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Abstract

A �nite volume method for the numerical solution of axisymmetric inviscid swirling
�ows is presented. The governing equations of the �ow are the axisymmetric com-
pressible Euler equations including swirl (or tangential) velocity. A �rst-order scheme
is introduced. In this one, convective �uxes at cell interfaces are evaluated by the
Rusanov or the HLLC numerical �ux and geometric source terms are discretized by
the explicit Euler method. Extension to the second-order space approximation using
a multislope MUSCL method is derived. A stationary solution of the �uid �ow fol-
lowing the radial direction has been established with a zero and non-zero tangential
velocity. Numerical and exact solutions are compared for the Riemann problem. Ef-
fectiveness of the multislope MUSCL scheme is demonstrated for strongly shocked
axially symmetric �ows as the forward-facing step and the spherical bubble com-
pression problems.

Key words: Axisymmetric compressible Euler equations, Swirling �ow, Finite
volumes, MUSCL method, Unstructured mesh.

1 Introduction

Axisymmetric Euler system using cylindrical coordinates is used in numerous
applications such as axisymmetric �ows in a nozzle [1], supersonic jets [2], tur-
bomachine modelling [3,4]. More recently, inductive plasma �ows are modelled
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with the axisymmetric Euler formulation taking into account the tangential
velocity, the so-called swirling �ow [5,6].

From a numerical point of view, the �nite volume method [7�9] is a popular
technique to compute numerical approximations of the Euler system solution
for axisymmetric geometries. A particular issue concerns the choice of the
variables to conserve. In a �rst approach, the mean value approximation of
any generic function v on the cell Ci is performed by using the classical average

vi ≈
∫
Ci

v drdz
∫
Ci

drdz

where we employ the measure (metric) dr dz [10]. A second approach consists
in computing the mean value using the measure r dr dz [7]:

vi ≈
∫
Ci

v r drdz
∫
Ci

r drdz

which leads to a better formulation. Indeed, vi corresponds to the mean value
of v in the three-dimensional context, i.e. the mean value on the axisymmet-
ric torus with section Ci. On the other hand, the formulation simpli�es the
boundary condition at r = 0 since a null �ux value naturally derives from the
�ux integration and no additional constraint is required on the symmetry axis
[7].

To provide an approximation of the solution of the axisymmetric Euler sys-
tem, we use a fractional step technique where we split the formulation into
a conservative homogeneous equation and the source term. To solve the con-
servative part, the traditional technique consists in using a �rst-order solver
(Roe, HLLC or Riemann solver) combined with a second-order reconstruc-
tion such as the MUSCL method [11,12] to improve accuracy. The classical
MUSCL technique uses a piecewise linear reconstruction with a slope limit-
ing procedure to ensure the L∞�stability. Then two new approximations are
computed on both sides of each edge and are employed in the numerical �ux
evaluation. We propose here to use a new reconstruction technique: the mul-
tislope MUSCL method [13�15] where the reconstructed values are obtained
using an approximation of speci�c directional derivatives instead of the full
gradient. The main advantage is that the reconstruction can be rewritten as
a one-dimensional MUSCL method at each interface leading to a simple and
e�cient scheme.

In the axisymmetric context, there are few numerical tests to validate the
scheme for compressible Euler equations. For example, we are not able to
compute the exact solution of the Riemann problem excepting in very partic-
ular situations. We propose a new numerical test for the swirling �ow based
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on the steady-state situation. We manage to reduce the Euler system to an
ordinary di�erential equation and a simple approximation based the Euler
forward algorithm is proposed to provide an accurate numerical solution.

The organization of the paper is as follows. In section 2, we present the govern-
ing Euler equations in cylindrical coordinates assuming rotational symmetry.
In section 3, we present the numerical scheme and its second-order extension
using a multislope MUSCL method. In section 4, we establish a stationary
solution assuming that the �ow depends only on the radial direction. Finally,
we present numerical experiments to test the obtained scheme.

2 Axisymmetric Euler equations for swirling �ows

We �rst present compressible Euler equations using the cylindrical coordinates
and simplify them under the axisymmetric invariance assumption. For any
point X = (x, y, z) ∈ R

3 we denote by (r, θ, z) the associated cylindrical
coordinates. Let P = R

+ × R = {r ≥ 0, z ∈ R} denote an axial cut of the
three dimensional space (the set of parameters) and let Ω be an open set of
P . The open set Ω̃ ⊂ R

3 will denote the three�dimensional volume obtained
by rotation around the axial direction 0z, i.e.

Ω̃ := {(r cos θ, r sin θ, z); (r, z) ∈ Ω, 0 ≤ θ < 2π}.

We start by giving the compressible Euler equations in the domain Ω̃ using
cartesian coordinates:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u + P I) = 0, (2)

∂E

∂t
+ ∇ · ((E + P )u) = 0, (3)

where ρ is the �uid mass density, P is the pressure, u is the velocity vector
and E is the total energy per unit volume. The tensors u⊗ u and I stand for
the tensor product of u by u and the unit tensor respectively.

To close the system, we add a state equation which in general form reads

P = P̂ (ρ, e),
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where e stands for the speci�c internal energy related to the total energy by:

E = ρ e +
1

2
ρ|u|2.

In the sequel, we restrict ourselves to an ideal gas, that is,

P = (γ − 1)ρ e, (4)

where γ is the ratio of speci�c heats at constant pressure and volume.

We introduce the mapping de�ning cylindrical coordinates:

(r, θ, z) 7→ (r cos θ, r sin θ, z).

To any scalar function f : Ω̃ → R, we associate the function f̃(r, θ, z) =
f(r cos θ, r sin θ, z) for (r, z) ∈ Ω and θ ∈ [0, 2π). Due to the axial symmetry
we look for solutions (density, velocity, pressure, . . . ) that are independent of
θ, i.e. all the involved functions will depend on space variables r and z and
on the time variable t.

In the sequel, for the sake of simplicity, we shall omit the tilde symbol on
the functions f = f(r, z). Applying the divergence operator in cylindrical
coordinates and eliminating the θ�derivatives, we deduce from (1)�(3) the
following system:

∂ρ

∂t
+

1

r

∂

∂r
(rρur) +

∂

∂z
(ρuz) = 0, (5)

∂

∂t
(ρur) +

∂

∂r
(ρu2

r + P ) +
∂

∂z
(ρuruz) +

1

r
ρ (u2

r − u2
θ) = 0, (6)

∂

∂t
(ρuz) +

∂

∂r
(ρuzur) +

∂

∂z
(ρu2

z + P ) +
1

r
ρ uzur = 0, (7)

∂

∂t
(ρuθ) +

∂

∂r
(ρuθur) +

∂

∂z
(ρuθuz) +

2

r
ρ uθur = 0, (8)

∂E

∂t
+

1

r

∂

∂r
(rur(E + P )) +

∂

∂z
(uz(E + P )) = 0. (9)

Note that assuming rotational symmetry does not reduce the number of un-
knowns since the velocity �eld has three nonzero components that are re-
spectively the radial ur(r, z), the tangential uθ(r, z) and the axial component
uz(r, z).

To derive a conservative form of the system, we multiply equations (5)�(9)
by the radial coordinate r like in [16,8]. We then obtain the �nal form of the
Euler equations:
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∂

∂t
(rρ) +

∂

∂r
(rρur) +

∂

∂z
(rρuz) = 0, (10)

∂

∂t
(rρur) +

∂

∂r
(rρu2

r + rP ) +
∂

∂z
(rρuruz) = ρu2

θ + P, (11)
∂

∂t
(rρuz) +

∂

∂r
(rρuzur) +

∂

∂z
(rρu2

z + rP ) = 0, (12)
∂

∂t
(rρuθ) +

∂

∂r
(rρuθur) +

∂

∂z
(rρuθuz) = −ρuθur, (13)

∂

∂t
(rE) +

∂

∂r
(rur(E + P )) +

∂

∂z
(ruz(E + P )) = 0. (14)

Equivalently, we can write this system under the conservative form:

∂(rU)

∂t
+

∂(rFr(U))

∂r
+

∂(rFz(U))

∂z
= G(U), (15)

where U is the conservative variable vector de�ned by

U =




ρ

ρur

ρuz

ρuθ

E




,

and the �uxes Fr(U) and Fz(U) and the geometric source term G(U) are given
by:

Fr(U) =




ρur

ρu2
r + P

ρuzur

ρuθur

ur(E + P )




, Fz(U) =




ρuz

ρuruz

ρu2
z + P

ρuθuz

uz(E + P )




, G(U) =




0

ρu2
θ + P

0

−ρuθur

0




.

Clearly, the formulation (15) involves a divergence form in the left-hand side
and the remaining terms are considered as source terms on the right-hand
side. This form of the equations enables casting the so-called well-balanced
numerical schemes required to enable preserving equilibrium states like gas at
rest.
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3 A �nite volume scheme with multislope MUSCL reconstruction

3.1 A �rst-order �nite volume scheme

To address numerical approximation, we describe the �nite volume method we
use for the conservative part of the Euler system. We consider a conforming
unstructured mesh Th of the two-dimensional domain Ω, made of triangles (or
cells) Ci ⊂ Ω, i = 1, . . . , I. We denote by ν(i) the index set of the neighbouring
triangles Cj which share a common edge Sij with the cell Ci and by nij =
(nij,r, nij,z) the outward unit normal vector to Ci.

We �rst integrate the system (15) over the cell Ci and use the Green formula
to get

d

dt

∫

Ci

U(r, z, t) r dr dz +
∫

∂Ci

(Fr(U)nij,r + Fz(U)nij,z) r dσ =
∫

Ci

G(U) dr dz,

where ∂Ci denotes the boundary of the cell Ci. Let (tn = n ∆t)n∈N be a uniform
subdivision of the time interval [0, +∞). Integrating on the interval [tn, tn+1]
we obtain the equation:

∫

Ci

U(r, z, tn+1) r dr dz =
∫

Ci

U(r, z, tn) r dr dz

−
tn+1∫

tn

∫

∂Ci

(Fr(U) nij,r + Fz(U) nij,z) r dσ dt

+

tn+1∫

tn

∫

Ci

G(U) dr dz dt.

We aim at computing a constant piecewise approximation of the solution U
on each cell Ci. To this end, Un

i represents an approximation of the average
of U on Ci at time tn. More precisely, for a given cell Ci, we introduce the
following measures

|Ci| =
∫

Ci

dr dz, |Ci|r =
∫

Ci

r dr dz,

and we de�ne the approximation

Un
i ≈ 1

|Ci|r

∫

Ci

U(r, z, tn) r dr dz. (16)
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In the same way, we de�ne the measures of an edge

|Sij| =
∫

Sij

dσ, |Sij|r =
∫

Sij

r dσ,

and we de�ne the approximation of the �ux across the interface Sij during the
interval [tn, tn+1] by

F n
ij ≈

1

∆t |Sij|r

tn+1∫

tn

∫

Sij

(Fr(U) nij,r + Fz(U) nij,z) r dσ dt.

We eventually de�ne an approximation of the right-hand side contribution by

Gn
i ≈ 1

∆t |Ci|

tn+1∫

tn

∫

Ci

G(U) dr dz dt.

It results from (15) that the integrals involve two kinds of measures: r dr dz
and dr dz. To compute the mean value on the cell Ci employing the r dr dz
measure, we have to divide by |Ci|r since the approximation (16) becomes
an equality for constant functions. On the other hand, we divide by |Ci| to
provide a mean value of Gn

i since we use the dr dz measure in the integral (see
[7], p. 495).

To de�ne an explicit scheme, we use a numerical �ux such that

F n
ij = F(Un

i , Un
j ,nij), Gn

i = G(Un
i ).

The scheme reads then

|Ci|rUn+1
i = |Ci|rUn

i − ∆t
∑

j∈ν(i)

|Sij|rF(Un
i , Un

j ,nij) + ∆t |Ci|G(Un
i ). (17)

In the present study, we present two numerical �uxes. We �rst use the Rusanov
�ux

F(Ui, Uj,nij) =
Fr(Ui) + Fr(Uj)

2
nij,r +

Fz(Ui) + Fz(Uj)

2
nij,z − λij(Uj − Ui)

with λij = λ(Ui, Uj) large enough to ensure stability (see [16]). The main ad-
vantage of such a �ux is its ability to handle real gases. The drawbacks are
on one hand a signi�cant di�usion amount and, on the other hand, contact
discontinuities are not well approximated when steady-state problems are con-
sidered (see [16] p. 293, [17], and [18] p. 204). We then resort to a second less
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di�usive numerical �ux: the HLLC �ux (see [16] for a technical description).
For this one, we obtain a better resolution of the contact discontinuity for
stationary solutions while �ux computations remain reasonable for complex
applications (real gas, multispecies and multiphase problems for instance).

Let us give a new expression of (17) that uses the |Ci| and |Sij| measures
only. For a given triangle Ci, let (ri,1, zi,1), (ri,2, zi,2), (ri,3, zi,3) stand for the
coordinates of its three vertices. A similar notation is used for a given edge
Sij. Using the identities

|Ci|r = |Ci|
(ri,1 + ri,2 + ri,3)

3
, |Sij|r = |Sij|

(rij,1 + rij,2)

2
,

we obtain from (17),

Un+1
i = Un

i −∆t
∑

j∈ν(i)

|Sij|
|Ci|

3(rij,1 + rij,2)

2(ri,1 + ri,2 + ri,3)
F(Un

i , Un
j ,nij)

+
3∆t

ri,1 + ri,2 + ri,3

G(Un
i ).

This new formulation enables proving that the numerical scheme preserves
the situation when the gas is at rest. Indeed, consider the initial condition U0

where the pressure P 0 and the density ρ0 are constant and the velocity is null,
the resulting numerical �ux is given by

F(U0
i , U0

j ,nij) =




0

P 0nij,r

P 0nij,z

0

0




.

We easily deduce that we have after the �rst step ρ1
i = ρ0, u0

θ,i = u1
θ,i = 0 and

E1
i = E0 since the �rst and the two last components of vector G are null.

It remains to study radial and axial components of the velocity u1
r,i and u1

z,i.
From the momentum equations, the �ux contribution is

C�ux =
∑

j∈ν(i)

|Sij|
|Ci|

3(rij,1 + rij,2)

2(ri,1 + ri,2 + ri,3)
P 0nij
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=
P 0

|Ci|r
∑

j∈ν(i)

|Sij|rnij

=
P 0

|Ci|r
∑

j∈ν(i)

∫

Sij

rnijdσ.

Using the Green formula we obtain

C�ux =
P 0

|Ci|r

∫

Ci

∇r,z(r) dr dz = P 0 |Ci|
|Ci|r




1

0


 .

The right-hand side term for the radial and axial equations reduces to

Crhs =
3

ri,1 + ri,2 + ri,3

P 0




1

0


 =

|Ci|
|Ci|r

P 0




1

0


 .

Since C�ux = Crhs, then un
r,i = un

z,i = 0 and the gas stays at rest.

3.2 A second-order scheme using the multislope MUSCL method

In the early 70's, Van Leer [11] introduced the MUSCL technique (Monotonic
Upwind Schemes for Conservation Laws) to get a more accurate approximation
with less di�usion e�ect while maintaining stability. Extensions to multidimen-
sional situations for unstructured meshes have been proposed (see [12,18]). We
present here a new extension of the MUSCL technique on triangles where we
use approximations of the directional derivative of U as proposed in [13�15]
instead of an approximation of ∇U .

The goal is to compute a more accurate �ux F(Un
ij, U

n
ji,nij) where Un

ij and Un
ji

are better approximations of U on both sides of the edge Sij. In the following,
we detail the method to construct the Uij values where we skip the time index
n for the sake of simplicity.

3.2.1 The fundamental decomposition

For a given volume Ci, we denote by Bi the centroid and Qij the intersection
of the segment [Bi,Bj] with the common edge Sij for all j ∈ ν(i) (see �gure.
1).
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Fig. 1. Geometrical ingredients and notations.

We introduce the barycentric coordinates (ρij)j∈ν(i), de�ned by

∑

j∈ν(i)

ρijBj = Bi,
∑

j∈ν(i)

ρij = 1. (18)

We assume that the point Bi is strictly inside the triangle formed by the three
other points. Therefore ρij > 0. De�ning the normalized direction

tij =
BiBj

|BiBj|

and using relation (18), we obtain a decomposition (referred to as the funda-
mental decomposition) of tij in function of the two other directions:

tij =
∑

k∈ν(i)
k 6=j

βijktik, (19)

with the explicit expression of the β coe�cients

βijk = −ρik

ρij

|BiBj|
|BiBk|

.
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3.2.2 The slope limiter

We now focus on the reconstruction of Uij. To this end, we consider the phys-
ical variable vector

V =




ρ

ur

uz

uθ

P




,

and denote by v a generic component of the vector V , i.e. v = ρ, ur, uz, uθ

or P . We construct a �rst set of slopes, that will be referred to as downstream
slopes, and de�ned by

p+
ij =

vj − vi

|BiBj|
for all Ci ∈ Th, j ∈ ν(i).

The slopes represent an approximation of the directional derivative following
tij. Obviously, we have to construct �ve slopes p+

ij, one for each variable. We
de�ne the upstream slopes by

p−ij =
∑

k∈ν(i)
k 6=j

βijkp
+
ik for all Ci ∈ Th, j ∈ ν(i).

We �nally compute the slopes pij using a limiting procedure, for example

pij = minmod (p+
ij, p

−

ij).

We eventually construct the new value vij by setting

vij = vi + pij |BiQij|. (20)

With Vij and Vji in hand, we compute the conservative variable vector Uij

and Uji on both sides of the interface Sij to provide the �ux evaluation
F(Uij, Uji,nij).

Remark 1 Thanks to the fundamental decomposition (19) we can prove that
this reconstruction is exact for linear functions, i.e. v(Qij) = vij, if v is piece-
wise linear.
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Remark 2 The positivity of the barycentric coordinates implies that βijk < 0.
An important consequence is that if vi is a local extremum then p+

ijp
−

ij ≤ 0.
This implies pij = 0, which prevents the extrema from increasing (see [13]).

Remark 3 The main issue is that we consider only one�dimensional recon-
struction in each direction. This enables using any classical 1-D limiter to
compute the slope pij (see [14] for more details). In the case where Ci has a
common edge with the boundary, we set pij = 0 which results in a �rst�order
scheme.

Remark 4 It is important to perform the reconstruction with the physical
variables instead of the conservative variables. Indeed, in some situations a
reconstruction based on the conservative variables can yield a negative internal
energy since it is obtained by subtracting the kinetic energy from the total
energy.

4 Steady-state radial solutions

Let us investigate the particular case of steady-state radial solutions. This case
is helpful in the sense that it provides a reference solution to test the chosen
numerical scheme. In practice, a stationary solution is obtained by supplying
adequate boundary conditions to the time dependent problem and letting the
solution converge to a stationary one. In addition, as far as some compressible
�ows for industrial applications like in induction plasma problems (see [19] for
instance) are concerned, stationary solutions are to be considered.

It turns out that it is rather di�cult to compute an exact solution for station-
ary �ows. To provide a simple case, we resort then to restrict this section to
radial solutions, i.e. that do not depend on z and such that uz = 0. Under
these assumptions, equations (10)�(14) reduce to:

d

dr
(rρur) = 0, (21)

d

dr
(r(ρu2

r + P )) = ρu2
θ + P, (22)

d

dr
(ρuθur) = −ρuθur, (23)

d

dr
(rur(E + P )) = 0. (24)

Using the state equation of an ideal gas (4), the integration of equations (21),
(23) and (24) gives:
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ρur =
α1

r
, (25)

ρuθur =
α2

r2
, (26)

ur

(
γ

γ − 1
P +

1

2
ρ (u2

r + u2
θ)

)
=

α3

r
, (27)

where α1, α2 and α3 are constants.

Thanks to relations (25) and (26), the expression of the tangential velocity uθ

becomes

uθ =
α2

α1r
. (28)

Let us introduce two new variables: a = ρu2
r and b = ρu2

θ. The system becomes
then:





ab =
α2

2

r4
,

γ

γ − 1
P +

1

2
(a + b) =

α1α3

ar2
,

d (a + P )

dr
=

b − a

r
.

(29)

We now show how to reduce system (29) to an ordinary di�erential equation
that we solve numerically. We �rst deal with the simple case where uθ = 0,
i.e. b = 0. Then, we consider the more general case of a swirling �ow.

4.1 First case: uθ = 0

Let us �rst consider the case where the �uid �ow has the property uθ = 0.
Then system (29) is reduced to:





γ

γ − 1
P +

1

2
a =

α1α3

ar2
,

d (a + P )

dr
= −a

r
.

(30)

From this we deduce

d

dr

(
γ − 1

γ

α1α3

ar2
+

γ + 1

2γ
a

)
= −a

r
.

13



Therefore

da

dr
= −a

r

2A − 1

A − γ+1
2γ

, (31)

where

A =
γ − 1

γ

α1α3

a2r2
=

γ − 1

γ

α3

α3
1

r2ρ2.

By di�erentiating the identity α2
1 = r2ρa, we deduce

dρ

dr
= −α2

1

(
2a + ra′

r3a2

)
.

From (31), we get

dρ

dr
=

α2
1

γar3


 1

A − γ+1
2γ


 .

This eventually gives the ordinary di�erential equation for the density:

dρ

dr
=

ρ(
α3

α3
1

ρ2r2 − γ + 1

2(γ − 1)

)
(γ − 1)r

. (32)

The numerical solution of equation (32) is described in section 4.3.

Remark 5 An analytical solution of equation (32) can be obtained if we as-
sume that

α3

α3
1

ρ2r2 ≫ γ + 1

2(γ − 1)
.

This assumption is valid in particular for subsonic �ows at ambient temper-
ature for instance. Neglecting the higher order term, the di�erential equation
(32) reduces to

2ρ
dρ

dr
=

α3
1

(γ − 1)α3

2

r3
.

14



Using the initial condition ρ(r = R0) = ρ0, we obtain the solution

ρ(r) =

√√√√ρ2
0 +

α3
1

α3(γ − 1)

(
1

R2
0

− 1

r2

)
.

4.2 The general case (swirling �ow)

We now deal with the general case where uθ 6= 0. Di�erentiating the �rst
equation of system (29) yields

b
da

dr
+ a

db

dr
= −4ab

r
. (33)

Thus
db

dr
= − b

a

da

dr
− 4b

r
. (34)

Let us substitute P in the system (29) and use (33) and (34). We get

d

dr

(
γ − 1

γ

α1α3

ar2
− γ − 1

2γ
b +

γ + 1

2γ
a

)
=

b − a

r
.

We compute the derivative of the previous expression and eliminate the deriva-
tive of b by using (34),

γ − 1

γ a

(
b

2
− α1α3

ar2

)
da

dr
=

a

r

(
b

a
− γ − 1

γ a

(
4b

2
− 2α1α3

ar2
− 1

))
.

Since α2
1 = r2ρa, we obtain

dρ

dr
= −C2

1




2ra + r2da

dr
r4a2


 .

After calculation, the two previous equations give:

dρ

dr
= − α2

1

ar3




a + b

(γ − 1)

(
b

2
− α1α3

ar2

)
+

(γ + 1)

2
a




.
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Using the de�nitions of ρ and P , we �nally obtain the ordinary di�erential
equation for the �uid density:

dρ

dr
=

ρ

r

(
a + b

γP − a

)
. (35)

Remark 6 In equation (35), functions a, b, P depend only on ρ, r and the
constants. Indeed, for a given ρ, we can compute b = ρu2

θ using (28). We then
deduce a with the �rst relation of system (29). We �nally compute P with the
help of the second relation of system (29).

4.3 A numerical method for stationary radial solutions

We consider a uniform subdivision of the domain [R0, R1] with K elements
where rk = R0 + k∆r, k = 0, ..., K with ∆r = (R1 − R0)/K. To avoid the
singularity at r = 0, we have taken R0 > 0. To obtain an approximation of the
density ρ for the equations (32) and (35), we use the explicit Euler method:

case uθ = 0 : ρk+1 = ρk + ∆r
ρk(

α3

α3
1

ρ2
kr

2
k −

γ + 1

2(γ − 1)

)
(γ − 1)rk

, (36)

case uθ 6= 0 : ρk+1 = ρk + ∆r
ρk

rk

(
ak + bk

γPk − ak

)
. (37)

The other parameters, namely the radial velocity ur, the tangential velocity
uθ and the pressure P , are deduced using:

ur,k+1 =
α1

ρk+1rk+1

,

uθ,k+1 =
α2

α1rk+1

,

Pk+1 =
γ − 1

γ

(
α1α3

ρk+1u2
r,k+1r

2
k+1

− 1

2
ρk+1(u

2
r,k+1 + u2

θ,k+1)

)
.

The a and b values are then updated by relations:

ak+1 = ρk+1u
2
r,k+1,

bk+1 = ρk+1u
2
θ,k+1,
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5 Numerical tests

We present several numerical tests to show convergence and accuracy prop-
erties of the MUSCL scheme presented throughout this paper. The �rst test
shows that the algorithm preserves the situation when the gas is at rest which
proves that the scheme is well-balanced in this sense.

A second series of tests concerns radial steady-state solutions. We observe con-
vergence for large time to the stationary solution computed with the numerical
method proposed in subsection 4.3.

A third series of numerical experiments is dedicated to the Riemann problem.
We consider a domain Ω = [0, 1]× [0, 1] and impose an initial condition made
of two constant states for z < 1/2 and z > 1/2. We obtain a classical one-
dimensional Sod tube problem in the Oz direction. We then compare the
numerical solutions to the analytical ones.

Finally, we describe two more signi�cant test problems. The �rst one is an
adaption of the well-known front-facing step problem of [20] for an axisym-
metric con�guration where a stationary Mach 3 �ow hits a step. The second
test produces a converging spherical shock simulating a gas bubble compres-
sion. This test problem allows to check the capacity of the numerical scheme
to preserve the spherical symmetry of the problem.

Computations have been carried out using the �nite element / �nite volume
library OFELI described in [21]. We detail all these numerical experiments in
the sequel.

5.1 Conservation of the gas at rest

In this test, we check the capacity of the algorithm to preserve a situation
where the gas is at rest. We consider a domain Ω = [0, 1]× [0, 1] and prescribe
the following initial conditions:

ur = uθ = uz = 0, P = 1 × 105 Pa, ρ = 1.2 kg·m−3

We also consider a second test where the initial null axial velocity is given by
uz = 100m·s−1.

On the boundaries r = 0 and r = 1 we impose a re�ection condition using
the ghost-cell technique [16] while we enforce a Dirichlet condition for the
boundaries z = 0 and z = 1 equal to the initial condition.
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Fig. 2. Radial, axial and tangential velocity distribution following the radial direction
at z = 0.5 for the �rst test (Left) and radial velocity following the radial direction
at z = 0.5 for the second test (Right).

In both situations, we observe the preservation of the gas at rest. A few numer-
ical artifacts of order 10−14 which correspond to the precision of the computer
are present.

5.2 Stationary solution

The goal of the study is to consider steady-state radial solution approxima-
tions and show that any non-stationary solution of the system (15) using
judicious boundary conditions Uinlet and Uoutlet converges asymptotically to
the stationary solution given in section 4.

To compute the stationary solution, we use a subdivision following the one-
dimensional radial direction (R0 = 0.1, R1 = 0.4) of 10000 cells. Since the
problem reduces to an ordinary di�erential equation, we prescribe the ini-
tial condition at point R0 (named the inlet condition Uinlet). Using the algo-
rithm given in subsection 4.3, we obtain a numerical approximation on domain
[R0, R1] and we denote by Uoutlet the solution at point R1.
To compute the non-stationary solution, we use the rectangular domain Ω =
[0.1, 0.4] × [0, 0.1] discretized in 6800 triangle cells (approximately 100 cells
along the radial direction). We prescribe the re�ection condition at the bound-
aries z = 0 and z = 0.1 while we impose the inlet and outlet conditions at the
boundaries r = R0 and r = R1 respectively. We initialize the solution with
the inlet condition. Two numerical experiments have been performed, the �rst
one concerns the simple case where uθ = 0. The second test deals with the
general case which corresponds to the swirling �ow.
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5.2.1 Case uθ = 0

We use the numerical scheme (36) and impose the following inlet conditions
at r = R0:

Cinlet =




ρinlet = 2

ur,inlet = 200

uθ,inlet = 0

uz,inlet = 0

Pinlet = 2 × 105




.

We compute all the variables of vector U at each point of the subdivision, in
particular we obtain the outlet condition at r = R1

Coutlet =




ρoutlet = 2.283222

ur,outlet = 43.79776

uθ,outlet = 0

uz,outlet = 0

Poutlet = 2.407435 × 105




.

We now introduce the two boundary conditions in the non-stationary scheme
and run until a stationary situation is achieved.

In �gure 3, we show the density, the pressure and the radial velocity in function
of r at z = 0.05. We also propose a zoom of the density distribution to highlight
the di�erence between the Rusanov and the HLLC solver but also between the
�rst and the second order scheme. These two solutions clearly coincide and as
we can expect, the second order scheme with the HLLC �ux provides the best
approximation.

5.2.2 Case uθ 6= 0

We now deal with the swirling �ow where we use the algorithm (37) and the
new inlet conditions:
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Fig. 3. Comparison of density, pressure and the radial velocity distributions versus
the radial direction between the stationary solution and numerical results.

Cinlet =




ρinlet = 2

tur,inlet = 200

uθ,inlet = 10

uz,inlet = 0

Pinlet = 2 × 105




.

We also provide the outlet condition:

Coutlet =




ρoutlet = 2.283956

ur,outlet = 43.78367

uθ,outlet = 2.5

uz,outlet = 0

Poutlet = 2.408519 × 105




.
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With the two boundary conditions in hand, we compute the non-stationary
solution until a stationary solution is obtained.
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Fig. 4. Comparison of density, radial and tangential velocity distributions versus the
radial direction between the stationary solution and numerical results.

Figure 4 shows density and velocity components ur and uθ. We also include a
zoom of the density to highlight the second order scheme e�ciency. As in the
previous case, we succeed in reaching the steady-state solution and the second
order scheme with the HLLC �ux provides the best solution.

5.3 A shock tube test

We decompose the domain Ω = [0, 1] × [0, 1] into two subdomains ΩL =
[0, 1]× [0, 1

2
] and ΩR = [0, 1]× [1

2
, 1] and denote by D the line D = {(r, 1

2
); r ∈

[0, 1]}. We then consider the Sod tube problem prescribing the initial condition
U(t = 0) = UL in ΩL and U(t = 0) = UR in ΩR. We also impose the re�ection
condition at the boundary of Ω. It results that the solution is invariant with
respect to r and we obtain a classical one-dimensional Sod tube problem in
the Oz direction with an initial discontinuity at z = 1/2.
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We compare exact solutions of the Riemann problem to the numerical approx-
imations obtained using the �rst and second-order schemes and the Rusanov
and HLLC schemes. All the computations have been performed with an un-
structured mesh of 20748 elements.

5.3.1 First con�guration: Rarefaction and shock

We consider a �rst con�guration providing a rarefaction for the u− c charac-
teristic �eld and a shock for the u+c characteristic �eld. We denote by U∗

L, the
state just after the rarefaction while U∗

R represents the state just before the
shock. Of course, a contact discontinuity occurs between the two intermediate
states. We sum up in table 1 the used values in the test.
We solve the Riemann problem with the algorithm for axisymmetric con�gu-
Table 1
Data for the �rst Riemann problem

ρ (kg ·m−3) uz (m · s−1) P (Pa)

UL 4.0 0.0 4.0 × 105

U∗

L 2.272739 200.0 1.81278 × 105

U∗

R 1.363643 200.0 1.81278 × 105

UR 0.950418 47.949324 1.08767 × 104

rations using the Rusanov and HLLC �ux and using the �rst and second order
techniques. We present in �gure 5 a comparison of the density and internal
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Fig. 5. Comparison of density and internal energy obtained by �rst-order Rusanov
scheme (dashed) and �rst-order HLLC scheme (dotted) with the exact solution (con-
tinuous) at time t = 0.8 ms for the �rst con�guration.

energy between the exact solution and the approximations using the Rusanov
and HLLC �ux with the �rst order scheme. In �gure 6, a similar comparison
is shown but we use the second order MUSCL technique. The solutions are
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Fig. 6. Comparison of density and internal energy obtained by second-order Rusanov
scheme (dashed) and second-order HLLC scheme (dotted) with the exact solution
(continuous) at time t = 0.8 ms for the �rst con�guration.

in good agreement with the exact solution and the second order technique
provides the best approximations.

5.3.2 Second con�guration: double shock

Here; we are concerned with the double shock con�guration. Table 2 lists the
states we employ in this test.

Table 2
Data for the second Riemann problem

ρ (kg ·m−3) uz (m · s−1) P (Pa)

UL 4.2 200.0 1.0 × 105

U∗

L 8.866667 41.688103 3.0 × 105

U∗

R 7.093333 41.688103 3.0 × 105

UR 1.860546 -285.504113 3.0 × 104

We compute the solution approximations with the algorithm dedicated to
axisymmetric geometries and visualize the density and the internal energy
using the �rst order scheme (�gure 7) or the second order scheme (�gure 8).
As expected, the MUSCL technique reduces the di�usion e�ect close to the
discontinuities. We also remark that the Rusanov and HLLC schemes provide
the same approximation quality in the second order context whereas the HLLC
�ux is less di�usive if one uses a �rst-order scheme.
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Fig. 7. Comparison of density and internal energy obtained by �rst-order Rusanov
scheme (dashed) and a �rst-order HLLC scheme (dotted) with the exact solution
(continuous) at time t = 1.984 ms for the second con�guration.

0 0.2 0.4 0.6 0.8 1
Axial direction (m)

0

2

4

6

8

10

D
en

si
ty

 (k
g.

m
−3

)

0 0.2 0.4 0.6 0.8 1
Axial direction (m)

40000

60000

80000

1e+05

1.2e+05
In

te
rn

al
 e

ne
rg

y 
(J

.k
g−1

)

Fig. 8. Comparison of density and internal energy obtained by a second-order Ru-
sanov scheme (dashed) and a second-order HLLC scheme (dotted) with the exact
solution (continuous) at time t = 1.984 ms for the second con�guration.

5.3.3 Third con�guration: double rarefaction

The third con�guration is composed of two symmetric rarefaction waves where
the solution involves a state near vacuum. We list in table 3 the states we use
for the calculation.
Table 3
Data for the third Riemann problem

ρ (kg ·m−3) uz (m · s−1) P (Pa)

UL 1.0 -300.0 1.0 × 105

U∗

L 0.417325 0.0 2.94 × 105

U∗

R 0.417325 0.0 2.94 × 105

UR 1.0 300.0 1.0 × 105
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Approximations have been computed using the �rst (�gure 9) and the second
order technique (�gure 10). The main issue is the internal energy approxima-
tion. First order methods give a non physical peak at z = 0.5 while second
order methods reduce this numerical artifact. We note that the HLLC �ux
with the MUSCL technique reduces signi�cantly the undesired peak.
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Fig. 9. Comparison of density and internal energy obtained by �rst-order Rusanov
scheme (dashed) and �rst-order HLLC scheme (dotted) with the exact solution (con-
tinuous) at time t = 0.6 ms for the third con�guration.
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Fig. 10. Comparison of density and internal energy obtained by second-order Ru-
sanov scheme (dashed) and second-order HLLC scheme (dotted) with the exact
solution (continuous) at time t = 0.6 ms for the third con�guration.

5.4 A Mach 3 wind tunnel with a forward-facing step

This numerical test deals with a Mach 3 �ow in a wind tunnel with a forward-
facing step. This test is analogous to the well-known test problem of [20]. We
have considered here a discretization of the domain into 21186 �nite volume
cells. A stable shock wave pattern develops after a few time units. We impose
the in�ow boundary conditions with ρ = 1.4, uz = 3, ur = uθ = 0 and P = 1.
Figure 11 shows the snapshot of �ow �eld at t = 15 s.
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Fig. 11. Forward-facing step using a second-order HLLC scheme. 100 contours of
the density (left) from 0.762 to 5, pressure (centre) from 0.462 to 11.8 and Mach
number (right) from 0.077 to 3.02.

5.5 Converging spherical shock test

In R
3, a spherical bubble of gas, with radius R, centered at the origin is com-

pressed by an overpressured exterior gas of same nature. The solution involves
the three classical waves and depends only on R, i.e. U(r, z) = U(R, 0) =
U(0, R) for any point (r, z) such that R2 = r2 + z2.

To treat the spherical bubble problem with the axisymmetric model, we can
choose arbitrarily the Or and Oz axes, the main di�culty being that the
variables r and z do not play the same role in the axisymmetric situation. The
goal of this test is to study the asymmetry of the solution following the Or
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and Oz axis.

To simulate the spherical bubble compression using the axisymmetric model,
we consider a quarter of disk D = {(r, z);

√
r2 + z2 ≤ 1/2} in the unit square

Ω = [0, 1] × [0, 1] and we state the following initial conditions:

(ρ, ur, uz, uθ, P ) =





(1, 0, 0, 0, 1) in D,

(4, 0, 0, 0, 4) in Ω \ D.

We also prescribe re�ecting boundary conditions on the whole boundary. We
have performed numerical tests with a discretization of the domain into 20640
�nite volume cells.

In �gure 12 we reproduce the density distribution at time t = 0.2 using the
Rusanov and the HLLC �uxes. A small asymmetry appears when the Rusanov
�ux is employed but it disappears when we use the MUSCL procedure. This
is con�rmed by the visualization of the density value along the Or and Oz
axis in �gure 13.

6 Conclusion

We have proposed a new second order cell-centered �nite volume formulation
for compressible Euler equations using cylindrical coordinates to compute ax-
isymmetric solutions. The �nite volume scheme is based on a mean value
approximation using the r dr dz metric instead of the traditional dr dz met-
ric to simplify the boundary condition on the Or axis. An original MUSCL
method (multislope MUSCL method) is introduced where an estimate of the
directional derivatives is performed to construct more accurate approxima-
tions of the solution on both side of the edges. New numerical tests based on
the steady-state situation has been proposed to validate the numerical scheme
and to compare the di�erent schemes performances.
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