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Thermal di¤usion of high polymers in a continous medium is independent of the molecular weight Mw. Accounting for the solvent molecular structure and the Brownian motion of the solute, we derive an additional contribution of opposite sign which is signi…cant for short chains but vanishes as Mw ! 1. Our …ndings explain the dependence on Mw observed recently for polystyrene, and its inverse Soret e¤ect at very small Mw. Moreover, they bridge the gap between the macroscopic hydrodynamics description for large solutes and the enthalpy-of-transport picture for small molecules.

Introduction. Di¤usion in dilute polymer solutions depends strongly on the molecular weight [START_REF] De Gennes | Scaling Concepts in Polymer Physics[END_REF]. The Brownian motion of each monomer results in a …nite velocity of the surrounding ‡uid. Summing these single-bead contributions, one …nds that the polymer chain drags a ‡uid volume of the size of its gyration radius R. Since the latter increases with the molecular weight, the Einstein co-e¢ cient D 1=R decreases as the chain becomes longer; thus a polymer of 10 5 units di¤uses about thousand times more slowly than a single mer.

Thermal di¤usion, on the contrary, is insensitive to a variation of the molecular weight M w . The drift velocity of high polymers in a temperature gradient,

u = D T rT; (1) 
does not depend on the chain length. Experimental studies on polystyrene, polymethylmethacrylate, and polyisoprene in various organic solvents, found the transport coe¢ cient D T to be constant in the range M w = 20:::600 kg/Mol [START_REF] Giddings | [END_REF][3][4][5][6][7], with typical values D T 10 11 m 2 /sK. Thus thermally driven transport is faster than di¤usion; the large ratio D T =D makes a thermal gradient an e¢cient trap in a microchannel with ambient ‡ow [8]. An explanation for the molecular-weight independent coe¢cient D T was given by Brochard and de Gennes [9]: In contrast to the long-range ‡ow due to body forces like gravity, the velocity …eld created by the thermal forces decays rapidly with distance; as a consequence, hydrodynamic interactions between di¤erent parts of the polymer are negligible, and D T is independent of the chain length.

Recent experiments show, however, that the thermophoretic mobility D T of short chains does depend on the molecular weight; for polystyrene in toluene, a sig-ni…cant variation with M w occurs in the range below 10 kg/Mol, corresponding to less than hundred molecular units [10]. Even more surprisingly, a very recent study [11] reports inverse Soret motion (D T < 0) for e¤ective monomers in di¤erent solvents. Adding more styrene units results in a change of sign to normal thermal diffusion (D T > 0); then D T increases with the number of units n and saturates at n 100 [11].

Before treating thermally driven transport of polymers, we brie ‡y recall the underlying principle. The stationary state of a non-equilibrium system corresponds to a minimum of the entropy production rate per unit volume [START_REF] De Groot | Non-equlibrium Thermodynamics[END_REF],

= J Q r 1 T X i J i r i T ; (2) 
which is a bilinear form of the ‡uxes of heat J Q and particles J i , and the corresponding generalized forces; the latter are given by the gradients of temperature and the chemical potentials i . Onsager's "phenomenological equations" establish linear relations between ‡uxes and forces, yet do not provide an explicit scheme for calculating transport coe¢ cients like D T . This is achieved by evaluating the thermally driven motion in terms of diffusion models [START_REF] Dougherty | [END_REF][14][15][16][17], molecular dynamics simulations [18][19][20][21], or hydrodynamics. Theoretical work on the Soret e¤ect of complex ‡uids mainly dealt with viscous e¤ects in the framework of low-Reynolds number hydrodynamics, where the solute velocity u 1 is derived from Stokes'equation r 2 v = rP f , with the force density f (r) exerted by the solute on a unit volume of the surrounding ‡uid of viscosity , pressure P , and velocity v. Ruckenstein thus obtained D T for weakly charged particles [22]. Later on, this was formalized and generalized to high valencies and non-uniform electrolytes [23][24][25][26][27]. This hydrodynamic approach treats the solvent as a continuous medium; it neglects both the solvent molecular di¤usivity [28] and ‡uctuations [29].

In the present work we show that the solvent molecular structure and the solute Brownian motion give rise to a second contribution u 2 of opposite sign. Since u 2 depends on the size of the solute, the overall velocity

u = u 1 + u 2 (3) 
and the transport coe¢ cient D T vary with M w and may take both signs. We consider a dilute solution of polymers of n beads; their radius a is equal to that of a solvent molecule. For the sake of simplicity, both are described as "atoms" that interact through a van der Waals attractive potential v ps = C ps =r 6 . Then the energy of a solute atom p in the solvent s of density c reads " p = C ps R dV c=r 6 , and similarly " s with C ss for the solvent. Since the parameters " i > 0 are much larger than the thermal energy, we may identify the chemical potential per bead with the single-atom energy, i = " i . The number density c of solvent molecules varies with temperature according to

c = c(1 r rT ); ( 4 
)
where c is a reference value and = (1= c)dc=dT the thermal expansivity.

Di¤ usion of a single bead. We brie ‡y discuss the case of a single bead n = 1 in dilute solution. Balancing the generalized forces and Stokes friction with coe¢ cient 6 a, and imposing zero net mass ‡ow J p + J s = 0, we have u = (T =6 a)r( s =T p =T ); with the derivative r i = " i rT this leads to

D T = 1 T + " p " s 6 a : (5) 
When taking (1+ T )" i as the enthalpy of transport h i , we recover the standard thermodi¤usion model for solute and solvent molecules of equal size [START_REF] Dougherty | [END_REF][14][15]. Eq. ( 5) relies on the crucial assumption that the response to the generalized forces in ( 2) is given by a single friction coef-…cient 6 a. Clearly, this ceases to be valid if solute and solvent di¤er in molecular volume, since di¤usive motion in general depends on size.

Polymer-solvent interactions. We evaluate the velocity contribution driven by solute-solvent forces, u 1 , from Stokes'equation. Taking v ps to be constant with respect to temperature, we …nd the force on the solvent to be proportional to the density gradient, f = v ps rc. Following standard arguments [30] and neglecting a geometrical factor of the order of unity, one obtains the transport velocity

u 1 = " p 6 a rT: (6) 
In physical terms this means the solute particle migrates to regions of higher solvent density, where its potential energy is lower. Note that u 1 corresponds to the term proportional to " p in (5) and to the force r p in (2). We emphasize that u 1 is independent of the size of the solute, as is well known for transport driven by forces at sticky surfaces [30,31]. When considering a large sphere of radius a n , consisting of n atoms, one has to sum their interaction potentials, resulting in the modi-…ed form v ps = nC ps =(r 2 a 2 n ) 3 [START_REF] Russel | Collidal Dispersions[END_REF]. Yet the transport velocity u 1 turns out to be independent of n and a n , and is entirely determined by the single-atom energy " p and radius a.

For the present case of polymer thermophoresis, Eq. ( 6) describes a monomer as well as a chain of n repeat units [START_REF] Khazanovich | [END_REF]. This is easily understood in terms of the shortranged velocity …eld v(r) of the surrounding ‡uid; contrary to external forces that result in v 1=r, the ‡ow induced by surface forces decays with the third power of the inverse distance, v 1=r 3 [34]. Thus hydrodynamic interactions between distant beads are weak, and Eq. ( 6) is valid independently of the chain length.

Brownian motion. Now we turn to the second contribution u 2 to the transport velocity, which arises from the Brownian motion of the solute and relies on the molecular structure of the solvent. The equation of motion of a particle of mass M along the x-axis, M @ t û = û + f ;

involves Stokes drag with the friction coe¢ cient and a random force f ; the hat indicates ‡uctuating quantities. The random force satis…es [START_REF] Reif | Statistical and Thermal Physics[END_REF]

] D f (t) f (t 0 ) E = 2 k B T (t t 0 ); (8) 
and the formal integral of (7) reads

û(t) = 1 M Z t 0 dt 0 e (t t 0 )= f (t 0 ); (9) 
with the relaxation time = M= . Integrating once more, x(t) = R t 0 dt 0 û(t 0 ), and using (8), one readily …nds the mean square displacement x(t) 2 = 2Dt, with the diffusion coe¢ cient D = k B T = . The ‡uctuating force vanishes in the average, and so does the mean velocity of the Brownian particle hû(t)i = 0.

In a non-uniform system, however, the ‡uctuating force may result in directed motion. As illustrated in Fig. 1, a solute moving by a small distance x(t), creates an opposite ‡ow in the surrounding ‡uid. According to the generalized forces in (2), the molecules prefer regions of lower temperature and lower chemical potential, resulting in mean ‡uxes J i .

This directed motion is quanti…ed in terms of the Fluctuation theorem, which relates the work done on the system to the free energy change [START_REF] Jarzynski | [END_REF], or alternatively, the probability of forward and backward trajectories to their entropy production [37]. In order to obtain a statistical weight for non-equilibrium states, it turns out convenient to use the total entropy change k B , as expressed by the dimensionless quantity

(t) = 1 k B Z t 0 dt 00 Z dV (t 00 ): (10) 
As a consequence of the second law of thermodynamics, a trajectory with positive is more likely to occur than the backward trajectory with [37]; their probability distributions satisfy P + ( )=P ( ) = e . The corresponding average results in the mean solute velocity ûe . Linearizing in and noting hûi = 0, one has

u 2 = hû(t) (t)i : (11) 
Inserting ( 9) and ( 10), we …nd that the velocity u 2 is determined by the two-time correlation function h f (t 0 ) (t 00 )i.

A perfectly rigid polymer in a homogeneous ‡uid, would induce the solvent ‡ow R dV Ĵs = nû, which is n times larger than that of a monomer. Yet real polymers are ‡exible, and the molecular structure of the solvent results in retarded hydrodynamic interactions. As a consequence, the solvent ‡ow Ĵs around a moving polymer is to a large extent out of phase with respect to the random force acting on a given bead.

In order to evaluate the correlation function in Eq. ( 11), we write the random force as a sum of independent one-atom contributions,

f (t) = X k fk (t); (12) 
and û = P k ûk , accordingly. As shown schematically in Fig. 1, we assume that solvent motion correlated with fk is limited to the direct vicinity of bead k; then the coherent part of Ĵs corresponds to a single bead moving at velocity ûk . Thus we have Z dV

D fk (t 0 ) Ĵp=s (t 00 ) E = D fk (t 0 )û k (t 00 ) E ; (13) 
where the plus and minus signs corresponds to p and s, respectively. Since the gradient of the solute chemical potential r p is already accounted for in (6), the remaining entropy production rate reads

= Ĵp p r(1=T ) Ĵs r( s =T ):
Inserting these relations in (11), summing over k, using (8), and performing the time integrals for t , we …nd

u 2 = r s + ( p s ) rT T : (14) 
As in Eq. ( 6) above, we identify the single-bead chemical potential i with the van der Waals attractive energy " i and the derivative r s = " s rT . The friction co-e¢ cient of a polymer reads = R, where the gyration "s=( `); the latter may be positive or negative, depending on the relative magnitude of the two terms.

radius of long chains is given by the scaling law R = `n [START_REF] De Gennes | Scaling Concepts in Polymer Physics[END_REF] and is a numerical constant.

As an essential result of this paper, the two velocity contributions of Eq. ( 3) di¤er with respect to the friction coe¢ cient; the gradient of the solute chemical potential gives rise to u 1 = r p =(6 a) with the single-bead co-e¢ cient 6 a, whereas u 2 depends on . Thus we obtain the thermophoretic mobility of a polymer chain

D T = " p 6 a " s + (" s " p )=T R : (15) 
Putting R = 6 a for a single bead (n = 1) one recovers Eq. ( 5). Increasing the chain length leaves the …rst term " p =(6 a) unchanged, whereas the remainder is reduced by the ratio a=R. For n ! 1 the second term vanishes, i.e., thermal transport of high polymers is entirely determined by the contribution from solute-solvent interactions, " p =(6 a). Thus Eq. ( 15) bridges the gap between the thermodi¤usion model Eq. ( 5) and the result from macroscopic hydrodynamics Eq. ( 6). With typical values for " p ; " s ; , the coe¢ cient D T is an increasing function of the number of beads; in the limit n ! 1 it takes the positive value " p =(6 a), whereas for short chains both signs may occur, as shown in Fig. 2. We discuss these aspects in view of the experimental …ndings on polystyrene (PS) reported in [10,11]. Evaluating the mobility of long chains D T = " p =(6 a) with the Berthelot relation " p p A p A s , the Hamaker constant A p 7 10 20 J of PS, the atomic size a 0:3 nm, and the parameters , , A s gathered in Table I of Ref. [38], one …nds a quantitative agreement with experiment. Both the absolute values and the dependencies on and for eight di¤erent solvents are well described by (15). An inverse Soret e¤ect is expected to occur for a single bead if " p < " s . A negative D T has indeed been observed for e¤ective monomers in the solvents cyclohexane, cyclooctane, and tetrahydrofuran [11], whereas in ethyl-acetate, toluene and methyl-ethyl-ketone, the co-e¢ cient D T is strongly reduced but does not change its sign. These experimental data suggest that the relative value of the second term in (15) depends on additional parameters such as polarity and the molecular size and mass, which are not accounted for in the present work. Moreover, a re…ned analysis would replace " p with p " p , where p is determined by the anharmonicity of the solute-solvent potential.

Though derived here for polymers in organic solvents, the molecular-weight dependence applies equally well to aqueous solutions, and could indeed be relevant for experimental …ndings on polyoxyethylene in water [6]. A very complex behavior has been reported for charged proteins in an electrolyte solution, where the sign of D T depends on temperature and salinity [39].

Regarding the in ‡uence of the persistence length, simple rescaling ` = `leads to the gyration radius R = 1 R. This a¤ects the second velocity contribution u 2 only, whereas the …rst one u 1 remains unchanged. Thus for a sti¤ polymer ( > 1) the second term in Eq. ( 15) is reduced, and D T is shifted to more positive values. This enhancement agrees with molecular dynamics simulations [18] for = 4:2 and 7:9, whereas the data for = 2:9 rather indicate an opposite tendency.

We conclude with a remark on whether dynamical aspects cancel in the ratio of thermal di¤usion and Einstein coe¢ cients, that is, whether the Soret coe¢ cient S T = D T =D can be obtained from static quantities. As pointed out by de Groot in his doctoral thesis [START_REF] De Groot | Nord-hollandsche Uitgevers Maatschappij[END_REF], thermostatics does not account for the entropy ‡ow and cannot provide a general description for the Soret e¤ect. This is illustrated by Eq. ( 15); because of the di¤erent friction coe¢ cients 6 a and R, the two terms cannot be derived from a heat-of-transport picture.
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 1 FIG.1: Schematic view of a random move x(t) of a solute molecule (+), accompanied by an opposite solvent ‡ow (#). The coherent current of both solute and solvent correspond to the volume of a single bead. In a uniform system, the left and right states occur with equal probability. A temperature gradient gives rise to thermal forces that favor one of the positions, thus resulting in a net solute velocity u2.

FIG. 2 :

 2 FIG. 2: Reduced thermophoretic mobility as a function of the chain length n. The points are calculated from Eq. (15) with = 0:6. The dashed lines indicate the maximum and minimum values where D (max) T = "p=(6 a) and D (min) T = D (max) T
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