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Abstract. - We determine analytically how Efimov trimer states are modified by three-body losses
within the model of Braaten and Hammer. We find a regime where the energies approach the
positive real axis and the decay rates vanish.

Introduction. – Motivated by nuclear physics, Efimov discovered that three particles
with short-ranged two-body interactions of scattering length |a| = ∞ can support an infinite
series of weakly bound trimer states [1]. In contrast to systems of nucleons or of 4He atoms,
ultracold gases of alkali metal atoms offer the possibility to tune a by using a Feshbach
resonance, and thus to go more deeply into the limit |a| → ∞ where the Efimov effect sets
in [2–14]. However the situation for alkali metal atoms is complicated by the existence of
deeply bound dimer states: a weakly bound trimer necessarily decays into a deeply bound
dimer and a free atom [6, 8]. This three-body loss process has prevented so far to produce
weakly bound trimers experimentally. The first evidence for the existence of a weakly bound
trimer state is the recent observation of a peak in the three-body loss rate from an ultracold
atomic gas at large negative a [2]. Such peaks were predicted to occur for the values of
a where the energy of an Efimov trimer reaches zero [5, 9]. The simplest description of
three-body losses is the model of Braaten and Hammer, where three incoming low-energy
unbound atoms are reflected back as three unbound atoms with a probability e−4η∗ , and
recombine to a deeply bound dimer and an atom with a probability 1− e−4η∗ ; η∗ being the
so-called inelasticity parameter, which depends on the short-range details of the interaction
potential and of its deeply bound states [3, 4, 9]. This model was used to obtain the decay
rate of Efimov trimers in the regime of small inelasticity parameter η∗ ≪ 1 [4, 8], as well as
3- and 4-body scattering properties [3, 4, 13] and the decay rate of efimovian 3-body states
in a harmonic trap [15, 16]. This model is expected to become exact in the limit where |a|
and the inverse relative momenta between atoms in the initial state are much larger than
the range and effective range of the interaction potential [3, 4, 8, 9].

In this Letter, we determine analytically how Efimov trimers are modified for an arbitrary
inelasticity parameter η∗. We find that the Efimov spectrum rotates counterclockwise in the
complex plane by an angle proportional to η∗. When η∗ reaches the critical value where
this angle equals π, the discrete states disappear into the continuum. When η∗ approaches
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this critical value from below, the energies approach the positive real axis, so that the decay
rates tend to zero. Thus a large inelasticity parameter η∗ ∼ 1 can paradoxically give rise to
long-lived three-body states.
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Fig. 1: Without three-body losses the inelasticity parameter η∗ = 0 and the energy of an Efimov
state lies on the negative real axis. The effect of three-body losses is to rotate this energy in the
complex plane by an angle 2η∗/|s|, where |s| = 1.00624 . . .. When this angle approaches π, the
decay rate Γ = −2 ImE/~ vanishes.

Efimov states without three-body losses. – We start by reviewing Efimov’s solu-
tion of the three-body problem in the absence of three-body losses. We restrict for simplicity
to the case of three identical bosonic particles, where the wavefunction ψ(r1, r2, r3) is com-
pletely symmetric.1 In the limit where the range of the interaction potential is negligible
compared to |a| and to the typical de Broglie wavelength, the interaction can be replaced
exactly by the zero-range model. An eigenstate of the zero-range model solves (i) the
Schrödinger equation

− ~
2

2m

3
∑

i=1

∆ri
ψ = E ψ (1)

when all interparticle distances rij are different from zero, and (ii) the Bethe-Peierls bound-
ary condition

∃A/ ψ(r1, r2, r3) =
rij→0

(

1

rij
− 1

a

)

A(Rij , rk) +O(rij) (2)

in the limit rij → 0 where particles i and j approach each other while the position of their
center of mass Rij and of the third particle rk are fixed. In what follows we consider the
resonant case where the scattering length diverges, a = ∞. Equations (1,2) are then solved
by Efimov’s Ansatz [1]

ψ(r1, r2, r3) = F (R)
(

1 + P̂13 + P̂23

) 1

rρ
sin

[

s arctan
(ρ

r

)]

(3)

1The case of different masses and statistics can be included without difficulty: only the value of s is
modified in the hyperradial problem [17].
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where P̂ij exchanges particles i and j, s ≃ i · 1.00624 is the only solution s ∈ i · (0; +∞) of
the equation s cos (sπ/2) − 8/

√
3 sin (sπ/6) = 0, the Jacobi coordinates are r = ‖r2 − r1‖

and ρ = ‖2r3 − r1 − r2‖/
√

3, the hyperradius is R =
√

(r2 + ρ2)/2, and the hyperradial
wavefunction F (R) solves the hyperradial Schrödinger equation

[

−
(

d2

dR2
+

1

R

d

dR

)

+
s2

R2

]

F (R) =
2m

~2
E F (R). (4)

In the limit R → 0 where all three particles approach each other, the attractive effective
potential s2/R2 diverges strongly, and it is necessary to impose a boundary condition on the
hyperradial wavefunction F (R), as first realized by Danilov [18]. This boundary condition
is conveniently expressed as

F (R) ∝
R→0

(

R

Rt

)

−s

−
(

R

Rt

)s

(5)

where the three-body parameter Rt depends on short-range physics and is a parameter of
the zero-range model. The solution of Eqs. (4,5) is given by the famous geometric series of
Efimov trimers

E0
n = − 2~

2

mR 2
t

exp

[

2

|s|argΓ(1 + s)

]

exp

(

n
2π

|s|

)

, n ∈ Z, (6)

with a (here unnormalized) wavefunction

F (R) = Ks(κR) (7)

where K is a Bessel function and κ is defined by

E = −~
2κ2

2m
(8)

with the determination κ > 0 ensuring that F (R) decays exponentially for R → ∞. Efi-
mov’s spectrum (6) is unbounded from below, in agreement with the Thomas effect [19] and
with the fact that the spectrum for an interaction of finite range b coincides with Efimov’s
spectrum only in the limit |E| ≪ ~

2/(mb2) of weakly bound trimers.

Effect of three-body losses. – We now determine how Efimov’s result is modified
by three-body losses. Again, the three-body problem with zero-range interactions is given
by (1,2), and thanks to Efimov’s Ansatz (3) we reduce it to the radial Schrödinger equation
(4). Following Braaten and Hammer [3,4,8] we model three-body losses by generalizing the
boundary condition (5) to

F (R) ∝
R→0

(

R

Rt

)

−s

− e−2η∗

(

R

Rt

)s

(9)

where the inelasticity parameter η∗ depends on the details of the finite-range interactions
which one wishes to model.2 The physical meaning of (9) is that the outgoing wave ∝ Rs

has an amplitude which is smaller than the amplitude of the ingoing wave ∝ R−s by a
factor e−2η∗ , i.e. three ingoing atoms are reflected with a probability e−4η∗ and are lost by
three-body recombination with a probability 1 − e−4η∗ .

In the absence of losses (η∗ = 0), the boundary condition (9) reduces to Efimov’s bound-
ary condition (5), and one recovers Efimov’s spectrum (6):

En(η∗ = 0) = E0
n. (10)

2E.g. for 133Cs atoms near the −11 G Feshbach resonance, the fit of the theoretical result of [9] to the
experimental data of [2] gives η∗ ≃ 0.06 [2] and Rt ≃ 30 nm [2, 15].
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In presence of losses (η∗ > 0), we solve the hyperradial problem (4,9) with the additional
boundary condition that F (R) must decay quickly enough at infinity.3 Using the known
properties of Bessel functions [20], we obtain the energies

En(η∗) = exp

(

i
2η∗
|s|

)

En(η∗ = 0), (11)

i. e. the spectrum is rotated in the complex plane counterclockwise around the origin by an
angle 2η∗/|s|. The result (11) only holds if the angle 2η∗/|s| < π, i. e. for η∗ < η∗c with

η∗c =
π|s|
2

= 1.5806 . . . , (12)

while for η∗ > η∗c there is no normalisable solution.
The wavefunction is still given by Eqs. (7,8), now with the determination

Reκ > 0 (13)

of the sign of κ, which ensures that the wavefunction is normalisable since

F (R) ∝
R→∞

e−κR

√
R
. (14)

The decay rate

Γ ≡ −2

~
ImE (15)

is given by

~Γ = 2 sin

(

2η∗
|s|

)

|E(η∗ = 0)|. (16)

In the limit of small losses η∗ ≪ 1 we recover the known result [8]

~Γ ≃ 4η∗
|s| |E(η∗ = 0)|. (17)

A surprising effect occurs when η∗ approaches the critical value η∗c from below: the
energies approach the opposite of the energies of the Efimov states without losses

E(η∗) −→
η∗→η∗c

|E(η∗ = 0)|, (18)

so that the decay rates tend to zero. Consistently, the sizes of the states diverge: since the
imaginary part of κ tends to a positive value and its real part tends to 0+, the behavior (14)
of the wavefunction at large R is an ingoing wave with a slowly decaying envelope.

This intriguing effect occurs within the effective low-energy model of Braaten and Ham-
mer. Thus it should also occur for finite-range interactions supporting deeply bound dimers,
provided the two-body interaction potential is tuned in such a way that η∗ is slightly below
η∗c; this could be checked numerically using the methods of [5, 6, 12].

Experimentally, it is rather unlikely to find a Feshbach resonance close to which η∗ is
slightly below η∗c. However this regime may become accessible if interatomic interactions
are tuned using an additional control parameter, e. g. an electric field [21].
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3More precisely the normalisation condition is
∫

∞

0
dRR |F (R)|2 < ∞, since the quantity

∫

dr1 dr2 |ψ(r1, r2, r3)|2, which does not depend on r3, has to be finite.
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