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Abstract

A radiative conductivity model is developed for porous media with a solid opaque
phase and a transparent fluid phase. In a first step, an effective semi transparent
medium occupying the volume of the real fluid phase is characterized, assuming
the validity of the Beer’s laws. For example, rod bundles in squared or triangular
configurations can be directly characterized by effective strongly anisotropic extinc-
tion, absorption and scattering coefficients, optical index and phase function, which
depends on both the incident and scattering unit vectors, by generalizing the Ra-
diative Distribution Function Identification method of Tancrez and Taine (2004).
The validity and accuracy of the associated Beer’s laws are discussed in this case. In
a second step, at the limit of an optically thick porous medium, an original model
based on a perturbation method of the Radiative Transfer Equation directly leads to
the determination, under an accurate validity criterion, of a radiative conductivity
tensor for the fluid phase. Examples of results are given in the case of rod bundles
versus porosity, specific area and local wall absorptivity.
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Nomenclature

Latin symbols
A Specific area per unit volume of the fluid phase
Knaν Radiative Knudsen number
u Unit vector
n Normal unit vector
D Rod diameter, m
Ge Extinction cumulated distribution function
ge Extinction cumulated distribution function for a semi transparent medium
I Impact point
k Radiative conductivity
kij Components of the radiative conductivity tensor, W/m/K
M Point in the fluid phase
n Optical index
P Distance between the axes of two consecutive cylinders in a configura-

tion independent direction, m
Pa Absorption cumulated probability
pa Absorption cumulated probability for a semi transparent medium
s Curvilinear abscissa along a ray
Tw Wall temperature, K
xi Coordinate of the axis i
Greek symbols
α Wall absorptivity
β Extinction coefficient
κ Absorption coefficient
Ω Solid angle
Π Porosity
σ Scattering coefficient
θ, ϕ Euler angles
εX Identification error criterion for the parameter X
Indexes
+ Non-dimensional
′ Directional
(i) Order i of perturbation
diff Diffuse reflection law
h Hemispheric
spec Specular reflection law

ν Frequency

a Absorption

e Extinction

i Direction i
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1 Introduction

An accurate modeling of radiative transfer is required in many applications
involving porous media at high temperature. For these strongly heterogeneous
media, the only continuous equivalent model today available in practice is an
effective semi transparent medium model, characterized by the Beer’s laws.
The radiative properties of such an effective medium are generally been in-
directly obtained by parameters identification techniques. The extinction and
absorption coefficients and phase function are then characterized by param-
eters, which are identified by minimizing discrepancies between, on the one
hand, generally experimental intensity, reflectance or transmittance results,
and on the other hand, results of a global radiative transfer model applied,
in the same conditions, to the effective medium. For different types of porous
media, the works of Hendricks and Howell [1–3], Baillis and Sacadura [4] and
Singh and Kaviany [5] are representative of this approach. A more detailed
bibliography has been given by Tancrez and Taine [6] and Zeghondy et al. [7].
Due to the large number of parameters to determine, these methods very often
lead to a result, while Beer’s laws are assumed to be verified for the effective
medium without any validity criterion.

Based on a statistical representation of a porous medium, the Radiation Dis-
tribution Function Identification (RDFI) method of Refs. [6] and [7] only re-
quires the knowledge of the real medium morphology and radiative properties
at a local scale. Indeed, a porous medium is completely characterized by an
extinction cumulated distribution function, an absorption cumulated proba-
bility and a scattering phase function. The RDFI approch is based on the
identification of the extinction cumulated distribution functions and absorp-
tion cumulated probabilities of the real porous medium and of an effective
semi transparent medium. It also leads to a quantitative validity criterion of
the Beer’s laws, associated with these identifications. This method has been
applied to statistically isotropic virtual media of high porosity, made of trans-
parent (respectively opaque) spheres in an opaque (respectively transparent)
solid phase [6], to a statistically anisotropic real mullite foam [7] and to a
reticulated ceramic foam by Petrasch et al. [8].

For an optically thick porous medium, a radiative conductivity model is used in
practice. In the case of rod bundles, Fischer [9], Cox [10], Tien et al. [11], Sohal
[12], Chatelard [13], Manteufel [14] have calculated a radiative conductivity
from a model at the local scale which generally requires many approximations
(for instance, limitation to transfer with the closest rods). These authors often
use simplified variants of the zonal method of Hottel and Sarofim [15]. Mazza
et al. [16] and Rubiolo and Gatt [17] use a multi-layer approach. But, due to
the required approximations, the predictions by different models [9,13,14,17]
of the rod bundle equivalent conductivity, in a typical configuration defined
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in Ref. [18], can differ by a factor up to 3.
The present work deals with the determination, for a statistically strongly
anisotropic porous medium with an opaque phase, of: i) the radiative proper-
ties of an effective semi transparent medium by the RDFI method in Sec. 2;
ii) the associated radiative conductivity tensor, at the medium optically thick
limit in Sec. 3. In both cases, validity criteria are introduced and the applica-
tion example is a rod bundle, either in squared or triangular configuration for
a large range of porosities and wall absorptivities.

2 Radiative properties of the system

This section deals with the characterization of the radiative properties of the
effective medium associated with a Representative Elementary Volume, called
REV1, of a parallel opaque rod bundle in a transparent fluid or in vacuum.
At this step, no assumption is made on the REV1 optical thickness. In Sec.3
a larger REV, optically thick and called REV2, will be considered, in order to
introduce the radiative conductivity tensor.
The effective properties considered here are those of an equivalent semi trans-
parent medium which occupies the same volume as the fluid phase of porosity
Π, but is characterized by the temperature Tw of the rod opaque walls in the
REV1. Physically, no radiative power is dissipated in the transparent phase.
Two types of parallel opaque rod bundle configurations, characterized by ele-
mentary triangular and squared patterns in a cross section, are considered and
given in Figs. 1(a) and 1(b). The system coordinates are defined in Fig. 1(c).
The bundle porosity Π is a function of P/D, ratio of the distance between the
axes of two consecutive cylinders to their diameter

Π = 1− π

2
√

3 (P/D)2 (triangular pattern), (1)

Π = 1− π

4 (P/D)2 (squared pattern). (2)

The specific area per unit volume of the fluid phase, A, is the dimensional
parameter associated with D. For both pattern, we have

A =
4 (1− Π)

ΠD
. (3)

At the local scale, the opaque rod absorption law is assumed to be either
diffuse and characterized by a wall absorptivity αhν , or approximately specular
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with the same hemispherical wall absorptivity αhν

α′ν(u,n) =
3

2
αhν (−u.n) ; − u.n = − sin θ cos(ϕ− ϕ0) = µ ≥ 0, (4)

where u(θ, ϕ) is the direction of the incident ray and n(ϕ0) the local normal
to a rod, as defined in Fig. 1(c). The notation α′ν(θ, ϕ, ϕ0) will sometimes be
used in the following.

2.1 Application of the Radiation Distribution Function Identification method

The RDFI method, detailed in Refs. [6,7], is applied to the previous systems,
which are both statistically anisotropic porous media.

2.1.1 Extinction coefficient

For a given solid angle dΩ = sin θ dθ dϕ, the extinction coefficient βν(θ, ϕ) is
obtained by identification of Ge(s, θ, ϕ), the extinction cumulated distribution
function of the real medium, with the corresponding extinction cumulated
distribution function of the equivalent semi transparent medium, given by

ge(s, θ, ϕ) = 1− exp[−βν(θ, ϕ)s]. (5)

As detailed in Ref. [7], Ge(s, θ, ϕ) is in fact the probability of extinction at
an impact point I from a current source point M(r), before a distance s and
along a current ray of unit vector u belonging to an elementary angle dΩ

Ge(s, θ, ϕ) dΩ =

s∫
0

1

VF

∫
VF

δ[s′ − s0(r, θ, ϕ)] dr ds′ dΩ, (6)

where s0(r, θ, ϕ) is the distance from M(r), center of the volume element dr, to
the impact point I, δ the Dirac distribution function and VF the volume of the
fluid phase. Ge(s, θ, ϕ) only depends on the geometry and is then independent
of the radiation frequency ν. Consequently, β(θ, ϕ) does not depend on ν.
Moreover, due to the axial symmetry of the considered systems, we obtain

s0(r, θ, ϕ) =
s0(r, π/2, ϕ)

sin θ
. (7)
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As demonstrated in Appendix 1, a consequence of Eqs. 6 and 7 is that

Ge(s, θ, ϕ) = Ge(s sin θ, π/2, ϕ). (8)

Due to the axial symmetry of the system, we obtain, from Eqs. 5 and 8

β(θ, ϕ) = β(π/2, ϕ) sin θ. (9)

As a result, we will only identify, in Sec. 2.2, Ge(s, π/2, ϕ) with the corre-
sponding extinction cumulated distribution function for the equivalent semi
transparent medium, ge(s, π/2, ϕ).

2.1.2 Absorption coefficient

Similarly, the absorption coefficient κν(θ, ϕ), dependent on ν, is obtained
by identification of the absorption cumulated probability of the real porous
medium, Pa ν(s, θ, ϕ), with the corresponding probability for the equivalent
semi transparent medium [6,7]

pa ν(s, θ, ϕ) = κν(θ, ϕ)/β(θ, ϕ) (1− exp[−β(θ, ϕ)s]) . (10)

By generalizing Eq. 4 of Ref. [6], the absorption cumulated probability before a
distance s, and along a current ray of unit vector u belonging to an elementary
angle dΩ is

Pa ν(s, θ, ϕ) dΩ =

s∫
0

1

VF

∫
VF

α′ν [θ, ϕ, ϕ0(r, ϕ)] δ [s′ − s0(r, θ, ϕ)] dr ds′ dΩ.(11)

This equation only differs from Eq. 6 by the factor α′ν [θ, ϕ, ϕ0] which represents
the rod absorption probability. For a diffuse reflection law, since P diff

a ν =
αhν G

diff
e , the absorption coefficient κdiffν (θ, ϕ) is simply given by

κdiffν (θ, ϕ) = αhν β(θ, ϕ). (12)

In the case of a specular reflection law, as demonstrated in Appendix 1, a
consequence of Eqs. 7 and 11 is that

P spec
a ν (s, θ, ϕ) = sin θ P spec

a ν (s sin θ, π/2, ϕ). (13)

Consequently, we obtain, from Eqs. 10 and 13

κspecν (θ, ϕ) = κspecν (π/2, ϕ) sin2 θ. (14)

6



In this expression, a sin θ comes as before from Eq. 7, and the second one from
the proportionality of α′ν [θ, ϕ, ϕ0] with sin θ in Eq. 4. As a result, we will only
identify, in Sec. 2.2, P spec

a ν (s, π/2, ϕ) with the corresponding extinction cumu-
lated probability for the effective semi transparent medium, pspeca ν (s, π/2, ϕ).

2.2 Results for extinction and absorption coefficients

In order to define a reference for the calculations of β(π/2, ϕ), let us consider a
global extinction coefficient βOT (θ), independent of ϕ, at the medium optically
thin limit and for a diffuse reflection law. In these conditions, the flux emitted
by the interfacial area dS of a REV1 can be identified with the flux emitted by
the associated volume of the effective medium fluid phase dVF . If we crudely
assume the effective optical index equal to 1, and by using Eqs. 9 and 12, we
obtain

π αhν I
◦
ν (T ) dS dν =

 π∫
0

αhν βOT (π/2) 2π sin2 θ dθ

 I◦ν (T ) dVF dν, (15)

from which we deduce that βOT (π/2) is equal to A/π. The non dimensional
extinction coefficient β+(π/2, ϕ) is then defined by

β+(π/2, ϕ) =
β(π/2, ϕ)

βOT (π/2)
=
β(π/2, ϕ) π

A
. (16)

From dimensional analysis, β(π/2, ϕ) and consequently κdiffν (π/2, ϕ) are the
product of A by a function of Π. As a result, β+ does not depend on A. The
non dimensional specular absorption coefficient κ+ spec(π/2, ϕ), defined by

κ+ spec(π/2, ϕ) = κspecν (π/2, ϕ)/
[
αhν β(π/2, ϕ)

]
(17)

is independent of ν, because κspecν is proportional to αhν . Furthermore, since
the extinction length distribution is independent of the local reflection law,
κspecν is the product of A by a function of Π, and κ+ spec does not depend on
A.

In the Monte Carlo technique, a large number of rays is generated from ran-
domly chosen points M within the fluid phase and into randomly chosen di-
rections, which leads to huge sets of impact points I at the interface. For each
ray, the value of the distance MI obtained is a contribution to the extinction
distribution function. In practice, as a consequence of Eqs. 9 and 14, the rays
are only generated from points M in a shooting area located in the cross sec-
tion θ = π/2 of the system. This shooting area takes into account the system
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symmetries: it is either a regular hexagonal area limited by six cylinders and
containing one cylinder in its center, as shown in Fig. 1(a), or a squared area
limited by four cylinders, as shown in Fig. 1(b). The system exhibits a mirror
symmetry with respect to π/6 (triangular) or π/4 (squared), and then a π/3
(triangular) or π/2 (squared) periodicity. As a consequence, the calculations
have only been carried out for 30 values of ϕ regularly spaced in the range
[0, π/6] (triangular) or [0, π/4] (squared).

The RDFI method has been applied to squared and triangular bundle con-
figurations for θ = π/2. For each discretized value of ϕk, β

+(π/2, ϕk) and
κ+ spec(π/2, ϕk), which allow us to calculate β(θ, ϕk), κ

diff
ν (θ, ϕk) and κspecν (θ, ϕk),

have been systematically calculated, for the squared (resp. triangular) pattern,
and for 16 values of Π (resp. 18 values of Π) between 0.2146 and 0.99 (resp.
0.093 and 0.99). The smallest values of Π differ: indeed, the maximum com-
pacity is higher for a triangular pattern than for a squared one.
The size of the calculation domain has been chosen in such a manner that,
in the elementary solid angle ϕk where β(π/2, ϕk) has the smallest value,
1 − exp (−3) ' 95% of the rays are extinguished. This size has been first
evaluated for 105 rays, shot in this solid angle. The convergence of the Monte
Carlo method is characterized by a relative standard deviation between 10
sets of 107 rays, which is here of the order of 6.10−4. The typical relative dif-
ference between standard deviations calculated with 108 and 109 rays is less
than some 10−4 for all porosities. Consequently, 108 rays have been used for
all calculations. The determinations of Ge and Pa is then very accurate.
As in Ref. [7], the β(π/2, ϕk) identification error criterion, εe(β(π/2, ϕk)), is

εe(β(π/2, ϕk)) = (18)[
N∑
i=0

[Ge(si, π/2, ϕk)− ge(si, π/2, ϕk)]2 /
N∑
i=0

[1−Ge(si, π/2, ϕk)]
2

]1/2

.

An example of Ge (s, π/2, ϕk) is given in Fig. .2, for a triangular configura-
tion and the porosity Π = 0.513. A complete set of results is given in Ref.
[18]. The function Ge (s, π/2), cumulated for rays associated with all ϕ val-
ues in [0, π/6], is also plotted. The identification of Ge (s, π/2) with ge (s, π/2)
is accurate (εe[β

+(π/2)] = 0.016), and leads to an extinction coefficient β.
The Fig. .2 shows the identified extinction cumulated distribution function
ge, function of β s. It also appears in Fig. .2 that the shape of Ge (s, π/2, ϕk)
can deviate from an exponential function, which is associated with the Beer’s
law. These results are quantified in Fig. 3(a), which shows identified values
of β+(π/2, ϕ) and the associated εe[β

+(π/2, ϕ)] versus ϕ for different poros-
ity values, including 0.513. It appears that εe[β

+(π/2, ϕ)] becomes larger and
larger when the porosity increases. For some singular directions corresponding
to alleys between rods, εe[β

+β(π/2, ϕk)] can even take high values. As Ge is
always determined very accurately, it appears that the Beer’s law is less and
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less verified when the porosity increases from 0.5 to 0.99.
β+(π/2), extracted from Ge(s, π/2), is plotted in Fig. 3(b). While values
of εe[β

+(π/2, ϕ)] can be high, the typical value of εe[β
+(π/2)] is less than

2.4 10−2, due to some compensation between directions. It is a much more
accurate result than in previous works, even for high porosity values. In the
considered very anisotropic geometry, the accuracy on β+(π/2) results is bet-
ter for low values of Π than in the case of the statistically isotropic media of
Ref [6]. Indeed, the effect of the system infinite direction is weak for low values
of Π, and on the contrary, it becomes large for higher porosities. Results for
triangular and squared patterns are similar. Finally, the same conclusions can
be drawn for κ+ spec(π/2) with Fig. 3(c).

2.3 Direct determination of the anisotropic phase function

The phase function pν(u,ur) is defined by the fact that pν(u,ur) (dΩr/4π) is
the probability that the intensity extinguished by scattering in the solid angle
dΩ(θ, ϕ) is scattered in the solid angle dΩr(θr, ϕr). pν(u,ur) is expressed from
the bidirectional reflectivity ρ′′ν of the opaque wall, as in Ref. [6], by

1

4π
pν(u,ur) dΩr (19)

=
1/VF

∫
VF / cos(ϕ0(r,ϕ)−ϕr)≥0 ρ

′′
ν (u,ur,n (r, ϕ)) (−u.n (r, ϕ)) dr dΩr∫

4π 1/VF
∫
VF / cos(ϕ0(r,ϕ)−ϕ′

r)≥0 ρ
′′
ν (u,u′r,n (r, ϕ)) (−u.n (r, ϕ)) dr dΩ′r

.

The summations in Eq. 19 are in practice carried out within the Monte Carlo
calculations of Sec. 2.1. If we consider the global homogenized system, ϕ and
ϕr independently belong to the range [0, 2π]. For a given couple (u,ur), the
only shooting points r considered are those for which the reflected ray does
not go through the rod, i.e. ur.n ≥ 0 or cos (ϕ0 (r, ϕ)− ϕr) ≥ 0. Since ϕ0 is
the angle of the normal vector at the first impact point between the incident
ray and the cylinder, the incident ray never enters in the rod: u.n ≤ 0, i.e.
cos (ϕ0 (r, ϕ)− ϕ) ≤ 0. Indeed, at this local scale, and for a given impact,
ϕ0 − ϕ is in the range [π/2 , 3π/2]. Note that pν does not depend on A: for
a given Π, a change in A is an homothety (D changes but P/D remains
constant), which keeps angles unchanged.

For a diffuse reflection law, the local bidirectional reflectivity is uniform and
equal to (1− αhν)/π, and we obtain a phase function independent of θ and θr

pdiff (ϕ, ϕr) = 2π

∫
VF / cos(ϕ0(r,ϕ)−ϕr)≥0 cos (ϕ− ϕ0(r, ϕ)) dr∫ 2π

0

∫
VF / cos(ϕ0(r,ϕ)−ϕ′

r)≥0 cos (ϕ− ϕ0(r, ϕ)) dr dϕ′r
. (20)
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For a specular reflection law, the local bidirectional reflectivity is null at the
local scale, except when the incident and reflected directions are associated
through the Snell-Descartes law. This reflectivity is normalized with respect
to reflecting directions and is then

ρ
′′ spec
ν (u,ur,n) =

[
1− 3

2
αhν (−u.n)

]
(−u.n)

δ
(
u‖r + u‖

)
δ
(
u⊥r − u⊥

)
, (21)

where ‖ denotes the component of a vector along n, and ⊥ its component
perpendicular to n. Taking into account Eqs. 19 and 21, pspecν can be written
at the global scale as

pspecν (θ, ϕ, θr, ϕr) = 4π δ (cos θr − cos θ) wν(θ, ϕ, ϕr), (22)

wν(θ, ϕ, ϕr) =

[
1− 3/2αhν sin θ

∣∣∣sin (ϕr−ϕ
2

)∣∣∣] j(ϕ, ϕr)∫ 2π
0

[
1− 3/2αhν sin θ

∣∣∣sin (ϕ′
r−ϕ
2

)∣∣∣] j(ϕ, ϕ′r)dϕ′r .
In this expression, we have used Eq. 4 and the properties of the incidence and
reflection angles of the Snell-Descartes law at the local scale, to write

− cos (ϕ− ϕ0) = cos (ϕr − ϕ0) =
∣∣∣∣cos

(
ϕr − ϕ± π

2

)∣∣∣∣ =
∣∣∣∣sin(ϕr − ϕ2

)∣∣∣∣ ≥ 0.(23)

In the θ = π/2 plane and for a given couple (ϕ, ϕr), j(ϕ, ϕr) is the proportion
of surface elements in the shooting area that give the impact points such as
ϕr is the specular reflection angle associated to ϕ.
All the results related to both diffuse and specular reflection laws are obtained
by a Monte Carlo technique. Two examples of phase functions are plotted in
Fig. .4.

2.4 Effective medium optical index

The effective scattering coefficient σν(θ, ϕ), equal to β(θ, ϕ) − κν(θ, ϕ), has
been determined independently of pν (θ, ϕ, θr, ϕr). Consequently, it is necessary
to introduce an effective optical index nν(θ, ϕ) in order to comply with the
equilibrium solution of the Radiative Transfer Equation (RTE). Consequently,
nν has to fulfill the two following conditions, as established in Appendices 2
and 3

n2
ν(θr, ϕr)σν(θr, ϕr) =

1

4π

∫
4π

n2
ν(θ, ϕ)σν (θ, ϕ) pν (θ, ϕ, θr, ϕr) dΩ, (24)
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∫
4π

κν (θ, ϕ) n2
ν(θ, ϕ) dΩ = Aπ αhν , (25)

in which all the quantities σν , κν and pν have been previously determined.

In the case of a diffuse reflection law, it has been numerically established
that n2 is independent of ν, and that the product n2(θ, ϕ) β+(θ, ϕ) is equal
to π/4. Indeed, in any point of the transparent phase of an optically thin
medium, the intensity at the local scale due to the wall emission, αhν I

◦
ν (Tw), is

isotropic. Therefore, the emission term of the RTE, n2(θ, ϕ)β(θ, ϕ)αhν I
◦
ν (Tw),

has to be also isotropic. This result can be found again by identification of
the expressions of the power emitted in the volume of a REV1 with the flux
emitted by the walls in this REV1.

2.5 First homogenization

In conclusion, this first homogenization allows us to define all the radiative
properties of an effective medium associated with a porous medium with an
opaque solid phase. The radiative flux, in tensorial convention, is

qRi (xk) = Π

∞∫
0

∫
4π

Iν(xk, θ, ϕ)ui(θ, ϕ) dΩ dν, i = x, y, z (26)

where Iν is the intensity of the effective medium within the transparent phase,
as discussed in Ref. [6]. For any reflection law, the current intensity Iν is
obtained by solving the RTE

uj(θ, ϕ)
∂Iν
∂xj

(xk, θ, ϕ) + β(θ, ϕ) Iν(xk, θ, ϕ) (27)

=κν(θ, ϕ)n2
ν(θ, ϕ) I◦ν [Tw(xk)] +

1

4π

∫
4π

σν(θ
′, ϕ′) pν(θ

′, ϕ′, θ, ϕ) Iν(xk, θ
′, ϕ′) dΩ′,

where the cartesian coordinates xj of a current point are introduced.
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3 Radiative conductivity tensor

3.1 Perturbation method (general case)

The purpose of this section is to develop, independently of the system geome-
try, the analytical expression of the radiative flux in the optically thick limit,
in the case of effective radiative properties depending on both θ and ϕ. Under
conditions defined in the following, the RTE can be treated by a perturbation
method. We introduce the typical size δ of a second REV, called REV2, larger
than REV1 but small in front of the global system size L, and the parameter

η(θ, ϕ) =
1

β(θ, ϕ) δ
. (28)

Introducing the typical scale δ in the RTE (Eq. 27) leads to

η(θ, ϕ)uj(θ, ϕ)
∂Iν
∂x+

j

(x+
k , θ, ϕ) + Iν(x

+
k , θ, ϕ) =

κν(θ, ϕ)

β(θ, ϕ)
n2
ν(θr, ϕr) I

◦
ν [Tw(x+

k )]

+
1

4π β(θ, ϕ)

∫
4π

σν(θ
′, ϕ′) pν(θ

′, ϕ′, θ, ϕ) Iν(x
+
k , θ

′, ϕ′) dΩ′, (29)

where x+
j is equal to xj/δ. We now assume that the perturbation parameter

η(θ, ϕ) is very small, and more precisely, that the REV2 absorption optical
thickness is large for all considered frequencies, i.e.

3

min(κν)
< δ � L ⇐⇒ Knaν =

1

κν(θ, ϕ) δ
<

1

3
, (30)

as discussed in Appendix 4 and Ref. [19]. The model validity strictly depends
on the emission-absorption phenomena, even if the results will mainly depend
on extinction. Knaν , defined by Eq. 30, is a radiative Knudsen number which
plays the same role as the Knudsen number in the molecular conduction theory,
also based on a perturbation method (see for instance, Ref. [20]).
We search a solution of Eq. 29 under the form Iν = I(0)

ν + I(1)
ν . I(0)

ν is the zero
order perturbation solution, also called Local Thermodynamical Equilibrium
(LTE) solution, independent of η and uniform within the REV2. I(1)

ν is the first
order perturbation solution, proportional to η, and consequently depending on
spatial gradients at a scale Xk larger than δ. The temperature is then written
Tw(Xk).
As established in the end of Appendix 2, I(0)

ν is equal to the equilibrium
intensity n2

ν(θ, ϕ) I◦ν . Consequently, I(1)
ν , the first order perturbation solution

of Eq. 29, spatially uniform within the REV2 at location Xk, is obtained from
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I(1)
ν (Xk, θ, ϕ) =−uj(θ, ϕ)n2

ν(θ, ϕ)

β(θ, ϕ)

dI◦ν
dTw

[Tw(Xk)]
∂Tw
∂Xj

(Xk) (31)

+
1

4π β(θ, ϕ)

∫
4π

σν(θ
′, ϕ′) pν(θ

′, ϕ′, θ, ϕ) I(1)
ν (Xk, θ

′, ϕ′) dΩ′.

Without scattering (σν = 0), the first term of the right handside is the solu-
tion of the equation. Therefore, the scattering source term can be seen as a
perturbation of this solution, which is calculated by an iterative technique for
both diffuse and specular reflection laws, determined by Eqs. 9, 12, 14, 16 and
17. If we call In−sν the no scattering solution of Eq. 31, and Sν the scattering
operator (defined by the second term of the right handside of Eq. 31), the
exact solution of this equation can be written under the form

I(1)
ν =

+∞∑
k=0

Skν
(
In−sν

)
, (32)

where the index k means that the operator Sν is applied k times. A truncation
of this infinite series is necessary for numerical calculation. We say that con-
vergence is reached when the relative difference between the values at ranks k
and k+ 1 of the truncated partial sum is smaller than a given percentage. For
instance, in the case of a diffuse reflection law in the squared configuration,
with αhν = αh = 2/9, 7 iterations are necessary to obtain converged values
for every couple (θ, ϕ) when the relative difference is of 1%. This number is
growing to 30 iterations for a relative difference of 10−9 %. For any configura-
tion, reflection law and value of αh, no significant evolution of the radiative
conductivities is observed under a precision of 10−2 %, and this value is then
chosen in the following. These calculations last never more than a few hours
on a current single processor computer. Finally, after reaching convergence,
we obtain an approximate expression of the first order intensity I(1)

ν , which is
always proportional to −∂Tw/∂Xj, whatever the truncation rank is.

The contribution of I(0)
ν to the radiative flux given by Eq. 26 is null, as es-

tablished in Appendix 2. The only contribution comes from the first order
intensity I(1)

ν , solution of the implicit Eq. 31. Taken into account Eqs. 26 and
32, qRi can be written under the form

qRi (Xk) = −∂Tw
∂Xj

(Xk) Π
π

A

∞∫
0

dI◦ν
dTw

[Tw(Xk)]
∫
4π

ui(θ, ϕ)Yj(Π, α
h
ν , θ, ϕ) dΩ dν,(33)

where Yj is a vector issued from the I(1)
ν truncated solution, obtained at the

last iteration. Finally, we directly find a radiative Fourier law, also called
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Rosseland approximation, i.e.

qRi = −kij
∂Tw
∂Xj

, (34)

where kij is given by

kij
[
Π, A, αhν , Tw(Xk)

]
= Π

π

A

∞∫
0

dI◦ν
dTw

[Tw(Xk)] k
+
ij

(
Π, αhν

)
dν i, j = x, y, z.(35)

In practice, k+
ij

(
Π, αhν

)
, equal to

∫
4π ui(θ, ϕ)Yj(θ, ϕ,Π, α

h
ν) dΩ, is tabulated. It

is worth of notice that the spatial scale in use for practical application with
this homogenization is Xj, of smallest resolution δ.
Under the approximation of gray walls (αhν = αh), we simply obtain

kij
[
Π, A, αh, Tw(Xk)

]
=

Π

A
4σ Tw(Xk)

3 k+
ij

(
Π, αh

)
. (36)

The properties of the radiative conductivity tensor kij depend on the con-
sidered porous medium statistical symmetries. For a statistically isotropic
medium, kij degenerates in a simple scalar radiative conductivity k.

3.2 Examples of Results (rod bundles)

In the case of rod bundles, for both specular and diffuse reflection laws, the
radiative conductivity model cannot be applied for the infinite direction. The
validity criterion of Eq. 30 is never verified. Morever, the directional integrals
in Eq. 26 do not converge.
In the following, we only consider a two dimensional application characterized
by uniform fields of any quantity along z axis. We obtain : k+

xx = k+
yy = k+ and

k+
xy, k

+
yx are null, for symmetry reasons. These results have been numerically

checked with a high accuracy. The effective medium is then characterized, for
2D applications, by scalar conductivities k for both triangular and squared
configurations, and both diffuse and specular reflection laws. k has only been
calculated up to Π = 0.75, for reasons detailed in the following. Results have
been fitted by a(Π)αh

2
+b(Π)αh+c(Π). There is an exception for Π = 0.2146

with a specular reflection law in the squared configuration, where the fit is
a line, due to discretization approximations. The highest relative error intro-
duced by the fit for all Π and αh values is less than 3.10−3 in the diffuse case
and less than 2.10−2 in the specular case for the two configurations. Coeffi-
cients a, b and c are given in Table 3.2.
As pointed out in the introduction, there is a lack of accurate experiments that
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could validate this radiative conductivity model. Nevertheless, some theoreti-
cal models have been proposed in previous works, but for a diffuse reflection
law only. In a squared configuration with Π = 0.5353 and αh = 0.8, the cal-
culations of Manteufel [14] give k+ = 6.52, the ones of Fischer [9] k+ = 4.33,
and our model k+ = 10.15. In a triangular configuration with Π = 0.5373 and
αh = 0.8, the calculations of Manteufel lead to k+ = 5.19 while our model
gives k+ = 4.95. In both configurations, the order of magnitude is similar, but
we obtain significantly higher values of radiative conductivity in the squared
case.
It is of practical interest to discuss the influence of the dependence of β on ϕ
in the radiative conductivity calculation. In order to eliminate the influence
of the scattering source term, we have chosen αh = 1, which corresponds to
non reflecting rods. Comparisons between values of k obtained from the ex-
tinction coefficient β(π/2, ϕ), associated with Ge(s, π/2, ϕ) and the radiative
conductivity obtained from the ϕ independent extinction coefficient β (π/2)
associated with Ge(s, π/2), have been carried out. It is worth of notice that,
for conductivity calculations, β can be considered as independent of ϕ for
Π < 0.5 with a relative error on conductivity less than 0.03. Consequently, as
β (π/2) is accurately determined for Π < 0.5 (see Fig. 3(b)), k is determined
with an accuracy of a few percent from the smallest values of Π to 0.5, but
the uncertainty on k increases when Π increases. For this reason, we have only
and arbitrarily calculated k up to Π = 0.75, associated with a relative error
on β of about 0.1.

Conclusion

In a first part, statistically strongly anisotropic porous media (rod bundles),
have been modeled by effective semi transparent media, from the Radiative
Distribution Function Identification method. Directional extinction, absorp-
tion and scattering coefficients and a bidirectional scattering phase function
have been determined with a quantitative validity criterion. As the RDFI
method is accurate, it has been established that for rod bundles: i) the Beer’s
law in use in the effective medium is a rather accurate model for low porosity
(less than 0.5); in these conditions, extinction and absorption coefficients can
be considered in practice as depending only on the angle with the rod axis
(vertical-based azimuth); ii) the Beer’s law is less and less accurate when the
porosity increases. An advantage of the RDFI approach is to clearly establish
this type of limitation. Consequently, an important research topic for many
applications, in nuclear safety for instance, is to develop original models for
porous media where the Beer’s laws are not valid.
In a second part, for optically thick media and when the Beer’s law validity
criterion is reasonably verified, a radiative conductivity tensor has been di-
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rectly determined from the whole set of effective radiative properties, includ-
ing strongly anisotropic bidirectional scattering phase function. A key point
is the validity criterion of this model, based on the absorption optical thick-
ness, even if the radiative conductivity also strongly depends on the scattering
coefficient and phase function.
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Appendices

Appendix 1

This Appendix deals with the dependence on θ of Ge and Pa ν for rod bundles
(Sec. 2.1). From Eq. 6, we obtain, using the transformation s′ = s′′/ sin θ

Ge(s, θ, ϕ)

=

s sin θ∫
0

1

VF

∫
VF

δ

[
s′′

sin θ
− s0(r, π/2, ϕ)

sin θ

]
dr

ds′′

sin θ

=

s sin θ∫
0

1

VF

∫
VF

δ [s′′ − s0(r, π/2, ϕ)] dr ds′′

=Ge(s sin θ, π/2, ϕ). (.1)
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With the same transformation, in the case of a specular reflection law, P spec
a ν (s, θ, ϕ)

given by Eq. 11, becomes, using Eq. 4

P spec
a ν (s, θ, ϕ)

=−3

2
αhν sin θ

s sin θ∫
0

1

VF

∫
VF

cos [ϕ− ϕ0(r, ϕ)] δ

[
s′′

sin θ
− s0(r, π/2, ϕ)

sin θ

]
dr

ds′′

sin θ

= sin θ

s sin θ∫
0

1

VF

∫
VF

−3

2
αhν cos [ϕ− ϕ0(r, ϕ)] δ [s′′ − s0(r, π/2, ϕ)] dr ds′′

= sin θ P spec
a ν (s sin θ, π/2, ϕ). (.2)

Appendix 2

This appendix deals with some properties at equilibrium or in LTE conditions.
When the effective medium is at equilibrium, characterized by n2

ν(θ, ϕ) I◦ν (Tw),
the RTE becomes

β(θ, ϕ)n2
ν(θ, ϕ) I◦ν (Tw) =κν(θ, ϕ)n2

ν(θ, ϕ) I◦ν (Tw) (.1)

+
I◦ν (Tw)

4π

4π∫
0

σν (θ′, ϕ′) pν (θ′, ϕ′, θ, ϕ) n2
ν(θ
′, ϕ′) dΩ′.

Consequently, we obtain:

σν(θ, ϕ)n2
ν(θ, ϕ) =

1

4π

4π∫
0

σν (θ′, ϕ′) pν (θ′, ϕ′, θ, ϕ) n2
ν(θ
′, ϕ′) dΩ′. (.2)

At this step, we search I(0)
ν , the zero order perturbation solution of Eq. 29.

The first term of the first member of this equation, proportional to η, vanishes
and we obtain

β(θ, ϕ) I(0)
ν (Xk, θ, ϕ) =κν(θ, ϕ)n2

ν(θ, ϕ) I◦ν [Tw(Xk)] (.3)

+
1

4π

4π∫
0

σν (θ′, ϕ′) pν (θ′, ϕ′, θ, ϕ) I(0)
ν (Xk, θ

′, ϕ′) dΩ′.

By taking into account Eqs. .2 and .3, we obtain I(0)
ν (Xk, θ, ϕ) = n2

ν(θ, ϕ) I◦ν [Tw(Xk)]
as the unique solution.

Appendix 3
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This appendix deals with the normalization of n2
ν(θ, ϕ). At the limit of an

optically thin medium, we identify in dν the flux emitted by the volume of
the effective fluid phase contained in a REV1, dVF , with the flux emitted by
the real interfacial area dS in the same REV1

dVF dν
∫
4π

κν (θ, ϕ) n2
ν (θ, ϕ) I◦ν (Tw) dΩ = dS dν

∫
2π

α
′

ν (θ, ϕ) I◦ν (Tw) cos θ dΩ.

(.1)

The specific area by unit volume of the transparent phase, A, is equal to
dS/dVF , and the unknown factor that normalizes n2

ν(θ, ϕ) is then given by∫
4π

κν (θ, ϕ) n2
ν (θ, ϕ) dΩ = Aπ αhν . (.2)

Appendix 4

In this appendix, we define a criterion of validity for the radiative conduction
model, in a similar way as the classical diffusion model for a material system.

Let us first precise the pertinent scale of a REV2, such as the perturbation
method can be applied at this scale. Eq. 31 is identical to Eq. .3 of Appendix
2 after substitution of (uj/β) n2

ν (dI◦ν/dTw) (∂Tw/∂Xj) by (κν/β) n2
ν I
◦
ν (Tw).

A practical criterion is issued from the exponential features of the RTE so-
lution: (uj/β)n2

ν (dI◦ν/dTw) (∂Tw/∂Xj) has to be 3 to 5 times smaller than
(κν/β) n2

ν I
◦
ν (Tw).

A practical formulation in non dimensional quantities is, for all considered
frequencies,

κν δ > 3 to 5, ⇐⇒ Knaν =
1

κν δ
<

1

5
to

1

3
, (.1)

where Knaν is the radiative Knudsen number. The model is valid if: i) the tem-
perature field and all the medium radiative properties can be assumed uniform
within the REV2 of size δ (or each phase of the REV2) for calculations at the
zero order of perturbation, ii) the temperature gradient can be considered uni-
form in this same REV2 (or each phase within the REV2) for calculations at
the first order of perturbation.

[Table 1 about here.]

[Fig. 1 about here.]

[Fig. 2 about here.]
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[Fig. 3 about here.]

[Fig. 4 about here.]
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