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Abstract In this paper we prove the convergence of the finite volume Mul-
tiPoint Flux Approximation (MPFA) O scheme for anisotropic and heteroge-
neous diffusion problems. Our framework is based on a discrete hybrid vari-
ational formulation which generalizes the usual construction of the MPFA
O scheme. The well-posedness and convergence of the scheme is derived as-
suming a local coercivity condition which can be easily checked numerically.
The novel feature of our framework is that it holds for general polygonal and
polyhedral meshes as well as for L> diffusion coefficients, which is essential
in many practical applications.
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1 Introduction
In this paper, we consider the second order elliptic equation

div(—A4 Vu) = fin 2, (1)
u =0 on 912,
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where (2 is an open bounded connected polygonal subset of R?, d € N*, and
f € L?(2). Tt is assumed in the following that A is a measurable function
from 2 to the set of square d-dimensional matrices M4(R) such that for
a.e. (almost every) = € {2, A(z) is symmetric and its eigenvalues are in the
interval [a(x), B(x)] with a, 8 € L*>(£2), and 0 < ap < a(z) < B(z) < fo- It
results that there exists a unique weak solution to (1) in H}(£2) denoted by
@ in the following of this paper.

The MultiPoint Flux Approximation (MPFA) O method is a cell centered
finite volume discretization of such second order elliptic equations described
for example in [1] and [5]. It is a widely used scheme in the oil industry for
the discretization of diffusion fluxes in multiphase Darcy porous media flow
models (see for example [10], [11], and [14]).

Let o be any interior face of the mesh shared by the two cells K and L,
and ng , its normal vector outward K. Cell centered finite volume schemes
use the cell unknowns wups for each cell M of the mesh as degrees of freedom.
They aim to build conservative approximations Fk,, of the fluxes — fa AVuy-
ng ,do as linear combinations of the cell unknowns s using neighbouring
cells M of the cells K or L. The fluxes are conservative in the sense that
FK,o’ +FL,0 =0.

The main assets of the MPFA O scheme are to derive a consistent approx-
imation of the fluxes on general meshes, and to be adapted to discontinuous
anisotropic diffusion coefficients in the sense that it reproduces cellwise lin-
ear solutions for cellwise constant diffusion tensors. For that purpose, its
construction uses in addition to the cell unknowns, the intermediate subface
unknowns u? for each face (edge in 2D) o of the mesh and each vertex s
of the face 0. Roughly speaking, assuming that each vertex s of any cell K
is shared by exactly d faces of the cell K, subfluxes Fy , are built using
a cellwise constant diffusion coefficient and a linear approximation of u on
each cell K shared by s. Then, the intermediate unknowns are eliminated
by the flux continuity equations on each face around the vertex s, and the
approximate flux Fk , is the sum of the subfluxes over the vertices of the
face 0. A generalization of this construction is proposed in [10] for general
polyhedral meshes.

Recent papers have studied the convergence of the MPFA O scheme
but there is yet no convergence result on general polygonal and polyhe-
dral meshes, and none taking into account discontinuous diffusion coefficients
which are essential in oil industry applications. In [13], [3], [12], the conver-
gence of the scheme is obtained on quadrilateral meshes. The proofs are based
on equivalences of the MPFA O scheme to mixed finite element methods us-
ing specific quadrature rules. The convergence of the scheme is obtained
provided that a square d-dimensional matrix defined locally for each cell and
each vertex of the cell, depending both on the distortion of cell and on the
cell diffusion tensor, is uniformly positive definite. This analysis confirms the
numerical experiments showing that the coercivity and convergence of the
scheme is lost in the cases of strong distortion of the mesh and/or anisotropy
of the diffusion tensor.
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In [16] a mimetic finite difference scheme is introduced which is equivalent
to the MPFA O scheme for simplicial and parallepipedic cells and a proper
choice of the continuity points. This scheme has also been independently in-
troduced in [15] in two dimensions. The numerical analysis in [16] provides a
convergence result for such meshes with usual shape regularity assumptions
and for smooth diffusion coefficients. In such specific cases, the MPFA O
scheme is known to be symmetric and coercive whatever the diffusion tensor
and the distortion of the mesh.

In this paper a discrete hybrid variational formulation is introduced using
the framework described in [9], [8]. It involves the definition of two piecewise
constant gradients and stability terms using residuals of the second gradient.
The first gradient has a weak convergence property and is fixed in the con-
struction. The second one is assumed to be consistent in the sense that it is
exact on linear functions. For usual meshes such that each vertex of any cell
K is shared by exactly d faces of the cell K, the stability terms are vanishing
and our discrete variational formulation will be shown to be equivalent to
the usual MPFA O scheme. It will in addition provide a generalization of the
O scheme on more general polyhedral cells.

A sufficient local condition for the coercivity of the scheme is derived
which will yield existence, and uniqueness of the solution. Under this coerciv-
ity condition, and a uniform stability assumption for the consistent gradient,
the convergence of the scheme including the case of L diffusion coefficients
can be proved.

This paper is outlined as follows. Section 2 describes the discrete frame-
work including the definition of the finite volume discretization of the domain,
the degrees of freedom and the discrete function spaces with their associated
inner products and norms. Section 3 is devoted to the definition of a gen-
eral framework for MPFA O type schemes based on a hybrid variational
formulation and the definition of two piecewise constant gradients. Section
4 proves the well-posedness of the finite volume scheme under a sufficient
coercivity condition involving computations local to each node of the mesh
and depending on the geometry and on the diffusion tensor anisotropy. The
convergence of the scheme is proved under the above coercivity assumption,
usual shape regularity assumptions, and a uniform stability assumption for
the consistent gradient in section 5 for L*° diffusion tensor. In section 6, two
examples of construction of the consistent gradient are discussed. The first
construction allows us to derive a stronger but simpler coercivity condition
involving the coercivity of a d-dimensional matrix for each vertex s of each
cell K. On the other hand this construction does not hold for non-matching
meshes. The second example is based on the consistent gradient introduced
in [10]. Section 7 is devoted to a few numerical examples.

Notations: In the following, for any vectors z,y € R?, we will denote by
z -y their dot product Z?Zl x; ¥i, and by |z| the norm /z - z. The notations
Amax (M) and Amin (M) will stand for the maximum and minimum eigenvalues
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of any given square symmetric matrix M. For any matrix A, we denote by

|Az|

|A| its norm defined by sup —— = v/ Amax(A*A).

z€R4 |‘r|

2 Discrete framework

2.1 The Finite Volume discretization of the domain (2

For polygonal bounded subdomains 2 of R?, d € N*, the following definition
of the finite volume discretization covers fairly general polygonal meshes
either conforming or non-conforming.

Definition 1 (Admissible finite volume discretization) Let {2 be an
open bounded subset of R?, with d € N*, and 82 = 2\ {2 its boundary.
An admissible finite volume discretization of (2, denoted by D, is given by
D=(T,E,P,V), where:

T is a finite family of non-empty connected open disjoint subsets of (2
(the “cells”) such that 2 = Uge7K. For any K € T, let 0K = K\ K
be the boundary of K and mg > 0 denote the d-dimensional measure
(named volume in the following) of K.

£ is a finite family of disjoint subsets of 2 (the “faces” of the mesh), such
that, for all o € &, o is a non-empty closed subset of a hyperplane of R?,
which has a (d—1)-dimensional measure (named surface in the following)
m, > 0. We assume that, for all K € T, there exists a subset Ex of £ such
that 0K = Uyeg, 0. We then denote by 7, the set {K € T|o € Ex}. It
is assumed that, for all o € £, either 7, has exactly one element and then
o C 012 (boundary face) or 7, has exactly two elements (interior face).
For all o € £, we denote by z, the center of gravity of o

P is a family of points of {2 indexed by T (“the cell centers”), denoted
by P = (zk)keT, such that zx € K and K is star-shaped with respect
to rk.

V is a family of points (“the vertices of the mesh”), such that for any
K € T, for all subset Hg of £ with Card(Hg) > d, then Nyegro = 0
or Ngecr,o = s where s € V. For all s € V, we denote by &; the set
{s€&|s€o}and by T, theset {K € T |s € K}. For all K € T, the set
Vi stands for {s € V|s € K}, and for all o € £ the set {s € V|s € o} is
denoted by V.

The following notations are used. The size of the discretization is defined by

hp = sup{diam(K),K € T }.

For all K € T and o € £k, we denote by ng , the unit vector normal to o
outward to K, and by dk , the Euclidean distance between zx and o.

The set of interior (resp. boundary) faces is denoted by Eing (resp. Eext),

defined by &iny = {0 € £ |0 ¢ 0N} (resp. Eext = {0 € E | C 8N}).
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Shape regularity of the mesh: it will be measured by the following param-
eters:

CardFace(D) = oy Card(Ex N Es), (2)
_ . dK,o’
RegulCell(D) = 0681;1}%67_ { diam (K) } ) ®3)

RegulKL(D) = M} ,

i 4
o€ Em Tom (K, L} {maX(dK,a, dr,o) )
In the convergence analysis of the finite volume scheme, the parameters
RegulCell(D) and RegulKL(D) will be assumed to be uniformly bounded
from below, and the parameter CardFace(D) to be uniformly bounded from
above.

Parameters of the MPFA O finite volume scheme: in addition to the
choice of the cell centers satisfying the above assumptions, the construc-
tion of the MPFA O scheme involves two families of parameters defined on
the set {(o,s)|s € V,,0 € £}.

The first family of non-negative reals (m%);cy, sce defines the distribu-
tion of the surface m, of each face o to the face vertices s € V, such that
m, = Y.y my. It results that the volume of each cell K € T is also dis-
tributed to the vertices of the cell according to the subvolumes m¥%, s € Vg
defined by

1
m;( = E Z mi—dK,a'a (5)
c€EKNEs

and which satisfy mg = ) .y, mj for all K € T.

The second family is the set of the so called continuity points (z%)sc¢, sev
such that 22 € 0. On each continuity point z2, the intermediate unknown
u? is defined which will be used together with the cell unknowns ug, K € T
for the construction of the finite volume scheme in the next section.

2.2 Discrete functional framework

The MPFA O scheme is a cell centered finite volume scheme with main
degrees of freedom the cell unknowns ug on each cell K of the mesh 7. The
following definition introduces the space of piecewise constant functions on
each cell K of the mesh.

Definition 2 Let 2 be an open bounded polygonal subset of R?, with d €
N*. Let D = (T,&,P,V) be an admissible finite volume discretization of 2
in the sense of Definition 1. We denote by H7(f2) C L?(f2) the set of all
functions u € L?(£2) such that, for all K € T, there exists some real value
denoted by ux € R such that u(z) = ux for a.e. z € K.

Then, for all o € £, let us define 7,1 such that

You = 0 for all o € Eext,

Yo — UK + o ZUL _ 0 for all o € &Eing with 7, = {K, L}. ©)
dK,o’ dL""
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The space Hy(f?) is equipped with the Euclidean structure defined by
the inner product

poulr = Y Y (v — k) (ow — wi), (7)

KeT o€€k Ko

and the associated norm

lollr = ([, v]7)"/?

for all (v,w) € (H7(£2))2.

The construction of the scheme uses additional degrees of freedom u? for
each vertex s of the face o and each face 0. These subface unknowns will be
locally eliminated as linear combinations of the neighbouring cell unknowns
using the flux continuity equations. In our approach the finite volume scheme
will be derived in section 3 from a hybrid variational formulation defined on
the space Hp spanned by the cell and subface unknowns and introduced
below.

Definition 3 Let us define the discrete function space Hp as the set of all
((ur)keT, (U))oce, sev), uxk €ER, K € T, ul € R, 0 € &, s € V such that
ud =0 for all o € Eext. It is equipped with the Euclidean structure defined
by the inner product

pulp =Y ¥ Y G- —w,  ®)

KeT oe€k s€EV,

and the associated norm

)1/2

lollp = (fv,v]p) """,

for all (v,w) € (Hp)?.

The projection operator Py from Hp to Hy(£2) is defined for all u € Hp
by (Pru)r = ug for all K € T. Note that, from definition (6) of y,u, we
have

(Vou — uk)? 4 Oou= ur)? o (g —uk)? N ur)?
dK,G’ dL,o’ ug €ER dK,a dL,o’ ’

for all o € &ng, T, = {K, L}. Since from (5) we have % <d % for all
s€V,, o€k, K €T, it implies that

|Prull7 < Vd ||ul|lp, for all u € Hp. (9)

Denoting by Co(2) the set of continuous functions which vanish on 92,
we define the interpolation operator Pp : Co(f2) = Hp by (Ppy)x =
o(zk), K € T, and (Ppy)s = p(x8), s € V,, o0 € &, for all p € Cy(12).

Let us now recall the following lemma:
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Lemma 1 (Discrete Sobolev Inequality) Let 2 be an open bounded sub-
set of RY, with d € N*, and D be an admissible discretization of (2 in the
sense of Definition 1. Then, there exists a constant Csop > 0, depending only
on d, 2, RegulCell(D), and RegulKL(D) such that for all ¢ € [2,4+00), if
d=2, and q € [2,2d/(d — 2)] if d > 2, we have

lull o) < Vd q Csop Ilull7, (10)
for any u € Hr(£2).
Proof The proof is given in [7].

3 The Finite Volume Scheme

The definition of the finite volume scheme is based on a hybrid variational
formulation on the space Hp using the construction of two discrete gradients
for each cell K of the mesh and each vertex s of the cell. The first gradient
defined by

~ 1
(Vpu)y = = > mi(u) —uk)nk,, (11)
K secexné,

is built to have a weak convergence property stated in Lemma 7, once av-
eraged for each cell K over its vertices s € Vg with the weights m$,. The
second gradient is defined by

(Vowi = Y (uy —uk) gk, (12)
o€EKNEs
where the vectors gj , € R¢ are given for all ¢ € Ex N . The gradient

(Vpu)% is built to be consistent in the sense that it is exact for linear func-
tions. More precisely, the vectors gj ., 0 € Ex N &, are assumed to satisfy
the following hypothesis:

Hypothesis 1 [consistency of the gradient] For all K € T, s € Vg, the
vectors gy ,, 0 € Ek NE, are such that for all vectors v € R? we have

Z v- (T, —TK) Gk,p = V- (13)
c€EKNEs

Let us now define the bilinear form ap on Hp x Hp by

ap(u,v) = Z Z (me(vDu)}(-AK(epv)ﬁ(

KeT s€Vk (14)
s ms S 8
tak Y R (WRk,0))
c€EEKNES 4

for all (u,v) € Hp x Hp, with

1
Ag = —/ A(x)dz,
mpg K
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for all K' € T In (14), the residual functions Rj , are defined for all u € Hp,
c€lgN&s,s€ VK, K€eT,by

Rﬁ(,a(u) = ’U/i. — UKk — (V'DU)?( : (.’L'i - .'EK), (15)
and the parameters aj, are real such that
po < @ < % (16)

for all s € Vg, K € T with o > 0 and 49 > 0. Note that instead of
the scalar parameter aj., we could have considered a more general positive
definite matrix D% of size Card(Ex N &) such that po I < D3 < o I. The
subsequent analysis will readily extends to this more general framework but
we keep to the scalar term for the sake of simplicity in the notations.

The discretization of (1) on D is defined by the following discrete hybrid
variational formulation: find up € Hp such that

ap(up,v) = /Q f(@)Pru(x)dx for all v € Hp. (17)

For all u € Hp, let us introduce the following subfluxes F ,(u) defined for
allseV,,0€€k, K€ T by

Fi,(u) = -miAx(Vou)k -nk,q
RS, _(u) Ry o (u) 18
—al mi _(c;(’ E e S (;, = (@5 —2x) |, (18)
K,o 0"651(053 K,o

in such a way that

ap(u,0) = Y D D F (u)(vk —v3), (19)

KeT 0€€k s€EV,

for all (u,v) € Hp x Hp. Then, it is easily shown from (19) that the vari-
ational formulation (17) is equivalent to the following hybrid finite volume
scheme: find up € Hp such that

> Fio(up) = / f(z)de  forall K €T,
K

oEEK
Fxo(up) = Y Fi,(up) forallo €k, K €T,
SEV,
Ff{,g(uD) = —FE’J(uD) for all s € V,,0 € &int, To = {K, L}.

(20)
From definition (18) of the subfluxes F% , (u), we can compute the coefficients
(T)o,0r, o' € Es NEK such that

Fiow= Y (Ti)ee(ux —ul), (21)

o'eE:NEK
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for all s € V,, 0 € £k, K € T and u € Hp. It results that around each
vertex s € V, the face unknowns (u?),cg, can be eliminated in terms of the
(ug)KeT, assuming the well-posedness of the linear system

{FI“}(,J(UD) + F} ,(up) = 0 for all 0 € & N &iny with T, = {K, L},

ul = 0for all o € E5 N Eext- (22)

Then, the hybrid finite volume scheme reduces to the cell centered finite
volume scheme: find ur € Hy(f2) such that for all K € T

S Fesler) + 3 Fon)= [ fadn @)

0 E€EKNEint, To={K,L} 0EEK NEext

where the inner fluxes Fk r(ur), T, = {K,L}, 0 € s, and the boundary
fluxes Fy(uT), 0 € Eext, are linear combinations of the cell unknowns (u7)m
with M € U ey, Ts-

The well-posedness of the hybrid finite volume scheme (20), of the local
linear systems (22), and of the cell centered scheme (23) is shown in the next
section to result from the coercivity of the bilinear form ap which will hold
assuming a local coercivity assumption as stated in Proposition 1.

3.1 Equivalence with the usual MPFA O scheme

The MPFA O scheme described in [1] and [5] is defined for polygonal and
polyedral meshes such that for all cells K and all vertices s of K, the cardinal
of Ex N & denoted by ¢ is equal to the space dimension d, and such that
the set of vectors (22 — Tk )oecexne, spans RY. For such meshes, the MPFA
O scheme from [1] or [5] is precisely defined by the hybrid finite volume
formulation (20) using subfluxes F§; , (u) given by —m$ Ax (VH T 4u)i nk o
where the gradient (V4 F44)3 is the gradient of the unique linear function
defined by its d + 1 values uk at point zx and u? at points z2, 0 € Eg N Es.

In such cases, the equivalence between our hybrid finite volume scheme
(20) and the MPFA O scheme defined in [1] and [5] readily results from the
following lemma stating that (Vpu)§ = (V7§75 4u)%, and that Ry ,(u) =0
for all u € Hp.

Lemma 2 Let D be an admissible discretization in the sense of Definition
1, and let K € T, s € Vi be such that ¢} = d and such that the set of
d vectors (25 — TK)seexne, spans RE. Let us consider a discrete gradient
(Vpu)i given by (12) and satisfying the consistency hypothesis 1. Then, for
all u € Hp, the discrete gradient (Vpu)j, is the gradient of the unique linear
function defined by its d + 1 values uk at point zx and ul at points z2,

o € Ex NEs, and the residuals Ry ,(u) vanish for all 0 € Ex N E;.

Proof Let us denote by (g% ,)secxne, the biorthogonal basis of the basis
(23 — Tk )oeexne, of RE. Tt is uniquely defined by the equations Ik, (@5 —

Tk) = 05, for all o,0' € Ex N &;. Setting v = gi , in (13) shows that
9%.o = 9k, for all 0 € Ex N &, and the gradient Y- o o (u) — uK)gk.,
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is the unique gradient satisfying the consistency hypothesis 1. Let u € Hp
be given and let ¢ be the unique linear function defined by its d + 1 values
ug at point zx and uZ at points 22, 0 € Ex N E,. We have by definition
Vo - (25 —zk) = uS — ug. Hence setting v = Vo in (13) it results that

Vo= Y Ve (@ —ox)ik,= 3. (Ud—ux)jk.
gEEKNES oc€EKNES

which proves the first part of the lemma. The second part results from the
equation
Y Rk, gk, =0,
oe€fxNEs
for all u € Hp.

For cells such that gj, > d, they are several ways to define a gradi-
ent (Vpu)} = (ud — uk) gk, satisfying the consistency hypothesis 1.
In such cases, the residuals Rj ,(u), 0 € £k N & satisfying the relation
> seerne, Bk, (W) gk, = 0 for all u € Hp do not a priori vanish since the
family g ,, 0 € Ex N&s is not free. They play the role of stabilization terms
in the hybrid variational formulation (20) as shown in the following example.
For d = 3, let us consider two pyramids K and L sharing a triangular face
o, and let s € o denote the top of the two pyramids. We can easily build
two consistent gradients (Vpu)y and (Vpu)j such that g§ , = g5 , = 0.
Then, the residuals Rj . (u) and R ,.(u) vanish except for o' = 0" = 0.
In this example, it is clear that only the residual terms in (20) can ensure the
well-posedness of the system since the discrete gradients (12) do not depend
on u’.

4 Well-posedness of the finite volume scheme

The well-posedness of the hybrid finite volume scheme (20) and the cell cen-
tered finite volume scheme (23) will be derived from the coercivity of the
bilinear form ap. This coercivity property depends on the finite volume dis-
cretization D, on the diffusion tensor A, and on the parameters of the finite
volume scheme. In the following, we shall make the stronger assumption that
the coercivity holds locally around each vertex s of the mesh. For a given dis-
cretization and diffusion tensor, this assumption can easily be checked numer-
ically computing the eigenvalues of a small linear system of size 2 x Card(7y)
for each vertex s € V.

Let s be a given vertex in V, and let H$, be the subspace of
{u e Rug € R K € T5,0 € Exk NEs}

such that vl = 0 for all 0 € Eext. The space Hps is endowed with the
semi-norm

2
||u||os=<2 > (d‘;‘fV(uf,—uK)?).

KeTs 0€€sNEK
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Let us also denote by ap: the bilinear form defined by

aps(u,v) = Z m$(Vpu)i AK(VDU)
KeTs

+ajk Z

RK (7( )Rf(,o'(v) (24)
o€k NEs
Z Z (TK)a',a’ (us — uk)(ug — uk),

KeT,: o,0'€ExNEs

for all u,v € Hps, where we have used definition (21) of the coefficients
(T§)s,67, and the canonical injection from Hps to Hp to define the residual
and the gradient functions on Hps.

Let us now introduce the following local coercivity criterion

coernode(D, A) = min inf aps(u,u). (25)
s€y {UEHDsHlu”’DS 1}

It will be used to check the coercivity of the bilinear form ap as stated in
the following proposition:

Proposition 1 Let D be an admissible discretization in the sense of Defini-
tion 1, and let us assume that there exists Op > 0 such that coernode(D, A) >
0p. Then, the bilinear form ap is coercive in the sense that for all u € Hp
we have

ap(u,u) > Oplullp. (26)

Proof Using (21) we have for any u € Hp
NS e () — ).
sEVKET,s 0,0/ €€ExNEs

Using definition (25), and the assumption coernode(D, A) > 6p, the following
estimate

- U/K)27

p(u,u >¢9DZZ Z

sEV KeTs G'EEKOES

is derived, which proves the lemma.

The following propositions state the well-posedness of the hybrid and cell
centered finite volume schemes under the local coercivity assumption.

Proposition 2 [Estimate on the solution of the hybrid finite volume scheme]
Let D be an admissible discretization in the sense of Definition 1, and let us
assume that there exists a real Op > 0 such that coernode(D, A) > 0p. Then,
there exists a unique solution up € Hp of the hybrid finite volume scheme
(20) which satisfies the estimate

C
lulio < 2Vd 201 fl1xo), (27)

where the constant Csop, s given by Lemma 1.
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Proof Thanks to Proposition 1, for any solution u € Hp of (20), we have
bollully < ap(uww) = [ f@)Pru(e)ds. (28)
Q
On the other hand, using (10) and (9), we have for all u € Hp

/Q (@) Pru(@)de < ||fllz2(a) | Prullz e (29)

< 1fllz2(2)2vVd Csopllullp, (30)

which proves the bound (27) for any solution up € Hp of (20). Since (20)
is a square linear system, it also proves the uniqueness and existence of the
solution of (20).

Corollary 1 [Estimate on the solution of the cell centered finite volume
scheme] Let D be an admissible discretization in the sense of Definition 1, and
let us assume that there exists a real 6p > 0 such that coernode(D, A) > 0p.
Then, for each vertexr s € V, the linear system (22) is non-singular, and
there exists a unique solution ut to the cell centered finite volume scheme
(23) equal to Py(up) where up is the unique solution of the hybrid finite
volume scheme (20). Moreover, the solution uy satisfies the bound

Csob
0p

lurllr < 2d 17 llz2(2)- (31)

Proof Let s € V, and let V?, be the subspace of Hp such that
Vi={veHp |Prv=0,v5 =0forall s #s,0€E},

and let Py, be the canonical orthogonal projector onto V#. Let us also
identify H7(f2) with the subspace {v € Hp | v =0forall s' € V,0 € £y}
of Hp. Then, we have for all v* € V*, u € Hp

ap(u,v?) = ap(Py«(u) + Pru,v’) = > = (Fi,(w) + F} ,(w) 03,
0€EsNEins, To={K,L}

and the linear system (22) is equivalent to: given Prup, find u® € V*, such
that ap(u®+ Prup,v®) = 0 for all v € V*. The non-singularity of this system
results from the coercivity of the bilinear form ap. Hence, from Proposition
2, there exists a unique solution w7 to the cell centered finite volume scheme
and this solution verifies ur = Pr(up) where up is the unique solution of
the hybrid finite volume scheme (20). From (9) the solution u7 satisfies the
estimate (31).
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5 Convergence Analysis

Let D be an admissible discretization in the sense of Definition 1. It is always
assumed in the following that the local coercivity assumption coernode(D, A)
> 0p > 0. is satisfied, which ensures that there exists a unique solution
up € Hp to (20).

Let us introduce the following notation for a given finite volume dis-
cretization and a given construction of the gradients (Vpu)%:

RegulGrad(D) = (K). (32)

max
oc€EKNES,KET,s€YV

The proof of convergence uses piecewise constant reconstructions of the
discrete gradients (11) and (12) defined as follows. For all K € T, let us
choose arbitrarily a family (K,);cy, of non empty connected open disjoint
subsets of K such that the volume of K is equal to m% and K = Uscy, K.

For all u € Hp, let us denote by Vpu € L?(2)4 the function
Vou(z) = (Vpu)k, forae. z € K, (33)
and by Vpu € L2(2)? the function
Vou(z) = (Vpu)k, for ae. z € K. (34)

We shall also use an averaging of the discrete gradients over each cell K € 7.
For all u € Hp, let Vpu € L(2)? be the function defined for a.e. z € K by

(VDU)K = iK Z mK(VDu Z Z —’LLK nK,s- (35)

sEVK a€8K $€EVs

This gradient is shown in [9] to satisfy a weak convergence property as stated
below in Lemma 7. Similarly, let Vpu € L?(£2)? be the function defined by

Vou(z) = (Vpu)k, for ae. z € K, (36)
with 1
Vowk = g}: mi (Vpu)k- (37)

In the subsequent of this section, we shall prove the following theorem.

Theorem 1 [Convergence of the scheme] Let {2 be an open bounded polyg-
onal subset of R?, with d € N*. Let (Dy)nen be a sequence of admissible
discretizations in the sense of Definition 1, such that hp, — 0 as n = 0.
It is assumed that hypothesis 1 holds and that there exist § > 0, v > 0,
B8 >0,n1>0, and M € N with coernode(D,,, A) > 0, RegulGrad(D,,) < v,
CardFace(D,) < M, RegulKL(D,,) > 7, and RegulCell(D,) > B for all
n € N. Then, there exists for all n € N a unique solution up, € Hp, to
(20), and the sequence Prup,, n € N converges to the weak solution i of (1)
in LY(12), for all q € [1,+00) ifd = 2 and all q € [1,2d/(d - 2)) if d > 2.
Moreover, the sequence VD up,, n € N converges to Vu in L2(Q)d.
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The proof of this theorem involves a series of lemmae listed in the follow-
ing sketch of the proof.

— A uniform stability estimate in Hp, of the discrete solutions up,, n € N
is readily obtained by Proposition 2 stated in the previous section and
from the assumption that there exist # > 0 such that coernode(D,,, A) > 6
for alln e N.

— Stability estimates of the gradient and residual functions will be derived
in Lemmae 3 and 4.

— The consistency of the discrete gradients (Vp(Ppy))j, and of the resid-
ual functions Rﬁ(’U(PDcp) for smooth compactly supported functions ¢ is
derived respectively in Lemmae 5 and 6.

— Using the stability estimate of up, in Hp, we can apply the Discrete
Rellich Theorem already proved in [9] and recalled in Lemma 7. It results
that there exist a function u € Hj ({2) and a subsequence of n € N, still
denoted by n € N for simplicity, such that Prup,, n € N converges to
@ € H§(2) in L9(£2) for all ¢ € [1,+00) if d = 2 and all ¢ € [1,2d/(d—2))
if d > 2, and such that the gradient Vpu,, n € N weakly converges to
Vi in L3(02)2.

— The core of the proof is derived in Lemma 8 which proves the convergence
in L2(2)¢ up to a subsequence of the gradient functions Vp, up, and
@Dn up,, n € N to Vu. The proof uses the coercivity of ap, and Lemmae
5, 6, 3 and 4.

— To complete the proof of Theorem 1 it is then shown that u is the unique
weak solution u of (1) by passing to the limit in the discrete hybrid
variational formulation (17).

Lemma 3 [Estimate of the gradient functions] Let D be an admissible dis-
cretization in the sense of Definition 1. Then, for all w € Hp we have the
bounds

IVpullr2(@) < Vd ||ullp, (38)
IVoullL2(2)e < IVoullL2(0ya, (39)
||Vpu||Lz(Q)d < CardFauce(D)l/2 RegulGrad(D) ||ul|p, (40)
IVpullL2@)e < IVpullLa(e)e- (41)

Proof The first bound is proved using definition (5) of m$, Definition 3 of
the norm in Hp as well as the Cauchy Schwarz inequality. The third bound is
derived using Cauchy Schwarz inequality and the definitions of RegulGrad(D)
and CardFace(D) as follows:

2
||V’Du”i2(9)d = Z z m;{ ( Z (uz' - UK)Q;(,G—)

KeT s€EVk o€EENEK
mS
<> 5 (2 ) (5 o)
KeT seVx \oe&.nex ‘Ko cEENEK

< CardFace(D) RegulGrad(D)? ||ul3.-
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The two remaining bounds readily derive from the above definitions of the
gradient functions and the convexity of the function z — z2.

Lemma 4 [Estimate of the residual function] Let D be an admissible dis-
cretization in the sense of Definition 1 such that there exists Op > 0 with
coernode(D, A) > Op. Then, there exists a real C > 0 which depends only
on RegulCell(D), CardFace(D), RegulGrad(D) such that for all u € Hp we
have the estimate

> X ( > %Rmu)?) < Clullp.

d
KeT seVik \o€ExNEs (dKo

Proof Using the estimate (a — b)? < 2(a® 4 b?) for all (a,b) € R x R in the
definition of the residual Ry ,(u) = (u; —uk) — (Vpu)k - (25 — zKk), we
obtain the bound

S

Y R < 2 (Vowic - A (Vowic

ocEEKNE, (dKU 49
9 Z m?( ( s )2 ( )
+ 2 U, —UK) ,
TEEKNE, (dico)
where the square matrix A% is defined by
A= Y (e - w)a —ox) (43)
g€EKNE, (dK’G)Z
and satisfies the bound
CardFace(D)
Al <mype———— . 44
4k < mi RegulCell(D)? (44)
Using the bound
mi|(Vpu)k|* < CardFace(D) RegulGrad(D)? Z de 5 (uy — uk)?,
ocEEKNE, (di.o)
combined with (42), and (44), we obtain the following estimate
Z %R‘f{,a(“y
c€EKNE, (dx.s)
CardFace(D) RegulGrad(D) > m$, 9
<211 5 —
=~ ( + ( RegulCell('D) JGSZKOE (dK,(J')2 (ug' UK) )

which completes the proof.
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Lemma 5 [Consistency of the discrete gradients] Let D be an admissible
discretization in the sense of Definition 1, and let us assume that hypothesis
1 holds. Let ¢ be a given function in C°(£2). Then, there exists M, depending
only on ¢, such that for all s € Vg, K € T,

[(VoPpp)s — Ve(zk)| < M, CardFace(D) RegulGrad(D) diam(K),
and

|(§’DP'DLP)K — Vy(zk)| < M, CardFace(D) RegulGrad(D) diam(K).
Proof Let K € T, s € Vi, p € C°(12) be given. For all o € £, N Ek, let us
set € , = p(z5) — p(zx) — Vo(zK) - (25 — zK). Since ¢ € C°(12), there

exists a real M, > 0 depending only on ¢ such that |e} | < My|z; — zk|*.
From hypothesis 1, we have

(VoPop)i —Velar) = Y, €k, Gko
c€ENEK

which ends the proof from the definitions of CardFace(D) and RegulGrad(D).

Lemma 6 [Consistency of the residual functions] Let D be an admissible
discretization in the sense of Definition 1, and let us assume that hypothesis
1 holds. Let ¢ be a given function in C°(12). Then, there exists a real C' > 0
depending only on ¢, RegulCell(D), RegulGrad(D), CardFace(D), and {2,
such that

> 2 ( 2 (dr;’%P(R;,g(Pw))Z) <C .

KeT s€Vk \o€ExNEs
Proof Let K € T,s € Vk, 0 € EsNEK, p € CX(£2) be given. For all
0 € & NEk, let us set ek , = p(z}) — p(rK) — Vy(zK) - (2 — TK). Since
p € C°(12), there exists a real M, > 0 already introduced in Lemma 5 and
depending only on ¢ such that [e% .| < My|z; — 7k |?. From the definition
of the residual function we have

k.o (Ppp) =€k, — (VDPpp)k — Vo(ak)) - (27 — zx).
We deduce from Lemma 5, and the definition of RegulCell(D) that

1 + CardFace(D) RegulGrad(D) ) > B2

mf{ s 2 s 2
P < M
3 (B (Ppy))” < mi M, ( RegulCell(D) P’

(dK,a')

from which we deduce the estimate

>y ( > (dﬁ)g(Rﬁ(,g(PDmF)

KeT seVk \o€€xN€s

< m(R)M?

= v

1 + CardFace(D) RegulGrad(D)\” 32
RegulCell(D) D

which concludes the proof.
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Lemma 7 [Discrete Rellich theorem] Let {2 be an open bounded polygonal
subset of R?, with d € N*. Let (D, )nen be a sequence of admissible discretiza-
tions such that hp, — 0 as n — oo, and let u, € Hp, be such that there
exists C > 0 with ||uy||p, < C for alln € N. Then, there exist a subsequence,
still denoted by n € N for simplicity, and a function u € H}({2), such that
Pru,, converges in L1(2) to & for all ¢ € [1,00) if d = 2 else if d > 2,
q € [1,2d/(d — 2)] and such that the gradient Vpu, weakly converges to Vu
in L2(0)2.

Proof The proof uses the same arguments as in [9].

Lemma 8 [Strong convergence of the discrete gradients] Let 2 be an open
bounded polygonal subset of R, with d € N*. Let (Dy)nen be a sequence of
admissible discretizations in the sense of Definition 1, such that hp, — 0 as
n — 00. It is assumed that hypothesis 1 holds and that there exist § > 0, v >
0,8>0,7>0, and M € N with coernode(D,,, A) > 6, RegulGrad(D,,) < 7,
CardFace(Dy,) < M, RegulKL(D,,) > 0, and RegulCell(D,)) > f for all
n € N. Then, there exist for all n € N a unique solution up, € Hp, to (20),
and a function @ € H(2) such that Prup, converges to @ in L1(12), for
all ¢ € [1,400) if d = 2 and all q € [1,2d/(d - 2)) ifd > 2, as hp — 0.
Moreover, the gradients Vp,up, and ﬁDnan converge strongly to Vi in
L2(2)4.

Proof Thanks to Proposition 2 and Lemma 7, there exist a subsequence
still denoted by n € N for conveniency, and a function @ € Hg (£2) such that
Prup, — 4 in L1(12), for all ¢ € [1,4+00) if d =2 and all ¢ € [1,2d/(d—2)) if
d > 2, and such that Vpup, converges weakly to Vi in L?(2)% asn — oo. It

remains to prove that the gradients Vp_up, and @Dn up, converge strongly
to V& in L2(£2)?. For the sake of simplicity in the notations, the subscript
n € N, will be dropped in the remaining of the proof.

Let us first prove that Ip = [,(Vpup(z) — Vi(z))? dz tends to zero as
hp — 0. Let ¢ be a given function in C°(£2) and let us bound Ip as follows

Ip <3 (Tp +TH +T3),

with
T} = /Q (Vo (up — Ppp)())? de,

T3 = /Q (Vo Ppp(z) - Vo(a))? dz,

and
1%::A;v¢m)—va@n2da

Using the coercivity of the bilinear form ap and the stability of the gradient
function Vpu stated in Proposition 1 and Lemma 3 respectively, the first
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term T}, satisfies the following upper bounds

MI/Z
7L < 7

IN

7 ap(up — Ppy,up — Ppyp)
7M1/2
0

(45)

(ap(uD, up) — ap(up, Ppy)

—ap(Ppy,up) + an(Poep, PW))-

As up is the solution of (17) we deduce that ap(up,up) = [, f(z)Prup(z)ds
and ap(up, Ppp) = f o [(@)Pr(Ppy)(x)dx. It results that

lim ap(up,up) f(z)a(z)dz,

hp—0 (46)
lim ap(up, Ppp) = /; (z)p(z)d.

hp—0
Next, let us split the term ap(Ppy,up) into the three following terms
ap(Ppy,up) = Lp + L} + L,

with

=Y Y (mk (VoPoe)ic - Velex) - Ax(Toun)ic)

KeT seVi
Ly = Z mgVo(rk) - Ak(Vpup)k
KeT
ms
L3D = Z Z (a% Z (d K)QR%,(T(PD(P)R;(,U(U/D)> .
KeT s€Vxk occEgne, o

Thanks to the Cauchy-Schwarz inequality, and Lemmae 5 and 3, we obtain
the following bounds

Lp < Bo (Z > mk (VoPpo)k — V‘P(ZUK))2>

KeT seVi

D=

_ 2
(Z > mi ((VDUD)%) ) ;
KeT s€Vk

< C |lup|lp hp,

with a real C' depending only on By, d, v, M, {2, and ¢. It results that
lim L} =0.

'D—>0
Since the gradient Vpup converges weakly to Vi in L2(2)? as hp — 0,

we deduce that hlimo L2 = / Vi(z) - A(z)Ve(x) dz. Using the assumption
D 0
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(16) on the coeflicients o, as well as Lemmae 6 and 4 leads to hlimo L3 =0,
D —

and all together it is proved that
lim_ap(Ppe, up) = / Vi) - Az) Ve (a)da. (47)
h'DHO 0

From Lemma 7 and since limy,, 0 Ppy = ¢ in L2(2), the gradient VpPpy
converges weakly in L2(£2)? to Vi as hp — 0. It results that the same type
of arguments as above can be used to prove that

Jim_ an(Pog, Pop) = /ﬂ Vo(z) - Ax)Vep(z)da. (48)

Summing the limits (46),(47), and (48) in (45) , we obtain that

IMJ%SWWN<Af@ @@—w@)

hp—0 0

+ /Q V(@) - il)) -A(x)wx)dx).

Thanks to Lemma 5, it is clear that hlimo T2 = 0. Then, using the den-
D>
sity of C°(£2) in H}(£2) we can show that hlimo Ip = 0, which proves the
D—>

convergence in L2(2)¢ of the first gradient Vpup.

Thanks to Lemmae 3 and 5, the previous proof is readily adapted to prove
the convergence in L?(£2)? of the first gradient Vpup, which completes the
proof of the lemma.

Proof of Theorem 1

Thanks to Lemma 8, there exists & € H}(£2), and a subsequence still de-
noted by n € N for conveniency, such that Prup, converges to @ in L%((2),
for all ¢ € [1,400) if d = 2 and all ¢ € [1,2d/(d — 2)) if d > 2. More-
over, Vop, up, and Vp_up, converge to Vi in L2(£2)%. In the remaining, we
shall prove that @ is a weak solution of (1) which will complete the proof
from the uniqueness of the weak solution. For the sake of simplicity in the
notations, the subscript n € N, will be dropped in the remaining of the proof.

Let ¢ be a given function in C$°(f2) and let us set v = Ppp € Hp in the
variational formulation (17):

ap(up, Ppy) = /9 1 (&) Pr(Pog)(z)dz. (49)

Let us now split the expression of ap(up, Ppyp) into the following three terms

ap(up, Ppy) = Tp, + Tp + T,
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with

Ty =Y Y (mk((Voun)i — (Voun)k) - Ax (Vo Pow)i )
KeT seVi

T} = Z my (Vpup)k - Ax(VpPpp)k
KeT

8 ms S S

T% = Z Z (aK Z 7(d K)2 RK,a(PD‘P)RK,a(u'D)> .

KeT seVk ccExne, KO

Thanks to the Cauchy-Schwarz inequality, our assumption on A, and Lemma
3, the following bounds hold:
TS| < BolVpup — Voupllrza) IVoPpollie (),
< BoVd |[Vpup — Vpup|lr2a) [1Po¢llp.

From the estimate

(CardFace(D) m(@)2 o)

P, <
1Ppelln < RegulCell(D) zeQ

and Lemma 8, it results that lim T = 0.
h'D—>0

Let us now consider T3 = [, Vopup(z) - A(z)(VpPpp)(x)dz. It has been
shown in the above proof of Lemma 8 that VpPpy converges weakly in
L?(2)? to Vg as hp — 0. Then, we obtain the following limit of T2 as
hD — 0:

lim T3 —/ Vi(z V(x)de.

‘D—>0

Using the assumption (16) on the coefficients o as well as Lemmae 6 and
4, we obtain that
lim T3 = 0.
h'D—>0

All together, on the one hand, we have

lim / f(2)Pr(Pog) (2)dz = /Q f(@)p(@)dz

h'D—>0 0

On the other hand, we have

hm0 ap(up, Ppp) = / Vi(z V(z)dz.

hD—>

Then, using (49), we conclude that

/Vu z)Vo(z da:—/f

which completes the proof of Theorem 1.
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6 Two examples of construction of the gradient (12)

From Lemma 2, there is only one way to build a gradient (12) satisfying the
consistency hypothesis 1 when the cardinal g3 of £k N &; is equal to d. On
the other hand, when ¢} > d there are many ways to build such gradient.
Two examples are given in the two subsections below.

6.1 First construction

For all K € T and s € Vg, let us define the square d-dimensional matrix Bj,
by

1
By = — > ming,(z) —ax)'. (50)
K seexne,

The gradient (12) is defined by B g% , = ::—s:nK,g, forall 0 € &N &k, i.e.
? K

(Vou)i = (Bi) ™ (Vouk, (51)

assuming that the matrix Bj is non-singular. If g is equal to the space
dimension d, and the set of vectors (2% — Zk)sece,ne, Spans R¢, the matrix
B3, is non-singular iff the set of vectors (ng,q),cexne, spans also RY. For
more general meshes, the non-singularity of B}, will be shown in subsection
6.1.1 to result from a stronger assumption (52) ensuring also the coercivity of
the scheme. Note however that if the set of vectors (nk ,)scexne, does not
span R?, as it may be the case for non-matching meshes, the matrix Bj is
singular and the present construction does not apply. This case will be taken
into account in the second example.

Assuming that Bj, is non-singular, we can easily check that the consis-
tency hypothesis 1 is satisfied.

6.1.1 Coercivity and convergence of the finite volume scheme

The main advantage of this construction is that a simple condition can be
derived which ensures the non-singularity of the matrices B, the coercivity
condition coernode(D, A) > Op as well as an upper bound for the parameter
RegulGrad(D) involved in the stability of the gradient function Vpu.

This condition imposes the following non-negative lower bound
coercell(D, A) > 6p > 0, (52)

on the coercivity parameter defined by

coercel(D,A) = min  Apin ( (53)

Ax B3 + (AxB%)t
KeT,seVk ’

2

It can be easily computed for any given finite volume discretization D and
diffusion tensor A.
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The condition (52) ensures that the matrices B, (50) defining the discrete
gradients (51) are non-singular for all s € Vg, K € T as stated in Lemma
10. To prove this result, we first need to state the following lemma.

Lemma 9 Let A € My(R) such that Apin(A + A%) > 0, then A is a non-
singular matrix and satisfies the estimate

8 1

A< - ————
| | -3 )\min(A+ At)
Proof We readily have A # 0. Let us consider the following estimates

[rA —I;* = |(rA — L)' (rA — Iy)| = |(Is — r(A* + A)) + r2 At A|,

< |Ig —r(AY + A)| + |r? APA| = |I; — r(AY + A)| + 72| AP

)\min(A + At)

4|AJ?
of the symmetric matrix Iy —r(A? + A) are positive, and we have |I; —r(A +
A)| =1 —=7Amin (A + AY). Hence, we have proved the estimate

Amin (4 + A1)\
4|A|

It results that [rA — I4| < 1. Then, setting rA = I;+ (rA — I) we can obtain

that rA is a non-singular matrix and that the following estimates hold

1 1+|TA—Id|

Choosing in the following r = ensures that all the eigenvalues

|7‘A—Id|2S1—3(

|(r4)

-1 <
|_1—|rA—Id| 1—1|rd —I;?
«_ 2
~1—|rd -1

<2 4|A| 2
= 3 \Amin(A+ A48 ) 7

which concludes the proof.

Lemma 10 Let D be an admissible discretization in the sense of Definition
1 such that there exists a real p > 0 with coercell(D, A) > 0p, then for all
s € Vi, K € T, the matriz B}, is non-singular, and its norm satisfies the
following estimate

480

(Bi0 < 3% (54

Proof Using the assumption
2 coercell(D, A) = Amin(Ax B + (AxBi)t) > 2 0p >0

and Lemma 9, we deduce that the matrix Ax By, is non-singular as well as
the matrix Bj.. Still from Lemma 9, we have the estimate
(Bl < oo
301)
which concludes the proof from the bound |Ax| < B.
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The following Lemmae 11 and 3 state respectively that the condition
(52) provides an upper bound for the parameter RegulGrad(D) and that it
ensures the coercivity condition coernode(D, A) > 6p.

Lemma 11 Let D be an admissible discretization in the sense of Definition
1 such that there exists a real 0p > 0 with coercell(D, A) > 0p. Then, we
have the estimate

460 d
RegulGrad(D) < — )
egulGrad(D) < 3 6p RegulCell(D)

Proof The estimate derives from Lemma 10, and definitions (5) of m$, and
(3) of RegulCell(D).

Proposition 3 [coercivity of the scheme] Let D be an admissible discretiza-
tion in the sense of Definition 1 such that there exists a real Op > 0 with

2 . 1 RegulCell(p)? 45
coercell(D, A) > 6p. Then, setting p = 3 min (HO: CardFace(D) ), we
have the lower bound coernode(D,A) > 6p and hence the coercivity of the

bilinear form ap

ap(u,u) > Op|lull, (55)
for all u € Hp.

Proof Let s be a given vertex of V. From definition (24) of the bilinear form
aps, we have for all u € Hps

= AxB§ + (BY)' Ak =
ap«(u,u) = (m%<vou);<- T P2 (T
KeT; . (56)
+ ak %RRU(U)Q)
sebrneldK.o)

Using the following inequality
1
pla—1b)3?> 3 min(p, A)a* — A6, for all (a,b, u,A) € (Ry)*,

with u = af, a =u? —uk, b= (Vpu)k - (2 —rk) and X = p%, we obtain
for all p7- > 0 the lower bound

s m;( Rs 2>
19374 Z 2 K,a'(u) -

1 a'ESKsﬂc‘Js (dK’U) (57)
s s s m s s (7. s s (7 s
3 min(pk, ak) Z (dK,I;)2 (ug — uk)? = pi (Vou)k - Ak (Vou)k,

o€k NEs

where the square matrix A% is defined by (43) and satisfies the upper bound
(44). Let us choose p$; such that

Ag B3 + (A B )
2

s

Pk = sup {p € R, mk

Ay > o}. (58)
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Using the upper bound (44), and the local coercivity assumption (52), (53),
we can prove that p3, defined by (58) satisfies the lower bound

RegulCell(D)2 6p

5 >
Pr = CardFace(D) '’ (59)
for all s € Vi, K € T. Using (56), (57), (58), (59) we obtain the lower bound
1 . RegulCell(D)?2 p 5
s > —
ap-(u,0) 2 3 min (1o, "B STl (00)

for all u € Hps which concludes the proof.

From Proposition 3, Lemmae 11, 10, and Theorem 1 we can state the
following theorem showing the convergence of the finite volume scheme under
the coercivity condition (52).

Theorem 2 [Convergence of the scheme] Let {2 be an open bounded polyg-
onal subset of R?, with d € N*. Let (D,)nen be a sequence of admissible
discretizations in the sense of Definition 1, such that hp, — 0 as n —
00. It is assumed that there exist 8 > 0, 8 > 0, n > 0, and M € N
with coercell(D,,, A) > 0, CardFace(D,) < M, RegulKL(D,) > 7, and
RegulCell(D,,)>8 for all n € N. Then, there exists for all n € N a unique
solution up, € Hp, to (20), and the sequence Prup,, n € N converges
to the weak solution @ of (1) in L1(£2), for all ¢ € [1,4+00) if d = 2 and all
q € [1,2d/(d—2)) if d > 2. Moreover, the sequence Vp,up,, n € N converges
to Vi in L2(02)4.

6.2 Second construction

This second finite volume scheme uses the construction of the gradient (Vpu)j,
introduced in [10] for d = 2 and 3. Compared with the previous approach, its
main advantage is to cover the case of non-matching or locally refined grids
for which the set of vectors (ng ,)seexne, may not span RY.

For each o € &, let us denote by £ the subset of £, N Ek of cardinality
d defined as follows for d = 2 and d = 3. For d = 2, let us set ko =ENEK.
For d = 3, let €1 and ey be the two edges of the face o intersecting the vertex
s, and o1 and o2 be the two faces of £, NEx sharing respectively the edge e;
and ez with the face o. Then, we set EIS{J ={o,01,02}.

For all K € T and s € Vk, the gradient (Vpu)} is defined by

— m? dK
(V'DU)}( = Z 0'73’0 Z (U(SJ'I - U‘K) g;(,a,a'H

m
oEENEK K gregg

where {g}% , ,., o' € €k , } is the biorthogonal basis of {(z}, —zk), o' € £k, }
such that

s 8 —
(.'L'a.l - .’L'K) . gK,(T,o’” = 60-17011
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for all 0',0" € £} ,, assuming that the set of vectors (z;, — k), 0’ €

is free. Note that by construction, ) .. g5 V- (x5 —2K) 9% 5., = v for any

vector v € RY. It results that the gradient (Vpu)j is consistent in the sense
of hypothesis 1.

The upper bound of the parameter RegulGrad(D) is controlled in two
dimensions by the minimum angle between the two vectors (23, — zk),0’ €
EsNEk. In three dimensions it is controlled by the minimum angles between a
vector of {(z}, —zk), 0" € k. } and the two remaining ones. These minimum
angles should not tend to zero.

From Lemma, 2, this second approach is equivalent to the MPFA O scheme
described in [1] and [5] as soon as g% is equal to the space dimension d for all
cells K and all vertices s of the cell K. It is always the case in two dimensions
d = 2. If in addition the set of vectors (nk,,)scexne, spans R?, then both
the first and second constructions are equivalent to the MPFA O scheme [1]
and [5].

The coercivity condition coernode(D, A) > 6p has to be checked numer-
ically. The stronger but simpler condition coercell(D, A) > 6p can also be
used when both constructions match.

7 Numerical tests

There are many papers investigating the numerical convergence properties
of the MPFA O scheme. For example, let us refer to [2] for quadrilateral
grids in two and three dimensions, and to [6] in two dimensions with discon-
tinuous diffusion coefficients. Also in [4], the MPFA O scheme is compared
on challenging two dimensional anisotropic test cases with two uncondition-
ally symmetric coercive finite volume schemes which exhibit a more robust
convergence but at the expense of a much larger stencil.

Let us first discuss the coercivity condition (52) on a few particular re-

markable cases. For all 0 € g N &, let us choose m$ = #"(]}), T the
isobarycenter of the vertices of the cell K and let z2 be the center of gravity

of the face o. Then, for parallelogram and parallelepiped cells, the matrix
Bj; is equal to I. In such a case, the MPFA O scheme is symmetric and
our sufficient condition of coercivity (52) is always satisfied. The same result
holds for triangles with 2% the barycenter with weights 2/3 at point s and 1/3
at the second end point of the edge o. It holds again for tetrahedrons with
x2 the barycenter with weights 1/2 at point s and 1/4 at the two remaining
end points of the face o.

Let us now consider the case d = 2 with A = I, and let o; and o5 be the
two edges shared by a given vertex s of a given cell K. For ¢ = 01,02, we
assume that the continuity point z? is the center of gravity z, of the edge
o and that m¢ = |z, — s|. Then, the condition Amin(Bj + (B§)?) > 20 is
equivalent to |2,, — Z,,| |37 — To,ZR| < 2(1 — §)mi. For example, the
trapezoidal mesh shown in Figure 1 satisfies the coercivity condition (52) if
and only if b2 < (1 - 0)% which exhibits the lack of robustness of
the MPFA O scheme for distorted quadrangular meshes.
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Fig. 1 Example of a trapezoidal mesh.

Next, let us discuss the sharpness of the coercivity criteria on a two di-
mensional example. We solve the anisotropic diffusion test case introduced in
[15] on a family of skewed quadrangular meshes of the domain 2 = (0,1)? of
size n, X ng with n, = 20,40, 80, 160. The exact solution and the expression
for the permeability coefficient are given below:

1 62 +y% (6 —zy

e . K= _
u = sin(nz) sin(my), i |6 - Doy 2 + 5y

(61)

We shall understand that Dirichlet boundary conditions are given on each
boundary edge o € &g by u(zs), s € V,, and that the forcing term is equal
to —V - (KVu). The parameter § is in fact the ratio between the minimum
and the maximum eigenvalue of K.

The continuity points x2 are the center of gravity of the edge o and
ms =m,/2 for all s € V,, o € £, and the cell center is the isobarycenter of
its four vertices.

The mesh n, = 20 is plotted in Figure 2 as well as the convergence of
the MPFA O scheme for different values of §. We note that the convergence
seems to be broken for § = 0.001.

In Table 1 the sharpness of the two criteria of coercivity coercell(D, A),
and coernode(D, A) are assessed. For that purpose we also compute the small-
est eigenvalue of the symmetric part of the cell centered scheme matrix de-
noted by coerschurmesh(D, A), as well as coerschurnode(D, A), the non-zero
smallest eigenvalue of the symmetric part of all the cell centered scheme
submatrices around each vertex s of the mesh.

We note in Table 1 that the positivity criteria coercell(D,A) > 0 and
coernode(D, A) > 0 are more restrictive than the positivity of the cell cen-
tered scheme around each vertex coerschurnode(D, A) > 0 which is a suffi-
cient condition for the positivity of the cell centered finite volume scheme
but not for the positivity of the hybrid finite volume scheme. From Table
1 and Figure 2, the convergence of the MPFA O scheme seems to be more
closely related to the coercivity of the cell centered scheme. This is yet to be
understood and goes beyond our framework based on the coercivity of the
hybrid formulation.

8 Conclusion

This article has presented a framework for MPFA O type schemes which
generalizes the construction described in [1] and [5]. This framework uses
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Fig. 2 Mesh of size n, = 20, and convergence of the L? error (erl2) for the MPFA
O scheme for different values of § (nunkw denotes the number of cells n?2).

| criterion/mesh [ ne =10 [ ny =40 [ ne =80 [ ne, = 160 |
coercell(D, 4) > 0 0.1 0.14 0.17 0.18
coernode(D, A) > 0.06 0.09 0.09 0.11
0.012 0.014 0.016 0.02

0
0

0.0055 0.0058 0.0068 0.014

0
coerschurnode(D, A) >
coerschurmesh (D, 4) >

Table 1 Approximate smallest value of § for which the coercivity criterion is
positive for the different meshes and the various criteria.

a hybrid variational formulation involving a weak and a consistent piece-
wise constant gradients, as well as residual terms for the stabilization of the
scheme. For meshes such that for all cells K and all vertices s of K, the
cardinal of £k N &, is equal to the space dimension d, our approach is shown
to be equivalent to the usual MPFA O scheme. A local coercivity assumption
is made ensuring the coercivity of the hybrid variational formulation. Under
this coercivity assumption, the well-posedness of the scheme is derived and
the convergence of the scheme is proved covering the case of L* diffusion
coefficients. Numerical tests for general three dimensional meshes remain to
be done to investigate the different choices of construction of the consistent
gradient and the tuning of the residual terms.
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