesh shared by the two cells K and L, and
nK,σ its normal vector outward K. Cell centered finite volume schemes use the cell
unknowns uM for each cell M of the mesh as degrees of freedom. They aim to
build conservative approximations FK,σ of the fluxes −

∫
σ Λ∇u · nK,σdσ as linear

combinations of the cell unknowns uM using neighbouring cells M of the cells K or
L. The fluxes are conservative in the sense that FK,σ + FL,σ = 0.

The main assets of the MPFA O scheme are to derive a consistent approximation
of the fluxes on general meshes, and to be adapted to discontinuous anisotropic dif-
fusion coefficients in the sense that it reproduces cellwise linear solutions for cellwise
constant diffusion tensors. For that purpose, its construction uses in addition to the
cell unknowns, the intermediate subface unknowns us

σ for each face (edge in 2D) σ
of the mesh and each vertex s of the face σ. Roughly speaking, assuming that each
vertex s of any cell K is shared by exactly d faces of the cell K, subfluxes F s

K,σ are
built using a cellwise constant diffusion coefficient and a linear approximation of u
on each cell K shared by s. Then, the intermediate unknowns are eliminated by the
flux continuity equations on each face around the vertex s, and the approximate flux
FK,σ is the sum of the subfluxes over the vertices of the face σ. A generalization of
this construction is proposed in [13] for general polyhedral meshes.

Recent papers have studied the convergence of the MPFA O scheme. In [17], [3],
[15], the convergence of the scheme is obtained on quadrilateral meshes. The proofs
are based on equivalences of the MPFA O scheme to mixed finite element methods
using specific quadrature rules. The convergence of the scheme is obtained provided
that a square d-dimensional matrix defined locally for each cell and each vertex of
the cell, depending both on the distortion of cell and on the cell diffusion tensor,
is uniformly positive definite. This analysis confirms the numerical experiments
showing that the coercivity and convergence of the scheme is lost in the cases of
strong distortion of the mesh and/or anisotropy of the diffusion tensor.
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Convergence analysis of the MPFA O scheme

The first convergence proof of the MPFA O scheme on general polygonal and
polyhedral meshes is introduced in [6]. The convergence analysis holds for fairly
general meshes in 2D and 3D, for diffusion tensors with minimal regularity including
discontinuous diffusion coefficients which are essential in oil industry applications,
and for minimal regularity assumptions on the solution. Moreover, it covers the all
family of MPFA O schemes for arbitrary choices of the cell centers, of the so called
continuity points, and of the subfaces.

A different approach is presented in [20] based on symmetric and non symmetric
mimetic finite difference schemes using subfaces unknowns. The symmetric version
of this scheme has also been independently introduced in [19] in two dimensions. As
shown in [16] which develops a similar analysis, the non symmetric version of this
mimetic finite difference scheme matches with the MPFA O scheme family. Error
estimates are derived in [20] on general polygonal and polyhedral meshes under a
local coercivity criteria and for piecewise regular diffusion tensors.

In [6], it is assumed that for each cell κ and each vertex s of the cell, the number
of faces of the cell κ sharing the vertex s is equal to the space dimension d. This
paper presents a generalization of the MPFA O scheme to polyhedral meshes non
satisfying this latter assumption and extends the convergence analysis presented in
[6]. It also details the proofs only sketched in [6].

In this paper, following [6], a discrete hybrid variational formulation is introduced
using the framework described in [12], [11]. It involves the definition of two piecewise
constant gradients and stability terms using residuals of the second gradient. The
first gradient has a weak convergence property and is fixed in the construction.
The second one is assumed to be consistent in the sense that it is exact on linear
functions. For usual meshes such that each vertex of any cell K is shared by exactly
d faces of the cell K, the stability terms are vanishing and our discrete variational
formulation will be shown to be equivalent to the usual MPFA O scheme.

Moreover, it provides a generalization of the O scheme on more general polyhe-
dral cells.

A sufficient local condition for the coercivity of the scheme is derived which will
yield existence, and uniqueness of the solution. Under this coercivity condition, and
a uniform stability assumption for the consistent gradient, the convergence of the
scheme including the case of L∞ diffusion coefficients can be proved.

This paper is outlined as follows. Section 2 describes the discrete framework in-
cluding the definition of the finite volume discretization of the domain, the degrees
of freedom and the discrete function spaces with their associated inner products and
norms. Section 3 is devoted to the definition of a general framework for MPFA O
type schemes based on a hybrid variational formulation and the definition of two
piecewise constant gradients. Section 4 proves the well-posedness of the finite vol-
ume scheme under a sufficient coercivity condition involving computations local to
each node of the mesh and depending on the geometry and on the diffusion tensor
anisotropy. The convergence of the scheme is proved under the above coercivity as-
sumption, usual shape regularity assumptions, and a uniform stability assumption
for the consistent gradient in section 5 for L∞ diffusion tensor. In section 6, two
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examples of construction of the consistent gradient are discussed. The first con-
struction allows us to derive a stronger but simpler coercivity condition involving
the coercivity of a d-dimensional matrix for each vertex s of each cell K. On the
other hand this construction does not hold for non-matching meshes. The second
example is based on the consistent gradient introduced in [13]. Section 7 is devoted
to numerical examples in 2D and 3D.

Notations: In the following, for any vectors x, y ∈ R
d, we will denote by x · y their

dot product
∑d

i=1 xi yi, and by |x| the norm
√

x · x. The notations λmax(M) and
λmin(M) will stand for the maximum and minimum eigenvalues of any given square
symmetric matrix M . For any matrix A, we denote by |A| its norm defined by

sup
x∈Rd

|Ax|
|x| =

√
λmax(AtA).

2 Discrete framework

2.1 The Finite Volume discretization of the domain Ω

For polygonal bounded subdomains Ω of R
d, d ∈ N

⋆, the following definition of the
finite volume discretization covers fairly general polygonal meshes either conforming
or non-conforming (see Figure 1 for a 2D example).

Definition 2.1 (Admissible finite volume discretization) Let Ω be an open bounded
subset of R

d, with d ∈ N
⋆, and ∂Ω = Ω\Ω its boundary. An admissible finite volume

discretization of Ω, denoted by D, is given by D = (T , E ,P,V), where:

- T is a finite family of non-empty connected open disjoint subsets of Ω (the
“cells”) such that Ω = ∪K∈T K. For any K ∈ T , let ∂K = K \ K be the
boundary of K and mK > 0 denote the d-dimensional measure (named volume
in the following) of K.

- E is a finite family of disjoint subsets of Ω (the “faces” of the mesh), such
that, for all σ ∈ E , σ is a non-empty closed subset of a hyperplane of R

d,
which has a (d − 1)-dimensional measure (named surface in the following)
mσ > 0. We assume that, for all K ∈ T , there exists a subset EK of E such
that ∂K = ∪σ∈EK

σ. We then denote by Tσ the set {K ∈ T |σ ∈ EK}. It
is assumed that, for all σ ∈ E , either Tσ has exactly one element and then
σ ⊂ ∂Ω (boundary face) or Tσ has exactly two elements (interior face). For all
σ ∈ E , we denote by xσ the center of gravity of σ

- P is a family of points of Ω indexed by T (“the cell centers”), denoted by
P = (xK)K∈T , such that xK ∈ K and K is star-shaped with respect to xK .

- V is a family of points (“the vertices of the mesh”), such that for any K ∈ T ,
for all subset HK of EK with Card(HK) ≥ d, then ∩σ∈HK

σ = ∅ or ∩σ∈HK
σ = s

where s ∈ V. For all s ∈ V, we denote by Es the set {σ ∈ E | s ∈ σ} and by Ts

the set {K ∈ T | s ∈ K}. For all K ∈ T , the set VK stands for {s ∈ V | s ∈ K},
and for all σ ∈ E the set {s ∈ V | s ∈ σ} is denoted by Vσ.
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Figure 1: Example of an admissible finite volume discretization and notations: cells
K, L, and K ′, faces σ and σ′, vertex s, cell center xK of the cell K, center of gravity
xσ′ of the face σ′, distance dK,σ from the cell center xK to the face σ, set Tσ = {K,L}
of cells sharing the face σ, set Es of faces sharing the vertex s, set EK ′ of faces of the
cell K ′.

The following notations are used. The size of the discretization is defined by

hD = sup{diam(K),K ∈ T }.

For all K ∈ T and σ ∈ EK , we denote by nK,σ the unit vector normal to σ outward
to K, and by dK,σ the Euclidean distance between xK and σ.

The set of interior (resp. boundary) faces is denoted by Eint (resp. Eext), defined
by Eint = {σ ∈ E |σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E |σ ⊂ ∂Ω}).

Shape regularity of the mesh: it will be measured by the following parameters:

CardFace(D) = max
K∈Ts,s∈V

Card(EK ∩ Es), (2)

RegulCell(D) = min
σ∈EK ,K∈T

{
dK,σ

diam(K)

}
, (3)

RegulKL(D) = min
σ∈Eint,Tσ={K,L}

{
min(dK,σ, dL,σ)

max(dK,σ, dL,σ)

}
. (4)

In the convergence analysis of the finite volume scheme, the parameters RegulCell(D)
and RegulKL(D) will be assumed to be uniformly bounded from below, and the
parameter CardFace(D) to be uniformly bounded from above.

In particular assuming that CardFace(D) is uniformly bounded amounts to re-
quiring that the number of faces sharing a node remains bounded as the mesh is
refined. The uniform bound on RegulCell(D) ensures that the cell centers are uni-
formly away from the cell boundary, whereas the uniform bound on RegulKL(D)
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implies roughly speaking that the cell size is smoothly varying across the mesh.

Parameters of the MPFA O finite volume scheme: in addition to the choice of
the cell centers satisfying the above assumptions, the construction of the MPFA O
scheme involves two families of parameters defined on the set {(σ, s) | s ∈ Vσ, σ ∈ E}.

The first family of non-negative reals (ms
σ)s∈Vσ,σ∈E defines the distribution of the

surface mσ of each face σ to the face vertices s ∈ Vσ such that mσ =
∑

s∈Vσ
ms

σ. It
results that the volume of each cell K ∈ T is also distributed to the vertices of the
cell according to the subvolumes ms

K , s ∈ VK defined by

ms
K =

1

d

∑

σ∈EK∩Es

ms
σdK,σ, (5)

and which satisfy mK =
∑

s∈VK
ms

K for all K ∈ T .
The second family is the set of the so called continuity points (xs

σ)σ∈Es ,s∈V such
that xs

σ ∈ σ. On each continuity point xs
σ, the intermediate unknown us

σ is defined
which will be used together with the cell unknowns uK , K ∈ T for the construction
of the finite volume scheme in the next section.

2.2 Discrete functional framework

The MPFA O scheme is a cell centered finite volume scheme with main degrees of
freedom the cell unknowns uK on each cell K of the mesh T . The following definition
introduces the space of piecewise constant functions on each cell K of the mesh.

Definition 2.2 Let Ω be an open bounded polygonal subset of R
d, with d ∈ N

⋆.
Let D = (T , E ,P,V) be an admissible finite volume discretization of Ω in the sense
of Definition 2.1. We denote by HT (Ω) ⊂ L2(Ω) the set of all functions u ∈ L2(Ω)
such that, for all K ∈ T , there exists some real value denoted by uK ∈ R such that
u(x) = uK for a.e. x ∈ K.

Then, for all σ ∈ E , let us define γσu such that





γσu = 0 for all σ ∈ Eext,
γσu − uK

dK,σ
+

γσu − uL

dL,σ
= 0 for all σ ∈ Eint with Tσ = {K,L}. (6)

The space HT (Ω) is equipped with the Euclidean structure defined by the inner
product

[v,w]T =
∑

K∈T

∑

σ∈EK

mσ

dK,σ
(γσv − vK)(γσw − wK), (7)

and the associated norm
‖v‖T = ([v, v]T )1/2 ,

for all (v,w) ∈ (HT (Ω))2.

The construction of the scheme uses additional degrees of freedom us
σ for each

vertex s of the face σ and each face σ. These subface unknowns will be locally
eliminated as linear combinations of the neighbouring cell unknowns using the flux
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continuity equations. In our approach the finite volume scheme will be derived in
section 3 from a hybrid variational formulation defined on the space HD spanned by
the cell and subface unknowns and introduced below.

Definition 2.3 Let us define the discrete function space HD as the set of all
((uK)K∈T , (us

σ)σ∈Es ,s∈V), uK ∈ R, K ∈ T , us
σ ∈ R, σ ∈ Es, s ∈ V such that

us
σ = 0 for all σ ∈ Eext. It is equipped with the Euclidean structure defined by the

inner product

[v,w]D =
∑

K∈T

∑

σ∈EK

∑

s∈Vσ

ms
K

(dK,σ)2
(vs

σ − vK)(ws
σ − wK), (8)

and the associated norm
‖v‖D = ([v, v]D)1/2 ,

for all (v,w) ∈ (HD)2.

The projection operator PT from HD to HT (Ω) is defined for all u ∈ HD by
(PT u)K = uK for all K ∈ T . Note that, from definition (6) of γσu, we have

(γσu − uK)2

dK,σ
+

(γσu − uL)2

dL,σ
= min

us
σ∈R

(
(us

σ − uK)2

dK,σ
+

(us
σ − uL)2

dL,σ

)
,

for all σ ∈ Eint, Tσ = {K,L}. Since from (5) we have ms
σ

dK,σ
≤ d

ms
K

(dK,σ)2
for all s ∈ Vσ,

σ ∈ EK , K ∈ T , it implies that

‖PT u‖T ≤
√

d ‖u‖D, for all u ∈ HD. (9)

Denoting by C0(Ω) the set of continuous functions which vanish on ∂Ω, we define
the interpolation operator PD : C0(Ω) → HD by (PDϕ)K = ϕ(xK), K ∈ T , and
(PDϕ)sσ = ϕ(xs

σ), s ∈ Vσ, σ ∈ E , for all ϕ ∈ C0(Ω).

Let us now recall the following lemma:

Lemma 2.4 (Discrete Sobolev Inequality) Let Ω be an open bounded subset
of R

d, with d ∈ N
∗, and D be an admissible discretization of Ω in the sense of

Definition 2.1. Then, there exists a constant Csob > 0, depending only on d, Ω,
RegulCell(D), and RegulKL(D) such that for all q ∈ [2,+∞), if d = 2, and q ∈
[2, 2d/(d − 2)] if d > 2, we have

‖u‖Lq(Ω) ≤ q Csob ‖u‖T , (10)

for any u ∈ HT (Ω).

Proof The proof is given in [10]. �
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3 The Finite Volume Scheme

The definition of the finite volume scheme is based on a hybrid variational formula-
tion on the space HD using the construction of two discrete gradients for each cell
K of the mesh and each vertex s of the cell. The first gradient defined by

(∇̃Du)sK =
1

ms
K

∑

σ∈EK∩Es

ms
σ(us

σ − uK)nK,σ, (11)

is built to have a weak convergence property stated in Lemma 5.6, once averaged
for each cell K over its vertices s ∈ VK with the weights ms

K . The second gradient
is defined by

(∇Du)sK =
∑

σ∈EK∩Es

(us
σ − uK) gs

K,σ, (12)

where the vectors gs
K,σ ∈ R

d are given for all σ ∈ EK ∩ Es. The gradient (∇Du)sK is
built to be consistent in the sense that it is exact for linear functions. More precisely,
the vectors gs

K,σ, σ ∈ EK ∩ Es are assumed to satisfy the following hypothesis:

Hypothesis 1 [consistency of the gradient] For all K ∈ T , s ∈ VK , the vectors
gs
K,σ, σ ∈ EK ∩ Es are such that for all vectors v ∈ R

d we have

∑

σ∈EK∩Es

v · (xs
σ − xK) gs

K,σ = v. (13)

Let us now define the bilinear form aD on HD ×HD by

aD(u, v) =
∑

K∈T

∑

s∈VK

(
ms

K(∇Du)sK · ΛK(∇̃Dv)sK

+ αs
K

∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(u)Rs
K,σ(v)

) (14)

for all (u, v) ∈ HD ×HD, with

ΛK =
1

mK

∫

K
Λ(x)dx,

for all K ∈ T . In (14), the residual functions Rs
K,σ are defined for all u ∈ HD,

σ ∈ EK ∩ Es, s ∈ VK , K ∈ T , by

Rs
K,σ(u) = us

σ − uK − (∇Du)sK · (xs
σ − xK), (15)

and the parameters αs
K are real such that

µ0 ≤ αs
K ≤ γ0 (16)

for all s ∈ VK , K ∈ T with µ0 > 0 and γ0 > 0. Note that instead of the scalar
parameter αs

K , we could have considered a more general positive definite matrix Ds
K

International Journal on Finite Volumes 8
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of size Card(EK ∩ Es) such that µ0 I ≤ Ds
K ≤ γ0 I. The subsequent analysis will

readily extends to this more general framework but we keep to the scalar term for
the sake of simplicity in the notations.

The discretization of (1) on D is defined by the following discrete hybrid varia-
tional formulation: find uD ∈ HD such that

aD(uD, v) =

∫

Ω
f(x)PT v(x)dx for all v ∈ HD. (17)

For all u ∈ HD, let us introduce the following subfluxes F s
K,σ(u) defined for all

s ∈ Vσ, σ ∈ EK , K ∈ T by

F s
K,σ(u) = −ms

σΛK(∇Du)sK · nK,σ

−αs
K ms

K


Rs

K,σ(u)

(dK,σ)2
− gs

K,σ ·
∑

σ′∈EK∩Es

Rs
K,σ

′ (u)

(dK,σ′ )2
(xs

σ′ − xK)


 ,

(18)

in such a way that

aD(u, v) =
∑

K∈T

∑

σ∈EK

∑

s∈Vσ

F s
K,σ(u)(vK − vs

σ), (19)

for all (u, v) ∈ HD × HD. Then, it is easily shown from (19) that the variational
formulation (17) is equivalent to the following hybrid finite volume scheme: find
uD ∈ HD such that




∑

σ∈EK

FK,σ(uD) =

∫

K
f(x)dx for all K ∈ T ,

FK,σ(uD) =
∑

s∈Vσ

F s
K,σ(uD) for all σ ∈ EK ,K ∈ T ,

F s
K,σ(uD) = −F s

L,σ(uD) for all s ∈ Vσ, σ ∈ Eint, Tσ = {K,L}.

(20)

From definition (18) of the subfluxes F s
K,σ(u), we can compute the coefficients

(T s
K)σ,σ′ , σ′ ∈ Es ∩ EK such that

F s
K,σ(u) =

∑

σ′∈Es∩EK

(T s
K)σ,σ′(uK − us

σ′), (21)

for all s ∈ Vσ, σ ∈ EK , K ∈ T and u ∈ HD. It results that around each vertex s ∈ V,
the face unknowns (us

σ)σ∈Es can be eliminated in terms of the (uK)K∈Ts assuming
the well-posedness of the linear system

{
F s

K,σ(uD) + F s
L,σ(uD) = 0 for all σ ∈ Es ∩ Eint with Tσ = {K,L},

us
σ = 0 for all σ ∈ Es ∩ Eext.

(22)

Then, the hybrid finite volume scheme reduces to the cell centered finite volume
scheme: find uT ∈ HT (Ω) such that for all K ∈ T

∑

σ∈EK∩Eint,Tσ={K,L}

FK,L(uT ) +
∑

σ∈EK∩Eext

Fσ(uT ) =

∫

K
f(x)dx, (23)

International Journal on Finite Volumes 9
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where the inner fluxes FK,L(uT ), Tσ = {K,L}, σ ∈ Eint, and the boundary fluxes
Fσ(uT ), σ ∈ Eext, are linear combinations of the cell unknowns (uT )M with M ∈⋃

s∈Vσ
Ts.

The well-posedness of the hybrid finite volume scheme (20), of the local linear
systems (22), and of the cell centered scheme (23) is shown in the next section to
result from the coercivity of the bilinear form aD which will hold assuming a local
coercivity assumption as stated in Proposition 4.1.

3.1 Equivalence with the usual MPFA O scheme

The MPFA O scheme described in [1] and [8] is defined for polygonal and polyedral
meshes such that for all cells K and all vertices s of K, the cardinal of EK ∩ Es

denoted by qs
K is equal to the space dimension d, and such that the set of vectors

(xs
σ − xK)σ∈EK∩Es spans R

d. Note that in two dimensions d = 2, the first condition
qs
K = d = 2 is always true, but it is no longer the case in three dimensions for which

qs
K can be larger than d = 3.

For such meshes, the MPFA O scheme from [1] or [8] is precisely defined by the
hybrid finite volume formulation (20) using subfluxes F s

K,σ(u) given by

−ms
σΛK(∇MPFA

D u)sK · nK,σ

where the gradient (∇MPFA
D u)sK is the gradient of the unique linear function defined

by its d + 1 values uK at point xK and us
σ at points xs

σ, σ ∈ EK ∩ Es.
In such cases, the equivalence between our hybrid finite volume scheme (20) and

the MPFA O scheme defined in [1] and [8] readily results from the following lemma
stating that (∇Du)sK = (∇MPFA

D u)sK , and that Rs
K,σ(u) = 0 for all u ∈ HD.

Lemma 3.1 Let D be an admissible discretization in the sense of Definition 2.1,
and let K ∈ T , s ∈ VK be such that qs

K = d and such that the set of d vectors
(xs

σ − xK)σ∈EK∩Es spans R
d. Let us consider a discrete gradient (∇Du)sK given by

(12) and satisfying the consistency hypothesis 1. Then, for all u ∈ HD, the discrete
gradient (∇Du)sK is the gradient of the unique linear function defined by its d + 1
values uK at point xK and us

σ at points xs
σ, σ ∈ EK ∩ Es, and the residuals Rs

K,σ(u)
vanish for all σ ∈ EK ∩ Es.

Proof Let us denote by (ḡs
K,σ)σ∈EK∩Es the biorthogonal basis of the basis (xs

σ −
xK)σ∈EK∩Es of R

d. It is uniquely defined by the equations ḡs
K,σ · (xs

σ′ − xK) = δσ,σ′

for all σ, σ′ ∈ EK ∩ Es. Setting v = ḡs
K,σ in (13) shows that gs

K,σ = ḡs
K,σ for all

σ ∈ EK∩Es and the gradient
∑

σ∈EK∩Es
(us

σ−uK)ḡs
K,σ is the unique gradient satisfying

the consistency hypothesis 1. Let u ∈ HD be given and let ϕ be the unique linear
function defined by its d+1 values uK at point xK and us

σ at points xs
σ, σ ∈ EK ∩Es.

We have by definition ∇ϕ · (xs
σ − xK) = us

σ − uK . Hence setting v = ∇ϕ in (13) it
results that

∇ϕ =
∑

σ∈EK∩Es

∇ϕ · (xs
σ − xK)ḡs

K,σ =
∑

σ∈EK∩Es

(us
σ − uK)ḡs

K,σ,
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which proves the first part of the lemma. The second part results from the equation

∑

σ∈EK∩Es

Rs
K,σ(u) ḡs

K,σ = 0,

for all u ∈ HD. �

For cells such that qs
K > d, they are several ways to define a gradient (∇Du)sK =

(us
σ − uK) gs

K,σ satisfying the consistency hypothesis 1. In such cases, the residuals
Rs

K,σ(u), σ ∈ EK ∩ Es satisfying the relation
∑

σ∈EK∩Es
Rs

K,σ(u) gs
K,σ = 0 for all

u ∈ HD do not a priori vanish since the family gs
K,σ, σ ∈ EK ∩ Es is not free. They

play the role of stabilization terms in the hybrid variational formulation (20) as
shown in the following example. For d = 3, let us consider two pyramids K and L
sharing a triangular face σ, and let s ∈ σ denote the top of the two pyramids. We can
easily build two consistent gradients (∇Du)sK and (∇Du)sL such that gs

K,σ = gs
L,σ = 0.

Then, the residuals Rs
K,σ′(u) and Rs

K,σ′′(u) vanish except for σ′ = σ′′ = σ. In this
example, it is clear that only the residual terms in (20) can ensure the well-posedness
of the system since the discrete gradients (12) do not depend on us

σ.

4 Well-posedness of the finite volume scheme

The well-posedness of the hybrid finite volume scheme (20) and the cell centered
finite volume scheme (23) will be derived from the coercivity of the bilinear form
aD. This coercivity property depends on the finite volume discretization D, on
the diffusion tensor Λ, and on the parameters of the finite volume scheme. In the
following, we shall make the stronger assumption that the coercivity holds locally
around each vertex s of the mesh. For a given discretization and diffusion tensor,
this assumption can easily be checked numerically computing the eigenvalues of a
small linear system of size 2 × Card(Ts) for each vertex s ∈ V.

In practical numerical experiments, for a proper choice of the consistent gra-
dient (see section 6), the singularity of the linear system has never been observed
for polygonal and polyhedral meshes. Nevertheless, as exhibited in subsection 7.3,
negative eigenvalues of the bilinear form can occur breaking the coercivity of the
bilinear form and the stability of the scheme.

Let s be a given vertex in V, and let Hs
D be the subspace of

{us
σ ∈ R, uK ∈ R, K ∈ Ts, σ ∈ EK ∩ Es}

such that us
σ = 0 for all σ ∈ Eext. The space HDs is endowed with the semi-norm

‖u‖Ds =



∑

K∈Ts

∑

σ∈Es∩EK

ms
K

(dK,σ)2
(us

σ − uK)2




1

2

. (24)
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Let us also denote by aDs the bilinear form defined by

aDs(u, v) =
∑

K∈Ts

(
ms

K(∇Du)sK · ΛK(∇̃Dv)sK

+αs
K

∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(u)Rs
K,σ(v)

)
,

(25)

for all u, v ∈ HDs , where we have used the canonical injection from HDs to HD to
define the residual and the gradient functions on HDs .

Let us now introduce the following local coercivity criterion

coernode(D,Λ) = min
s∈V

inf
{u∈HDs | ‖u‖Ds=1}

aDs(u, u). (26)

It will be used to check the coercivity of the bilinear form aD as stated in the
following proposition:

Proposition 4.1 Let D be an admissible discretization in the sense of Definition
2.1, and let us assume that there exists θD > 0 such that coernode(D,Λ) ≥ θD.
Then, the bilinear form aD is coercive in the sense that for all u ∈ HD we have

aD(u, u) ≥ θD‖u‖2
D. (27)

Proof From the definition (14) of the bilinear form, we have for any u ∈ HD that

aD(u, u) =
∑

K∈T

∑

s∈VK

(
ms

K(∇Du)sK · ΛK(∇̃Du)sK

+ αs
K

∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(u)Rs
K,σ(u)

)
.

Permuting the first two sums leads to

aD(u, u) =
∑

s∈V

∑

K∈Ts

(
ms

K(∇Du)sK · ΛK(∇̃Du)sK

+ αs
K

∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(u)Rs
K,σ(u)

)
.

It results from (25) that

aD(u, u) =
∑

s∈V

aDs(u, u). (28)

Similarly, one has from (24) and (8) that

‖u‖2
D =

∑

s∈V

‖u‖2
Ds

. (29)

Let s ∈ V and let us assume that ‖u‖Ds = 0. From the definition (24) of the
semi norm it implies that uK = us

σ for all K ∈ Ts, σ ∈ Es ∩ EK . Then, from the
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definitions of the discrete gradients (11) and (12), it results that for all K ∈ Ts one
has (∇̃Du)sK = 0, and (∇Du)sK = 0. Also, from the definition of the residuals (15),
we deduce that for all K ∈ Ts, σ ∈ Es ∩ EK one has Rs

K,σ(u) = 0. Therefore, for any
s ∈ V we have shown that

‖u‖Ds = 0 implies aDs(u, u) = 0.

For any s ∈ V, if ‖u‖Ds 6= 0, one has by the assumption on coernode(D,Λ) that

aDs(u, u) = aDs

(
u

‖u‖Ds
,

u

‖u‖Ds

)
‖u‖2

Ds

≥ θD ‖u‖2
Ds .

From the previous remark, the same inequality still holds for ‖u‖Ds = 0 and hence
for any u which together with (28) and (29) conclude the proof of the lemma. �

The following propositions state the well-posedness of the hybrid and cell centered
finite volume schemes under the local coercivity assumption.

Proposition 4.2 [Estimate on the solution of the hybrid finite volume scheme] Let
D be an admissible discretization in the sense of Definition 2.1, and let us assume
that there exists a real θD > 0 such that coernode(D,Λ) ≥ θD. Then, there exists
a unique solution uD ∈ HD of the hybrid finite volume scheme (20) which satisfies
the estimate

‖uD‖D ≤ 2
Csob

θD
‖f‖L2(Ω), (30)

where the constant Csob is given by Lemma 2.4.

Proof Thanks to Proposition 4.1, for any solution u ∈ HD of (20), we have

θD‖u‖2
D ≤ aD(u, u) =

∫

Ω
f(x)PT u(x)dx. (31)

On the other hand, using (10) and (9), we have for all u ∈ HD

∫

Ω
f(x)PT u(x)dx ≤ ‖f‖L2(Ω)‖PT u‖L2(Ω) (32)

≤ 2 ‖f‖L2(Ω) Csob‖u‖D, (33)

which proves the bound (30) for any solution uD ∈ HD of (20). Since (20) is a square
linear system, it also proves the uniqueness and existence of the solution of (20). �

Corollary 4.3 [Estimate on the solution of the cell centered finite volume scheme]
Let D be an admissible discretization in the sense of Definition 2.1, and let us assume
that there exists a real θD > 0 such that coernode(D,Λ) ≥ θD. Then, for each vertex
s ∈ V, the linear system (22) is non-singular, and there exists a unique solution uT

to the cell centered finite volume scheme (23) equal to PT (uD) where uD is the
unique solution of the hybrid finite volume scheme (20). Moreover, the solution uT

satisfies the bound

‖uT ‖T ≤ 2
√

d
Csob

θD
‖f‖L2(Ω). (34)
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Proof Let s ∈ V, and let V s, be the subspace of HD such that

V s = {v ∈ HD | PT v = 0, vs′

σ = 0 for all s′ 6= s, σ ∈ Es′},

and let PV s , be the canonical orthogonal projector onto V s. Let us also identify
HT (Ω) with the subspace {v ∈ HD | vs′

σ = 0 for all s′ ∈ V, σ ∈ Es′} of HD. Then,
we have for all vs ∈ V s, u ∈ HD

aD(u, vs) = aD(PV s(u) + PT u, vs) =
∑

σ∈Es∩Eint, Tσ={K,L}

−
(
F s

K,σ(u) + F s
L,σ(u)

)
vs
σ,

and the linear system (22) is equivalent to: given PT uD, find us ∈ V s, such that
aD(us+PT uD, vs) = 0 for all vs ∈ V s. The non-singularity of this system results from
the coercivity of the bilinear form aD. Hence, from Proposition 4.2, there exists a
unique solution uT to the cell centered finite volume scheme and this solution verifies
uT = PT (uD) where uD is the unique solution of the hybrid finite volume scheme
(20). From (9) the solution uT satisfies the estimate (34). �

5 Convergence Analysis

Let D be an admissible discretization in the sense of Definition 2.1. It is always
assumed in the following that the local coercivity assumption coernode(D,Λ) ≥
θD > 0. is satisfied, which ensures that there exists a unique solution uD ∈ HD to
(20).

Let us introduce the following notation for a given finite volume discretization
and a given construction of the gradients (∇Du)sK :

RegulGrad(D) = max
σ∈EK∩Es,K∈Ts,s∈V

|gs
K,σ|diam(K). (35)

The proof of convergence uses piecewise constant reconstructions of the discrete
gradients (11) and (12) defined as follows. For all K ∈ T , let us choose arbitrarily
a family (Ks)s∈VK

of non empty connected open disjoint subsets of K such that the
volume of Ks is equal to ms

K and K = ∪s∈VK
Ks.

For all u ∈ HD, let us denote by ∇̃Du ∈ L2(Ω)d the function

∇̃Du(x) = (∇̃Du)sK , for a.e. x ∈ Ks, (36)

and by ∇Du ∈ L2(Ω)d the function

∇Du(x) = (∇Du)sK , for a.e. x ∈ Ks. (37)

We shall also use an averaging of the discrete gradients over each cell K ∈ T . For
all u ∈ HD, let ∇Du ∈ L2(Ω)d be the function defined for a.e. x ∈ K by

(∇Du)K =
1

mK

∑

s∈VK

ms
K(∇̃Du)sK =

1

mK

∑

σ∈EK

∑

s∈Vσ

ms
σ(us

σ − uK)nK,σ. (38)
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This gradient is shown in [12] to satisfy a weak convergence property as stated below
in Lemma 5.6. Similarly, let ∇̂Du ∈ L2(Ω)d be the function defined by

∇̂Du(x) = (∇̂Du)K , for a.e. x ∈ K, (39)

with

(∇̂Du)K =
1

mK

∑

s∈VK

ms
K(∇Du)sK . (40)

In the subsequent of this section, we shall prove the following theorem.

Theorem 5.1 [Convergence of the scheme] Let Ω be an open bounded polygonal
subset of R

d, with d ∈ N
∗. Let (Dn)n∈N be a sequence of admissible discretizations

in the sense of Definition 2.1, such that hDn → 0 as n → ∞. It is assumed that
hypothesis 1 holds and that there exist θ > 0, γ ≥ 0, β > 0, η > 0, and M ∈ N with
coernode(Dn,Λ) ≥ θ, RegulGrad(Dn) ≤ γ, CardFace(Dn) ≤ M , RegulKL(Dn) ≥ η,
and RegulCell(Dn) ≥ β for all n ∈ N. Then, there exists for all n ∈ N a unique
solution uDn ∈ HDn to (20), and the sequence PT uDn , n ∈ N converges to the weak
solution ū of (1) in Lq(Ω), for all q ∈ [1,+∞) if d = 2 and all q ∈ [1, 2d/(d − 2)) if
d > 2. Moreover, the sequence ∇DnuDn , n ∈ N converges to ∇ū in L2(Ω)d.

The proof of this theorem involves a series of lemmae listed in the following
sketch of the proof.

• A uniform stability estimate in HDn of the discrete solutions uDn , n ∈ N is
readily obtained by Proposition 4.2 stated in the previous section and from
the assumption that there exist θ > 0 such that coernode(Dn,Λ) ≥ θ for all
n ∈ N.

• Stability estimates of the gradient and residual functions will be derived in
Lemmae 5.2 and 5.3.

• The consistency of the discrete gradients (∇D(PDϕ))sK , and of the residual
functions Rs

K,σ(PDϕ) for smooth compactly supported functions ϕ is derived
respectively in Lemmae 5.4 and 5.5.

• Using the stability estimate of uDn in HDn we can apply the Discrete Rellich
Theorem already proved in [12] and recalled in Lemma 5.6. It results that
there exist a function ũ ∈ H1

0 (Ω) and a subsequence of n ∈ N, still denoted
by n ∈ N for simplicity, such that PT uDn , n ∈ N converges to ũ ∈ H1

0 (Ω) in
Lq(Ω) for all q ∈ [1,+∞) if d = 2 and all q ∈ [1, 2d/(d − 2)) if d > 2, and such
that the gradient ∇Dun, n ∈ N weakly converges to ∇ũ in L2(Ω)d.

• The core of the proof is derived in Lemma 5.7 which proves the convergence in
L2(Ω)d up to a subsequence of the gradient functions ∇DnuDn and ∇̂DnuDn ,
n ∈ N to ∇ũ. The proof uses the coercivity of aD, and Lemmae 5.4, 5.5, 5.2
and 5.3.

• To complete the proof of Theorem 5.1 it is then shown that ũ is the unique
weak solution ū of (1) by passing to the limit in the discrete hybrid variational
formulation (17).
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Lemma 5.2 [Estimate of the gradient functions] Let D be an admissible discretiza-
tion in the sense of Definition 2.1. Then, for all u ∈ HD we have the bounds

‖∇̃Du‖L2(Ω)d ≤
√

d ‖u‖D, (41)

‖∇Du‖L2(Ω)d ≤ ‖∇̃Du‖L2(Ω)d , (42)

‖∇Du‖L2(Ω)d ≤ CardFace(D)1/2 RegulGrad(D) ‖u‖D, (43)

‖∇̂Du‖L2(Ω)d ≤ ‖∇Du‖L2(Ω)d . (44)

Proof The first bound is proved using definition (5) of ms
K , Definition 2.3 of

the norm in HD as well as the Cauchy Schwarz inequality. The third bound is
derived using Cauchy Schwarz inequality and the definitions of RegulGrad(D) and
CardFace(D) as follows:

‖∇Du‖2
L2(Ω)d =

∑

K∈T

∑

s∈VK

ms
K




∑

σ∈Es∩EK

(us
σ − uK)gs

K,σ




2

≤
∑

K∈T

∑

s∈VK




∑

σ∈Es∩EK

ms
K

(dK,σ)2
(us

σ − uK)2






∑

σ∈Es∩EK

|gs
K,σ|2(dK,σ)2




≤ CardFace(D) RegulGrad(D)2 ‖u‖2
D.

The two remaining bounds readily derive from the above definitions of the gradient
functions and the convexity of the function x → x2. �

Lemma 5.3 [Estimate of the residual function] Let D be an admissible discretization
in the sense of Definition 2.1. Then, there exists a real C > 0 which depends only
on RegulCell(D), CardFace(D), RegulGrad(D) such that for all u ∈ HD we have the
estimate

∑

K∈T

∑

s∈VK




∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(u)2


 ≤ C‖u‖2

D.

Proof Using the estimate (a−b)2 ≤ 2(a2 +b2) for all (a, b) ∈ R×R in the definition
of the residual Rs

K,σ(u) = (us
σ − uK) − (∇Du)sK · (xs

σ − xK), we obtain the bound

∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(u)2 ≤ 2 (∇Du)sK · As
K(∇Du)sK

+ 2
∑

σ∈EK∩Es

ms
K

(dK,σ)2
(us

σ − uK)2,
(45)

where the square matrix As
K is defined by

As
K =

∑

σ∈EK∩Es

ms
K

(dK,σ)2
(xs

σ − xK)(xs
σ − xK)t, (46)
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and satisfies the bound

|As
K | ≤ ms

K

CardFace(D)

RegulCell(D)2
. (47)

Using the bound

ms
K |(∇Du)sK |2 ≤ CardFace(D) RegulGrad(D)2

∑

σ∈EK∩Es

ms
K

(dK,σ)2
(us

σ − uK)2,

combined with (45), and (47), we obtain the following estimate

∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(u)2

≤ 2

(
1 +

(
CardFace(D) RegulGrad(D)

RegulCell(D)

)2
)

∑

σ∈EK∩Es

ms
K

(dK,σ)2
(us

σ − uK)2,

which completes the proof. �

Lemma 5.4 [Consistency of the discrete gradients] Let D be an admissible dis-
cretization in the sense of Definition 2.1, and let us assume that hypothesis 1 holds.
Let ϕ be a given function in C∞

c (Ω). Then, there exists Mϕ depending only on ϕ,
such that for all s ∈ VK , K ∈ T ,

|(∇DPDϕ)sK −∇ϕ(xK)| ≤ Mϕ CardFace(D) RegulGrad(D) diam(K),

and

|(∇̂DPDϕ)K −∇ϕ(xK)| ≤ Mϕ CardFace(D) RegulGrad(D) diam(K).

Proof Let K ∈ T , s ∈ VK , ϕ ∈ C∞
c (Ω) be given. For all σ ∈ Es ∩ EK , let us set

ǫs
K,σ = ϕ(xs

σ) − ϕ(xK) −∇ϕ(xK) · (xs
σ − xK). Since ϕ ∈ C∞

c (Ω), there exists a real

Mϕ > 0 depending only on ϕ such that |ǫs
K,σ| ≤ Mϕ|xs

σ − xK |2. From hypothesis 1,
we have

(∇DPDϕ)sK −∇ϕ(xK) =
∑

σ∈Es∩EK

ǫs
K,σ gs

K,σ,

which ends the proof from the definitions of CardFace(D) and RegulGrad(D). �

Lemma 5.5 [Consistency of the residual functions] Let D be an admissible dis-
cretization in the sense of Definition 2.1, and let us assume that hypothesis 1 holds.
Let ϕ be a given function in C∞

c (Ω). Then, there exists a real C > 0 depending
only on ϕ, RegulCell(D), RegulGrad(D), CardFace(D), and Ω, such that

∑

K∈T

∑

s∈VK




∑

σ∈EK∩Es

ms
K

(dK,σ)2
(Rs

K,σ(PDϕ))2


 ≤ C h2

D.
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Proof Let K ∈ T , s ∈ VK , σ ∈ Es ∩ EK , ϕ ∈ C∞
c (Ω) be given. For all σ ∈ Es ∩ EK ,

let us set ǫs
K,σ = ϕ(xs

σ) − ϕ(xK) − ∇ϕ(xK) · (xs
σ − xK). Since ϕ ∈ C∞

c (Ω), there
exists a real Mϕ > 0 already introduced in Lemma 5.4 and depending only on ϕ
such that |ǫs

K,σ| ≤ Mϕ|xs
σ − xK |2. From the definition of the residual function we

have

Rs
K,σ(PDϕ) = ǫs

K,σ −
(
(∇DPDϕ)sK −∇ϕ(xK)

)
· (xs

σ − xK).

We deduce from Lemma 5.4, and the definition of RegulCell(D) that

ms
K

(dK,σ)2
(Rs

K,σ(PDϕ))2 ≤ ms
KM2

ϕ

(
1 + CardFace(D) RegulGrad(D)

RegulCell(D)

)2

h2
D,

from which we deduce the estimate

∑

K∈T

∑

s∈VK




∑

σ∈EK∩Es

ms
K

(dK,σ)2
(Rs

K,σ(PDϕ))2




≤ m(Ω)M2
ϕ

(
1 + CardFace(D) RegulGrad(D)

RegulCell(D)

)2

h2
D,

which concludes the proof. �

Lemma 5.6 [Discrete Rellich theorem] Let Ω be an open bounded polygonal subset
of R

d, with d ∈ N
∗. Let (Dn)n∈N be a sequence of admissible discretizations such

that hDn → 0 as n → ∞, and let un ∈ HDn be such that there exists C > 0 with
‖un‖Dn ≤ C for all n ∈ N. Then, there exist a subsequence, still denoted by n ∈ N

for simplicity, and a function ũ ∈ H1
0 (Ω), such that PT un converges in Lq(Ω) to ũ

for all q ∈ [1,∞) if d = 2 else if d > 2, q ∈ [1, 2d/(d − 2)] and such that the gradient
∇Dun weakly converges to ∇ũ in L2(Ω)d.

Proof The proof uses the same arguments as in [12]. �

Lemma 5.7 [Strong convergence of the discrete gradients] Let Ω be an open bounded
polygonal subset of R

d, with d ∈ N
∗. Let (Dn)n∈N be a sequence of admissible

discretizations in the sense of Definition 2.1, such that hDn → 0 as n → ∞. It is
assumed that hypothesis 1 holds and that there exist θ > 0, γ ≥ 0, β > 0, η > 0,
and M ∈ N with coernode(Dn,Λ) ≥ θ, RegulGrad(Dn) ≤ γ, CardFace(Dn) ≤ M ,
RegulKL(Dn) ≥ η, and RegulCell(Dn) ≥ β for all n ∈ N. Then, there exist for all
n ∈ N a unique solution uDn ∈ HDn to (20), and a function ũ ∈ H1

0 (Ω) such that
PT uDn converges up to a subsequence to ũ in Lq(Ω), for all q ∈ [1,+∞) if d = 2
and all q ∈ [1, 2d/(d − 2)) if d > 2, as hD → 0. Moreover, the gradients ∇DnuDn

and ∇̂DnuDn converge strongly up to a subsequence to ∇ũ in L2(Ω)d.

Proof Thanks to Proposition 4.2 and Lemma 5.6, there exist a subsequence still
denoted by n ∈ N for conveniency, and a function ũ ∈ H1

0 (Ω) such that PT uDn → ũ
in Lq(Ω), for all q ∈ [1,+∞) if d = 2 and all q ∈ [1, 2d/(d − 2)) if d > 2, and such
that ∇DuDn converges weakly to ∇ũ in L2(Ω)d as n → ∞. It remains to prove that
the gradients ∇DnuDn and ∇̂DnuDn converge strongly to ∇ũ in L2(Ω)d. For the sake
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of simplicity in the notations, the subscript n ∈ N, will be dropped in the remaining
of the proof.

Let us first prove that ID =
∫
Ω(∇DuD(x)−∇ũ(x))2 dx tends to zero as hD → 0.

Let ϕ be a given function in C∞
c (Ω) and let us bound ID as follows

ID ≤ 3 (T 1
D + T 2

D + T 3
D),

with

T 1
D =

∫

Ω
(∇D(uD − PDϕ)(x))2 dx,

T 2
D =

∫

Ω
(∇DPDϕ(x) −∇ϕ(x))2 dx,

and

T 3
D =

∫

Ω
(∇ϕ(x) −∇ũ(x))2 dx.

Using the coercivity of the bilinear form aD and the stability of the gradient function
∇Du stated in Proposition 4.1 and Lemma 5.2 respectively, the first term T 1

D satisfies
the following upper bounds

T 1
D ≤ γ2 M

θ
aD(uD − PDϕ, uD − PDϕ)

≤ γ2 M

θ

(
aD(uD, uD) − aD(uD, PDϕ)

−aD(PDϕ, uD) + aD(PDϕ,PDϕ)
)
.

(48)

As uD is the solution of (17), we deduce that aD(uD, uD) =
∫
Ω f(x)PT uD(x)dx and

aD(uD, PDϕ) =
∫
Ω f(x)PT (PDϕ)(x)dx. It results that

lim
hD→0

aD(uD, uD) =

∫

Ω
f(x)ũ(x)dx,

lim
hD→0

aD(uD, PDϕ) =

∫

Ω
f(x)ϕ(x)dx.

(49)

Next, let us split the term aD(PDϕ, uD) into the following three terms

aD(PDϕ, uD) = L1
D + L2

D + L3
D,

with

L1
D =

∑

K∈T

∑

s∈VK

(
ms

K

(
∇DPDϕ)sK −∇ϕ(xK)

)
· ΛK(∇̃DuD)sK

)
,

L2
D =

∑

K∈T

mK∇ϕ(xK) · ΛK(∇DuD)K ,

L3
D =

∑

K∈T

∑

s∈VK


αs

K

∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(PDϕ)Rs
K,σ(uD)


 .
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Thanks to the Cauchy-Schwarz inequality, and Lemmae 5.4 and 5.2, we obtain the
following bounds

L1
D ≤ β0



∑

K∈T

∑

s∈VK

ms
K

(
∇DPDϕ)sK −∇ϕ(xK)

)2



1

2



∑

K∈T

∑

s∈VK

ms
K

(
(∇̃DuD)sK

)2




1

2

,

≤ C ‖uD‖D hD,

with a real C depending only on β0, d, γ, M , Ω, and ϕ. Thanks to (30) and the fact
that θD ≥ θ > 0, it results that lim

hD→0
L1
D = 0.

The second term rewrites

L2
D =

∑

K∈T

mK

∫

K
Λ(x)∇ϕ(xK) · (∇DuD)K dx.

Since the gradient ∇DuD converges weakly to ∇ũ in L2(Ω)d, and the function x →
Λ(x)∇ϕ(xK) for all x ∈ K, K ∈ T , converges strongly to Λ∇ϕ in L2(Ω)d as hD → 0,

we deduce that lim
hD→0

L2
D =

∫

Ω
∇ũ(x) · Λ(x)∇ϕ(x) dx.

Using the assumption (16) on the coefficients αs
K as well as Lemmae 5.5 and 5.3

leads to lim
hD→0

L3
D = 0, and all together it is proved that

lim
hD→0

aD(PDϕ, uD) =

∫

Ω
∇ũ(x) · Λ(x)∇ϕ(x)dx. (50)

From Lemma 5.6 and since limhD→0 PDϕ = ϕ in L2(Ω), the gradient ∇DPDϕ con-
verges weakly in L2(Ω)d to ∇ϕ as hD → 0. It results that the same type of arguments
as above can be used to prove that

lim
hD→0

aD(PDϕ,PDϕ) =

∫

Ω
∇ϕ(x) · Λ(x)∇ϕ(x)dx. (51)

Summing the limits (49),(50), and (51) in (48) , we obtain that

lim
hD→0

T 1
D ≤ γ2 M

θ

(∫

Ω
f(x)

(
ũ(x) − ϕ(x)

)

+

∫

Ω
∇
(
ϕ(x) − ũ(x)

)
· Λ(x)∇ϕ(x)dx

)
.

Thanks to Lemma 5.4, it is clear that lim
hD→0

T 2
D = 0. Then, using the density of

C∞
c (Ω) in H1

0 (Ω) we can show that lim
hD→0

ID = 0, which proves the convergence in

L2(Ω)d of the gradient ∇DuD.
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Thanks to Lemmae 5.2 and 5.4, the previous proof is readily adapted to prove
the convergence in L2(Ω)d of the gradient ∇̂DuD, which completes the proof of the
lemma. �

Proof of Theorem 5.1

Thanks to Lemma 5.7, there exists ũ ∈ H1
0 (Ω), and a subsequence still de-

noted by n ∈ N for conveniency, such that PT uDn converges to ũ in Lq(Ω), for all
q ∈ [1,+∞) if d = 2 and all q ∈ [1, 2d/(d − 2)) if d > 2. Moreover, ∇̂DnuDn and
∇DnuDn converge to ∇ũ in L2(Ω)d. In the remaining, we shall prove that ũ is a
weak solution of (1) which will complete the proof from the uniqueness of the weak
solution. For the sake of simplicity in the notations, the subscript n ∈ N, will be
dropped in the remaining of the proof.

Let ϕ be a given function in C∞
c (Ω) and let us set v = PDϕ ∈ HD in the

variational formulation (17):

aD(uD, PDϕ) =

∫

Ω
f(x)PT (PDϕ)(x)dx. (52)

Let us now split the expression of aD(uD, PDϕ) into the following three terms

aD(uD, PDϕ) = T 1
D + T 2

D + T 3
D,

with

T 1
D =

∑

K∈T

∑

s∈VK

(
ms

K((∇DuD)sK − (∇̂DuD)K) · ΛK(∇̃DPDϕ)sK

)
,

T 2
D =

∑

K∈T

mK(∇̂DuD)K · ΛK(∇DPDϕ)K ,

T 3
D =

∑

K∈T

∑

s∈VK


αs

K

∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(PDϕ)Rs
K,σ(uD)


 .

Thanks to the Cauchy-Schwarz inequality, our assumption on Λ, and Lemma 5.2,
the following bounds hold:

|T 1
D| ≤ β0‖∇DuD − ∇̂DuD‖L2(Ω) ‖∇̃DPDϕ‖L2(Ω),

≤ β0

√
d ‖∇DuD − ∇̂DuD‖L2(Ω) ‖PDϕ‖D.

From the estimate

‖PDϕ‖D ≤ (CardFace(D) m(Ω))1/2

RegulCell(D)
sup
x∈Ω

|∇ϕ(x)|,

and Lemma 5.7, it results that lim
hD→0

T 1
D = 0.

Let us now consider T 2
D =

∫
Ω ∇̂DuD(x) ·Λ(x)(∇DPDϕ)(x)dx. It has been shown

in the above proof of Lemma 5.7 that ∇DPDϕ converges weakly in L2(Ω)d to ∇ϕ as
hD → 0. Then, we obtain the following limit of T 2

D as hD → 0:

lim
hD→0

T 2
D =

∫

Ω
∇ũ(x) · Λ(x)∇ϕ(x)dx.
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Using the assumption (16) on the coefficients αs
K as well as Lemmae 5.5 and 5.3, we

obtain that
lim

hD→0
T 3
D = 0.

All together, on the one hand, we have

lim
hD→0

∫

Ω
f(x)PT (PDϕ)(x)dx =

∫

Ω
f(x)ϕ(x)dx.

On the other hand, we have

lim
hD→0

aD(uD, PDϕ) =

∫

Ω
∇ũ(x) · Λ(x)∇ϕ(x)dx.

Then, using (52), we conclude that
∫

Ω
∇ũ(x) · Λ(x)∇ϕ(x)dx =

∫

Ω
f(x)ϕ(x)dx

which completes the proof of Theorem 5.1.

6 Two examples of construction of the gradient (12)

From Lemma 3.1, there is only one way to build a gradient (12) satisfying the
consistency hypothesis 1 when the cardinal qs

K of EK ∩Es is equal to d. On the other
hand, when qs

K > d there are many ways to build such gradient. Two examples are
given in the two subsections below.

6.1 First construction

For all K ∈ T and s ∈ VK , let us define the square d-dimensional matrix Bs
K by

Bs
K =

1

ms
K

∑

σ∈EK∩Es

ms
σnK,σ(xs

σ − xK)t. (53)

The gradient (12) is defined by

Bs
Kgs

K,σ =
ms

σ

ms
K

nK,σ, (54)

for all σ ∈ Es ∩ EK , i.e.

(∇Du)sK = (Bs
K)−1(∇̃Du)sK , (55)

assuming that the matrix Bs
K is non-singular. If qs

K is equal to the space dimension
d, and the set of vectors (xs

σ − xK)σ∈EK∩Es spans R
d, the matrix Bs

K is non-singular
iff the set of vectors (nK,σ)σ∈EK∩Es spans also R

d. For more general meshes, the
non-singularity of Bs

K will be shown in subsection 6.1.1 to result from a stronger
assumption (56) ensuring also the coercivity of the scheme. Note however that if
the set of vectors (nK,σ)σ∈EK∩Es does not span R

d, as it may be the case for non-
matching meshes, the matrix Bs

K is singular and the present construction does not
apply. This case will be taken into account in the second example.

Assuming that Bs
K is non-singular, we can easily check that the consistency

hypothesis 1 is satisfied.
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6.1.1 Coercivity and convergence of the finite volume scheme

The main advantage of this construction is that a simple condition can be de-
rived which ensures the non-singularity of the matrices Bs

K , the coercivity condition
coernode(D,Λ) ≥ θD as well as an upper bound for the parameter RegulGrad(D)
involved in the stability of the gradient function ∇Du.

This condition imposes the following non-negative lower bound

coercell(D,Λ) ≥ θ̄D > 0, (56)

on the coercivity parameter defined by

coercell(D,Λ) = min
K∈T ,s∈VK

λmin

(
ΛKBs

K + (ΛKBs
K)t

2

)
. (57)

It can be easily computed for any given finite volume discretization D and diffusion
tensor Λ.

The condition (56) ensures that the matrices Bs
K (53) defining the discrete gra-

dients (55) are non-singular for all s ∈ VK , K ∈ T as stated in Lemma 6.2. To prove
this result, we first need to state the following lemma.

Lemma 6.1 Let A ∈ Md(R) such that λmin(A + At) > 0, then A is a non-singular
matrix and satisfies the estimate

|A−1| ≤ 8

3

1

λmin(A + At)

Proof We readily have A 6= 0. Let us consider the following estimates

|rA − Id|2 = |(rA − Id)
t(rA − Id)| = |(Id − r(At + A)) + r2AtA|,

≤ |Id − r(At + A)| + |r2AtA| = |Id − r(At + A)| + r2|A|2.

Choosing in the following r =
λmin(A + At)

4|A|2 ensures that all the eigenvalues of the

symmetric matrix Id − r(At + A) are positive, and we have |Id − r(At + A)| =
1 − rλmin(A + At). Hence, we have proved the estimate

|rA − Id|2 ≤ 1 − 3

(
λmin(A + At)

4|A|

)2

.

It results that |rA − Id| < 1. Then, setting rA = Id + (rA − Id) we can obtain that
rA is a non-singular matrix and that the following estimates hold

|(rA)−1| ≤ 1

1 − |rA − Id|
=

1 + |rA − Id|
1 − |rA − Id|2

≤ 2

1 − |rA − Id|2

≤ 2

3

(
4|A|

λmin(A + At)

)2

,

which concludes the proof. �
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Lemma 6.2 Let D be an admissible discretization in the sense of Definition 2.1 such
that there exists a real θ̄D > 0 with coercell(D,Λ) ≥ θ̄D, then for all s ∈ VK , K ∈ T ,
the matrix Bs

K is non-singular, and its norm satisfies the following estimate

|(Bs
K)−1| ≤ 4β0

3θ̄D
. (58)

Proof From the assumption one has

λmin(ΛKBs
K + (ΛKBs

K)t) ≥ 2 coercell(D,Λ) ≥ 2 θ̄D > 0.

We deduce from Lemma 6.1 that the matrix ΛKBs
K is non-singular as well as the

matrix Bs
K . Still from Lemma 6.1, we have the estimate

|(ΛKBs
K)−1| ≤ 4

3θ̄D
,

which concludes the proof from the bound |ΛK | ≤ β0. �

The following Lemmae 6.3 and 6.4 state respectively that the condition (56)
provides an upper bound for the parameter RegulGrad(D) and that it ensures the
coercivity condition coernode(D,Λ) ≥ θD.

Lemma 6.3 Let D be an admissible discretization in the sense of Definition 2.1 such
that there exists a real θ̄D > 0 with coercell(D,Λ) ≥ θ̄D. Then, we have the estimate

RegulGrad(D) ≤ 4 β0 d

3 θ̄D RegulCell(D)
.

Proof The estimate derives from the definition (35) of RegulGrad(D), from (54),
from Lemma 6.2, and from the definitions (5) of ms

K , and (3) of RegulCell(D). �

Proposition 6.4 [coercivity of the scheme] Let D be an admissible discretization in
the sense of Definition 2.1 such that there exists a real θ̄D > 0 with coercell(D,Λ) ≥
θ̄D. Then, setting θD =

1

2
min

(
µ0,

RegulCell(D)2 θ̄D
CardFace(D)

)
, we have the lower bound

coernode(D,Λ) ≥ θD and hence the coercivity of the bilinear form aD

aD(u, u) ≥ θD‖u‖2
D, (59)

for all u ∈ HD.

Proof Let s be a given vertex of V. From the definition (25) of the bilinear form
aDs , and from formula (55), we have for all u ∈ HDs

aDs(u, u) =
∑

K∈Ts

(
ms

K(∇Du)sK · ΛKBs
K + (Bs

K)tΛK

2
(∇Du)sK

+ αs
K

∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(u)2

)
.

(60)
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Using the following inequality

µ(a − b)2 ≥ 1

2
min(µ, λ)a2 − λb2, for all (µ, λ) ∈ (R+)2, (a, b) ∈ R

2

with µ = αs
K , a = us

σ − uK , b = (∇Du)sK · (xs
σ − xK) and λ = ρs

K , we obtain for all
ρs

K ≥ 0 the lower bound

αs
K

∑

σ∈EK∩Es

ms
K

(dK,σ)2
Rs

K,σ(u)2 ≥

1

2
min(ρs

K , αs
K)

∑

σ∈EK∩Es

ms
K

(dK,σ)2
(us

σ − uK)2 − ρs
K(∇Du)sK · As

K(∇Du)sK ,
(61)

where the symmetric matrix As
K is defined by (46) and satisfies the upper bound

(47). Let us choose ρs
K such that

ρs
K = sup

{
ρ ∈ R, ms

K

ΛKBs
K + (ΛKBs

K)t

2
− ρAs

K ≥ 0

}
. (62)

Using the upper bound (47), and the local coercivity assumption (56), (57), we can
prove that ρs

K defined by (62) satisfies the lower bound

ρs
K ≥ RegulCell(D)2 θ̄D

CardFace(D)
, (63)

for all s ∈ VK , K ∈ T . Using (60), (61), (62), (63), and (16), we obtain the lower
bound

aDs(u, u) ≥ 1

2
min

(
µ0,

RegulCell(D)2 θ̄D
CardFace(D)

)
‖u‖2

D, (64)

for all u ∈ HDs which concludes the proof. �

From Proposition 6.4, Lemma 6.3, and Theorem 5.1 we can state the following
theorem showing the convergence of the finite volume scheme under the coercivity
condition (56).

Theorem 6.5 [Convergence of the scheme] Let Ω be an open bounded polygonal
subset of R

d, with d ∈ N
∗. Let (Dn)n∈N be a sequence of admissible discretizations

in the sense of Definition 2.1, such that hDn → 0 as n → ∞. It is assumed that there
exist θ̄ > 0, β > 0, η > 0, and M ∈ N with coercell(Dn,Λ) ≥ θ̄, CardFace(Dn) ≤ M ,
RegulKL(Dn) ≥ η, and RegulCell(Dn)≥β for all n ∈ N. Then, there exists for
all n ∈ N a unique solution uDn ∈ HDn to (20), and the sequence PT uDn , n ∈ N

converges to the weak solution ū of (1) in Lq(Ω), for all q ∈ [1,+∞) if d = 2 and
all q ∈ [1, 2d/(d − 2)) if d > 2. Moreover, the sequence ∇DnuDn , n ∈ N converges to
∇ū in L2(Ω)d.
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6.2 Second construction

This second finite volume scheme uses the construction of the gradient (∇Du)sK in-
troduced in [13] for d = 2 and 3. Compared with the previous approach, its main
advantage is to cover the case of non-matching or locally refined grids for which the
set of vectors (nK,σ)σ∈EK∩Es may not span R

d.

For each σ ∈ E , let us denote by Es
K,σ the subset of Es ∩ EK of cardinality d

defined as follows for d = 2 and d = 3. For d = 2, let us set Es
K,σ = Es ∩ EK . For

d = 3, let e1 and e2 be the two edges of the face σ intersecting the vertex s, and σ1

and σ2 be the two faces of Es ∩ EK sharing respectively the edge e1 and e2 with the
face σ. Then, we set Es

K,σ = {σ, σ1, σ2}.
For all K ∈ T and s ∈ VK , the gradient (∇Du)sK is defined by

(∇Du)sK =
∑

σ∈Es∩EK

ms
σ dK,σ

d ms
K

∑

σ′∈Es
K,σ

(us
σ′ − uK) gs

K,σ,σ′ ,

where {gs
K,σ,σ′ , σ′ ∈ Es

K,σ} is the biorthogonal basis of {(xs
σ′ − xK), σ′ ∈ Es

K,σ} such
that

(xs
σ′ − xK) · gs

K,σ,σ′′ = δσ′,σ′′

for all σ′, σ′′ ∈ Es
K,σ, assuming that the set of vectors (xs

σ′ − xK), σ′ ∈ Es
K,σ is free.

Note that by construction,
∑

σ′∈Es
K,σ

v · (xs
σ′ −xK) gs

K,σ,σ′ = v for any vector v ∈ R
d.

It results that the gradient (∇Du)sK is consistent in the sense of hypothesis 1.
The upper bound of the parameter RegulGrad(D) is controlled in two dimensions

by the minimum angle between the two vectors (xs
σ′ − xK), σ′ ∈ Es ∩ EK . In three

dimensions it is controlled by the minimum angles between a vector of {(xs
σ′ −

xK), σ′ ∈ Es
K,σ} and the two remaining ones. These minimum angles should not

tend to zero.
From Lemma 3.1, this second approach is equivalent to the MPFA O scheme

described in [1] and [8] as soon as qs
K is equal to the space dimension d for all cells

K and all vertices s of the cell K. It is always the case in two dimensions d = 2. If
in addition the set of vectors (nK,σ)σ∈EK∩Es spans R

d, then both the first and second
constructions are equivalent to the MPFA O scheme [1] and [8].

The coercivity condition coernode(D,Λ) ≥ θD has to be checked numerically.
The stronger but simpler condition coercell(D,Λ) ≥ θ̄D can also be used when both
constructions match. As exhibited in subsection 7.3, this latter condition is less
sharp but it is cheaper to compute.

7 Numerical tests

There are many papers investigating the numerical convergence properties of the
MPFA O scheme. For example, let us refer to [2] for quadrilateral grids in two and
three dimensions, and to [9] in two dimensions with discontinuous diffusion coeffi-
cients. Also in [7], the MPFA O scheme is compared on challenging two dimensional
anisotropic test cases with two unconditionally symmetric coercive finite volume
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schemes which exhibit a more robust convergence but at the expense of a much
larger stencil.

Let us first discuss the coercivity condition (56) on a few particular remarkable
cases.

7.1 Symmetry and unconditional coercivity for two families of meshes

In this section we consider arbitrary positive definite tensors Λ and two remarkable
families of meshes for which the symmetry and the unconditional coercivity of the
finite volume scheme can be achieved for a proper choice of the cell centers xK , of
the continuity points xs

σ, and of the subsurfaces ms
σ.

Parallelogram (in 2D) and parallelepiped (in 3D) meshes define the first family,
and triangular (in 2D) and tetrahedral (in 3D) meshes the second family. For both
families, xK is the center of gravity of the cell and ms

σ is set to mσ

Card(Vσ)
. For the

first family, the continuity points xs
σ are the center of gravity of the face σ for all

the vertices s ∈ Vσ. For triangles, xs
σ is the barycenter of the two vertices of the

edge σ with weights 2/3 at the vertex s and 1/3 at the second vertex of the edge σ.
For tetrahedra, xs

σ is the barycenter of the three vertices of the face σ with weights
1/2 at the vertex s and 1/4 at the two remaining vertices of the face σ.

In all those cases we will show that the local d × d matrix Bs
K defined in (53) is

equal to the identity matrix I. Recalling that (∇Du)sK = (Bs
K)−1(∇̃Du)sK from (55),

the symmetry of the finite volume scheme will follow, as well as its unconditional
coercivity for any tensor Λ resulting from the coercivity sufficient condition

min
K∈T ,s∈VK

λmin

(
ΛKBs

K + (ΛKBs
K)t

2

)
≥ θ̄D > 0,

(see (57)) and Proposition 6.4.

Proof: For both families of meshes the cardinal qs
K of EK ∩ Es is equal to d and we

can assume that the set of d vectors (xs
σ − xK)σ∈EK∩Es spans R

d since otherwise the
matrix Bs

K would be singular. Then, from Lemma 3.1, there is a unique consistent
gradient (12). It results from the proof of Lemma 3.1 and subsection 6.1 that the
matrix Bs

K is equal to I if and only if

ms
σ

ms
K

~nK,σ · (xs
σ′ − xK) = δσ,σ′ (65)

for all σ, σ′ ∈ EK ∩ Es.
In other words we must check (i) that ms

K = ms
σdK,σ for each face σ ∈ EK ∩ Es

and (ii) that the line xKxs
σ is parallel to the face σ′ for all σ, σ′ ∈ EK∩Es with σ 6= σ′.

For the first family of meshes, properties (i) and (ii) are readily checked. For
triangles, (i) results from the fact that the center of gravity xK is the intersec-
tion of the midlines and (ii) is easily checked (see Figure 2 (b)). For tetrahedra,
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let us check (i) and (ii) using barycentric coordinates. Let A,B,C,D be the or-
dered vertices of the tetrahedron (see Figure 2 (a)), and let us consider to fix ideas
s = A. In barycentric coordinates we have xK = (1/4, 1/4, 1/4, 1/4), xs

ABC =
(1/2, 1/4, 1/4, 0), xs

ACD = (1/2, 0, 1/4, 1/4), and xs
ABD = (1/2, 1/4, 0, 1/4). Hence

xKxs
ABC = −1/4AD, xKxs

ACD = −1/4AB, and xKxs
ABD = −1/4AC which proves

(ii). To prove (i) it suffices to remark that

Det(xKA,xKB,xKC) = Det(xKA,xKC, xKD) = −Det(xKA,xKB,xKD).

xK

xs
σ

xs
σ′

σ

σ′

s

(a)

xK

A

B

C

D

xs
σ

(b)

Figure 2: (a) Choice of the continuity points xs
σ and xs

σ′ at the vertex s and of the
cell center xK for a triangle. (b) Center of gravity xK and continuity point xs

σ for a
tetrahedron ABCD with σ = ABC and s = A.

7.2 Study of the local coercivity criteria for Λ = I in 2D

Let us now consider the case d = 2 with Λ = I, and let σ1 and σ2 be the two
edges shared by a given vertex s of a given cell K. For σ = σ1, σ2, we assume
that the continuity point xs

σ is the center of gravity xσ of the edge σ and that
ms

σ = |xσ − s|. Then, the condition λmin(B
s
K + (Bs

K)t) ≥ 2θ is equivalent to
|xσ1

−xσ2
| |−−→sxσ1

−−−−−→xσ2
xK | ≤ 2(1− θ)ms

K . For example, the trapezoidal mesh shown
in Figure 1 satisfies the coercivity condition (56) if and only if b−a

h ≤ (1−θ) 3a+b
(b2+h2)1/2

which exhibits the lack of robustness of the MPFA O scheme for distorted quadran-
gular meshes.

Next, let us discuss the sharpness of the coercivity criteria on a two dimensional
example.

7.3 Sharpness of the coercivity criteria

We solve the anisotropic diffusion test case introduced in [19] on a family of skewed
quadrangular meshes of the domain Ω = (0, 1)2 of size nx×nx with nx = 20, 40, 80, 160.
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Figure 3: Example of a trapezoidal mesh.

The exact solution and the expression for the permeability coefficient are given be-
low:

u = sin(πx) sin(πy), K =
1

x2 + y2

[
δx2 + y2 (δ − 1)xy
(δ − 1)xy x2 + δy2

]
. (66)

We shall understand that Dirichlet boundary conditions are given on each boundary
edge σ ∈ Eint by u(xs

σ), s ∈ Vσ, and that the forcing term is equal to −∇ · (K∇u).
The parameter δ is in fact the ratio between the minimum and the maximum eigen-
value of K.

The continuity points xs
σ are the center of gravity of the edge σ and ms

σ = mσ/2
for all s ∈ Vσ, σ ∈ E , and the cell center is the isobarycenter of its four vertices.

The mesh nx = 20 is plotted in Figure 4 as well as the convergence of the MPFA
O scheme for different values of δ. We note that the convergence seems to be broken
for δ = 0.001.

In Table 1 the sharpness of the two criteria of coercivity coercell(D,Λ), and
coernode(D,Λ) are assessed. For that purpose, we also compute the smallest eigen-
value coerschurmesh(D,Λ) of the symmetric part of the cell centered scheme matrix,
as well as coerschurnode(D,Λ), the smallest non-zero eigenvalue of the symmetric
part of all the cell centered scheme submatrices around each vertex s of the mesh.

We note in Table 1 that the positivity criteria coercell(D,Λ)≥ 0 as well as
coernode(D,Λ)≥ 0 are more restrictive than the positivity of the cell centered scheme
around each vertex coerschurnode(D,Λ)≥ 0 which is a sufficient condition for the
positivity of the cell centered finite volume scheme but not for the positivity of the
hybrid finite volume scheme. From Table 1 and Figure 4, the convergence of the
MPFA O scheme seems to be more closely related to the coercivity of the cell cen-
tered scheme. We refer to [5] for a general convergence analysis of finite volume
schemes based on a cell centered coercivity condition which can apply to the MPFA
O scheme.

7.4 Numerical examples on 3D meshes

7.4.1 Randomly distorted Cartesian meshes

Let us consider a family of uniform Cartesian meshes of the domain Ω = [0, 1]3 of
step size h. A distorsion of size h

3 in a random direction is applied on each node of
the Cartesian meshes as exhibited in Figure 5.
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Figure 4: Mesh of size nx = 20, and convergence of the L2 error (erl2) for the MPFA
O scheme for different values of δ (nunkw denotes the number of cells n2

x).

criterion/mesh nx = 10 nx = 40 nx = 80 nx = 160

coercell(D,Λ) ≥ 0 0.1 0.14 0.17 0.18

coernode(D,Λ) ≥ 0 0.06 0.09 0.09 0.11

coerschurnode(D,Λ) ≥ 0 0.012 0.014 0.016 0.02

coerschurmesh(D,Λ) ≥ 0 0.0055 0.0058 0.0068 0.014

Table 1: Approximate smallest value of δ for which the coercivity criterion is positive
for the different meshes and the various criteria.

The right hand side and the Dirichlet boundary condition are such that the ex-
act solution is given by u(x, y, z) = sin(πx)sin(πy)sin(πz). Two differents diffusion
tensors Λ1=diag(1,1,100) and Λ2=diag(1,1,1000) are considered. Table 2 below ex-
hibits the errors measured in discrete L2 norm between the exact solution and the
approximate solutions both for the potential and the normal fluxes, obtained on four
meshes of step sizes h = 1

4 , 1
8 , 1

16 , 1
32 . It clearly shows the good convergence of the O

scheme for an anisotropic ratio of 100 while for a larger anisotropic ratio of 1000 the
O scheme no longer converges. This is due to the loss of coercivity of the O scheme
when a large anisotropic ratio is combined with a distorsion of the mesh. Note that
a sparse direct solver has been used in this latter case rather than an iterative solver
in order to check that the solution of the linear system was correct.

h 1
4

1
8

1
16

1
32

Λ1 potential 8.04e-02 2.30e-02 5.31e-03 1.38e-03

Λ2 potential 9.70e-01 1.85e-01 8.92e-01 9.02e-01

Λ1 fluxes 5.79e-02 2.38e-02 1.02e-02 5.0e-03

Λ2 fluxes 8.98e-02 3.40e-01 1.29e-01 6.48e-01

Table 2: Errors of the potential u and of the normal fluxes measured in discrete L2

norm for randomly distorted Cartesian meshes.
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Figure 5: Randomly distorted Cartesian mesh.

7.4.2 Hybrid Near-well meshes

In order to test the MPFA O scheme on 3D meshes with more than 3 faces joining
a given vertex on a given cell, we consider in the following a nearwell single phase
Darcy flow model arising in reservoir or CO2 storage simulations.

An analytical solution of the single phase Darcy flow equation around a straight
deviated well of fixed radius in an infinite domain is described in [4] for a fixed
diagonal anisotropic diffusion tensor Λ. The diagonal elements of Λ are denoted by
Λx, Λy and Λz.

(a) Exponentially refined
radial mesh

(b) Hybrid mesh with hexahedra,
tetrahedra and pyramids

Figure 6: Near-well meshes

The mesh is radial around the well axis and exponentially refined down to the
well radius as can be seen in Figure 6. This radial local refinement is then matched
with the reservoir domain using both tetrahedra and pyramids.

Let us set Λx = Λy = τΛz. We shall consider two anisotropy ratios τ = 5
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and τ = 20. The discrete equation is solved with Dirichlet boundary conditions
given by the analytical solution both at the wellbore boundary and at the outer
boundary. Table 3 exhibits the good convergence of the O scheme for both anisotropy
ratios showing the good behavior of the O scheme on unstructured grids with mild
anisotropy.

mesh 1 mesh 2 mesh 3 mesh 4

Number of cells 11 766 14 468 19 872 29 772

τ = 5 potential 7.50e-03 2.90e-03 1.21e-03 6.50e-04

τ = 20 potential 9.09e-03 3.49e-03 1.47e-03 7.88e-04

τ = 5 fluxes 2.17e-03 8.98e-04 4.52e-04 2.96e-04

τ = 20 fluxes 2.14e-03 9.04e-04 4.87e-04 3.42e-04

mesh 5 mesh 6 mesh 7 mesh 8

Number of cells 49 139 77 599 124 768 218 970

τ = 5 potential 3.49e-04 2.19e-04 1.44e-04 9.21e-05

τ = 20 potential 4.20e-04 2.63e-04 1.74e-04 1.11e-04

τ = 5 fluxes 2.08e-04 1.61e-04 1.26e-04 9.85e-05

τ = 20 fluxes 2.54e-04 2.03e-04 1.64e-04 1.31e-04

Table 3: Errors of the potential u and of the normal fluxes measured in discrete L2

norm for a family of refined hybrid near well meshes.

8 Conclusion

This article defines a framework for MPFA O type finite volume schemes which
generalizes the construction described in [1] and [8]. This framework uses a hybrid
variational formulation involving a weak and a consistent piecewise constant gradi-
ents, as well as residual terms for the stabilization of the scheme. For meshes such
that for all cells K and all vertices s of K, the cardinal of EK ∩ Es is equal to the
space dimension d, our approach is shown to be equivalent to the usual MPFA O
scheme. A local coercivity assumption is made ensuring the coercivity of the hybrid
variational formulation. Under this coercivity assumption, the well-posedness of the
scheme is derived and the convergence of the scheme is proved covering the case
of L∞ diffusion coefficients. Numerical tests performed for three dimensional struc-
tured and unstructured meshes exhibit the good convergence of the MPFA O scheme
for mild anisotropy and its limits for diffusion problems combining a distorsion of
the (typically hexahedral) mesh with large anisotropy.
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