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A nite volume method for the numerical solution of axisymmetric inviscid swirling ows is presented. The governing equations of the ow are the axisymmetric compressible Euler equations including swirl (or tangential) velocity. A rst-order scheme is introduced. In this one, convective uxes at cell interfaces are evaluated by the Rusanov or the HLLC numerical ux and geometric source terms are discretized by the explicit Euler method. Extension to the second-order space approximation using a multislope MUSCL method is derived. A stationary solution of the uid ow following the radial direction has been established with a zero and non-zero tangential velocity. Numerical and exact solutions are compared for the Riemann problem. Effectiveness of the multislope MUSCL scheme is demonstrated for strongly shocked axially symmetric ows as the forward-facing step and the spherical bubble compression problems.

1 Introduction Axisymmetric Euler system using cylindrical coordinates is used in numerous applications such as axisymmetric ows in a nozzle [START_REF] Jacob | Transient, hypervelocity ow in an axisymmetric nozzle[END_REF], supersonic jets [START_REF] Leschziner | Computation of strongly swirling axisymmetric free jets[END_REF], turbomachine modelling [START_REF] Wu | A general theory of three-dimensional ow in subsonic and supersonic turbomachine in radial, axial and mixed ow types[END_REF][START_REF] Ch | A nite element method for the axisymmetric ow computation in a turbomachine[END_REF]. More recently, inductive plasma ows are modelled with the axisymmetric Euler formulation taking into account the tangential velocity, the so-called swirling ow [START_REF] Vanden Abeele | An ecient computational model for inductive plasma ows[END_REF][START_REF] Xue | Extended-led electromagnetic model for the inductively coupled plasma[END_REF].

From a numerical point of view, the nite volume method [79] is a popular technique to compute numerical approximations of the Euler system solution for axisymmetric geometries. A particular issue concerns the choice of the variables to conserve. In a rst approach, the mean value approximation of any generic function v on the cell C i is performed by using the classical average

v i ≈ C i v drdz C i drdz
where we employ the measure (metric) dr dz [START_REF] Cumming | Supersonic, turbulent ow computation and drag optimization for axisymmetric afterbodies[END_REF]. A second approach consists in computing the mean value using the measure r dr dz [START_REF] Guardone | Finite element/volume solution to axisymmetric conservation laws[END_REF]:

v i ≈ C i v r drdz C i r drdz
which leads to a better formulation. Indeed, v i corresponds to the mean value of v in the three-dimensional context, i.e. the mean value on the axisymmetric torus with section C i . On the other hand, the formulation simplies the boundary condition at r = 0 since a null ux value naturally derives from the ux integration and no additional constraint is required on the symmetry axis [START_REF] Guardone | Finite element/volume solution to axisymmetric conservation laws[END_REF].

To provide an approximation of the solution of the axisymmetric Euler system, we use a fractional step technique where we split the formulation into a conservative homogeneous equation and the source term. To solve the conservative part, the traditional technique consists in using a rst-order solver (Roe, HLLC or Riemann solver) combined with a second-order reconstruction such as the MUSCL method [START_REF] Van Leer | Towards the ultimate conservative dierence scheme. V. A secondorder sequel to Godunov's method[END_REF][START_REF] Hubbard | Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids[END_REF] to improve accuracy. The classical MUSCL technique uses a piecewise linear reconstruction with a slope limiting procedure to ensure the L ∞ stability. Then two new approximations are computed on both sides of each edge and are employed in the numerical ux evaluation. We propose here to use a new reconstruction technique: the multislope MUSCL method [1315] where the reconstructed values are obtained using an approximation of specic directional derivatives instead of the full gradient. The main advantage is that the reconstruction can be rewritten as a one-dimensional MUSCL method at each interface leading to a simple and ecient scheme.

In the axisymmetric context, there are few numerical tests to validate the scheme for compressible Euler equations. For example, we are not able to compute the exact solution of the Riemann problem excepting in very particular situations. We propose a new numerical test for the swirling ow based on the steady-state situation. We manage to reduce the Euler system to an ordinary dierential equation and a simple approximation based the Euler forward algorithm is proposed to provide an accurate numerical solution.

The organization of the paper is as follows. In section 2, we present the governing Euler equations in cylindrical coordinates assuming rotational symmetry.

In section 3, we present the numerical scheme and its second-order extension using a multislope MUSCL method. In section 4, we establish a stationary solution assuming that the ow depends only on the radial direction. Finally, we present numerical experiments to test the obtained scheme.

Axisymmetric Euler equations for swirling ows

We rst present compressible Euler equations using the cylindrical coordinates and simplify them under the axisymmetric invariance assumption. For any point X = (x, y, z) ∈ R 3 we denote by (r, θ, z) the associated cylindrical coordinates. We start by giving the compressible Euler equations in the domain Ω using cartesian coordinates:

Let P = R + × R = {r ≥ 0, z ∈ R}
∂ρ ∂t + ∇ • (ρu) = 0, (1) 
∂(ρu) ∂t + ∇ • (ρu ⊗ u + P I) = 0, (2) 
∂E ∂t + ∇ • ((E + P )u) = 0, (3) 
where ρ is the uid mass density, P is the pressure, u is the velocity vector and E is the total energy per unit volume. The tensors u ⊗ u and I stand for the tensor product of u by u and the unit tensor respectively.

To close the system, we add a state equation which in general form reads

P = P (ρ, e),
where e stands for the specic internal energy related to the total energy by:

E = ρ e + 1 2 ρ|u| 2 .
In the sequel, we restrict ourselves to an ideal gas, that is,

P = (γ -1)ρ e, ( 4 
)
where γ is the ratio of specic heats at constant pressure and volume.

We introduce the mapping dening cylindrical coordinates:

(r, θ, z) → (r cos θ, r sin θ, z).

To any scalar function f : Ω → R, we associate the function f (r, θ, z) = f (r cos θ, r sin θ, z) for (r, z) ∈ Ω and θ ∈ [0, 2π). Due to the axial symmetry we look for solutions (density, velocity, pressure, . . . ) that are independent of θ, i.e. all the involved functions will depend on space variables r and z and on the time variable t.

In the sequel, for the sake of simplicity, we shall omit the tilde symbol on the functions f = f (r, z). Applying the divergence operator in cylindrical coordinates and eliminating the θderivatives, we deduce from (1)(3) the following system:

∂ρ ∂t + 1 r ∂ ∂r (rρu r ) + ∂ ∂z (ρu z ) = 0, (5) 
∂ ∂t (ρu r ) + ∂ ∂r (ρu 2 r + P ) + ∂ ∂z (ρu r u z ) + 1 r ρ (u 2 r -u 2 θ ) = 0, (6) 
∂ ∂t (ρu z ) + ∂ ∂r (ρu z u r ) + ∂ ∂z (ρu 2 z + P ) + 1 r ρ u z u r = 0, (7) 
∂ ∂t (ρu θ ) + ∂ ∂r (ρu θ u r ) + ∂ ∂z (ρu θ u z ) + 2 r ρ u θ u r = 0, (8) 
∂E ∂t + 1 r ∂ ∂r (ru r (E + P )) + ∂ ∂z (u z (E + P )) = 0. (9) 
Note that assuming rotational symmetry does not reduce the number of unknowns since the velocity eld has three nonzero components that are respectively the radial u r (r, z), the tangential u θ (r, z) and the axial component u z (r, z).

To derive a conservative form of the system, we multiply equations (5)(9) by the radial coordinate r like in [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics, A practical Introduction[END_REF][START_REF] Glaister | Flux dierence splitting for the Euler equations with axial symmetry[END_REF]. We then obtain the nal form of the Euler equations:

∂ ∂t (rρ) + ∂ ∂r (rρu r ) + ∂ ∂z (rρu z ) = 0, (10) 
∂ ∂t (rρu r ) + ∂ ∂r (rρu 2 r + rP ) + ∂ ∂z (rρu r u z ) = ρu 2 θ + P, (11) 
∂ ∂t (rρu z ) + ∂ ∂r (rρu z u r ) + ∂ ∂z (rρu 2 z + rP ) = 0, (12) 
∂ ∂t (rρu θ ) + ∂ ∂r (rρu θ u r ) + ∂ ∂z (rρu θ u z ) = -ρu θ u r , (13) 
∂ ∂t (rE) + ∂ ∂r (ru r (E + P )) + ∂ ∂z (ru z (E + P )) = 0. (14) 
Equivalently, we can write this system under the conservative form:

∂(rU ) ∂t + ∂(rF r (U )) ∂r + ∂(rF z (U )) ∂z = G(U ), ( 15 
)
where U is the conservative variable vector dened by

U =              
3 A nite volume scheme with multislope MUSCL reconstruction 3.1 A rst-order nite volume scheme

To address numerical approximation, we describe the nite volume method we use for the conservative part of the Euler system. We consider a conforming unstructured mesh T h of the two-dimensional domain Ω, made of triangles (or cells) C i ⊂ Ω, i = 1, . . . , I. We denote by ν(i) the index set of the neighbouring triangles C j which share a common edge S ij with the cell C i and by n ij = (n ij,r , n ij,z ) the outward unit normal vector to C i .

We rst integrate the system (15) over the cell C i and use the Green formula to get

d dt C i U (r, z, t) r dr dz + ∂C i (F r (U )n ij,r + F z (U )n ij,z ) r dσ = C i G(U ) dr dz,
where ∂C i denotes the boundary of the cell C i . Let (t n = n ∆t) n∈N be a uniform subdivision of the time interval [0, +∞). Integrating on the interval [t n , t n+1 ] we obtain the equation:

C i U (r, z, t n+1 ) r dr dz = C i U (r, z, t n ) r dr dz - t n+1 t n ∂C i (F r (U ) n ij,r + F z (U ) n ij,z ) r dσ dt + t n+1 t n C i G(U ) dr dz dt.
We aim at computing a constant piecewise approximation of the solution U on each cell C i . To this end, U n i represents an approximation of the average of U on C i at time t n . More precisely, for a given cell C i , we introduce the following measures

|C i | = C i dr dz, |C i | r = C i r dr dz,
and we dene the approximation

U n i ≈ 1 |C i | r C i U (r, z, t n ) r dr dz. (16) 
In the same way, we dene the measures of an edge

|S ij | = S ij dσ, |S ij | r = S ij r dσ,
and we dene the approximation of the ux across the interface S ij during the interval [t n , t n+1 ] by

F n ij ≈ 1 ∆t |S ij | r t n+1 t n S ij (F r (U ) n ij,r + F z (U ) n ij,z ) r dσ dt.
We eventually dene an approximation of the right-hand side contribution by

G n i ≈ 1 ∆t |C i | t n+1 t n C i G(U ) dr dz dt.
It results from [START_REF] Buard | Monoslope and multislope MUSCL methods for unstructured meshes[END_REF] that the integrals involve two kinds of measures: r dr dz and dr dz. To compute the mean value on the cell C i employing the r dr dz measure, we have to divide by |C i | r since the approximation ( 16) becomes an equality for constant functions. On the other hand, we divide by |C i | to provide a mean value of G n i since we use the dr dz measure in the integral (see [START_REF] Guardone | Finite element/volume solution to axisymmetric conservation laws[END_REF], p. 495).

To dene an explicit scheme, we use a numerical ux such that

F n ij = F(U n i , U n j , n ij ), G n i = G(U n i ).
The scheme reads then

|C i | r U n+1 i = |C i | r U n i -∆t j∈ν(i) |S ij | r F(U n i , U n j , n ij ) + ∆t |C i |G(U n i ). (17) 
In the present study, we present two numerical uxes. We rst use the Rusanov ux

F(U i , U j , n ij ) = F r (U i ) + F r (U j ) 2 n ij,r + F z (U i ) + F z (U j ) 2 n ij,z -λ ij (U j -U i )
with λ ij = λ(U i , U j ) large enough to ensure stability (see [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics, A practical Introduction[END_REF]). The main advantage of such a ux is its ability to handle real gases. The drawbacks are on one hand a signicant diusion amount and, on the other hand, contact discontinuities are not well approximated when steady-state problems are considered (see [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics, A practical Introduction[END_REF] p. 293, [START_REF] Batten | on the choice of wavespeeds for the HLLC Riemann solver[END_REF], and [START_REF] Godlewski | Hyperbolic systems of conservations laws[END_REF] p. 204). We then resort to a second less diusive numerical ux: the HLLC ux (see [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics, A practical Introduction[END_REF] for a technical description).

For this one, we obtain a better resolution of the contact discontinuity for stationary solutions while ux computations remain reasonable for complex applications (real gas, multispecies and multiphase problems for instance).

Let us give a new expression of (17) that uses the |C i | and |S ij | measures only. For a given triangle C i , let (r i,1 , z i,1 ), (r i,2 , z i,2 ), (r i,3 , z i,3 ) stand for the coordinates of its three vertices. A similar notation is used for a given edge S ij . Using the identities

|C i | r = |C i | (r i,1 + r i,2 + r i,3 ) 3 , |S ij | r = |S ij | (r ij,1 + r ij,2 ) 2 ,
we obtain from [START_REF] Batten | on the choice of wavespeeds for the HLLC Riemann solver[END_REF],

U n+1 i = U n i -∆t j∈ν(i) |S ij | |C i | 3(r ij,1 + r ij,2 ) 2(r i,1 + r i,2 + r i,3 ) F(U n i , U n j , n ij ) + 3∆t r i,1 + r i,2 + r i,3 G(U n i ).
This new formulation enables proving that the numerical scheme preserves the situation when the gas is at rest. Indeed, consider the initial condition U 0 where the pressure P 0 and the density ρ 0 are constant and the velocity is null, the resulting numerical ux is given by

F(U 0 i , U 0 j , n ij ) =               0 P 0 n ij,r P 0 n ij,z 0 0              
.

We easily deduce that we have after the rst step

ρ 1 i = ρ 0 , u 0 θ,i = u 1 θ,i = 0 and E 1
i = E 0 since the rst and the two last components of vector G are null. It remains to study radial and axial components of the velocity u 1 r,i and u 1 z,i . From the momentum equations, the ux contribution is

C ux = j∈ν(i) |S ij | |C i | 3(r ij,1 + r ij,2 ) 2(r i,1 + r i,2 + r i,3 ) P 0 n ij = P 0 |C i | r j∈ν(i) |S ij | r n ij = P 0 |C i | r j∈ν(i) S ij rn ij dσ.
Using the Green formula we obtain

C ux = P 0 |C i | r C i ∇ r,z (r) dr dz = P 0 |C i | |C i | r    1 0    .
The right-hand side term for the radial and axial equations reduces to

C rhs = 3 r i,1 + r i,2 + r i,3 P 0    1 0    = |C i | |C i | r P 0    1 0    .
Since C ux = C rhs , then u n r,i = u n z,i = 0 and the gas stays at rest.

3.2 A second-order scheme using the multislope MUSCL method

In the early 70's, Van Leer [START_REF] Van Leer | Towards the ultimate conservative dierence scheme. V. A secondorder sequel to Godunov's method[END_REF] introduced the MUSCL technique (Monotonic Upwind Schemes for Conservation Laws) to get a more accurate approximation with less diusion eect while maintaining stability. Extensions to multidimensional situations for unstructured meshes have been proposed (see [START_REF] Hubbard | Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids[END_REF][START_REF] Godlewski | Hyperbolic systems of conservations laws[END_REF]). We present here a new extension of the MUSCL technique on triangles where we use approximations of the directional derivative of U as proposed in [1315] instead of an approximation of ∇U .

The goal is to compute a more accurate ux F(U n ij , U n ji , n ij ) where U n ij and U n ji are better approximations of U on both sides of the edge S ij . In the following, we detail the method to construct the U ij values where we skip the time index n for the sake of simplicity.

The fundamental decomposition

For a given volume C i , we denote by B i the centroid and Q ij the intersection of the segment [B i , B j ] with the common edge S ij for all j ∈ ν(i) (see gure. 1). We introduce the barycentric coordinates (ρ ij ) j∈ν(i) , dened by

j∈ν(i) ρ ij B j = B i , j∈ν(i) ρ ij = 1. ( 18 
)
We assume that the point B i is strictly inside the triangle formed by the three other points. Therefore ρ ij > 0. Dening the normalized direction

t ij = B i B j |B i B j |
and using relation [START_REF] Godlewski | Hyperbolic systems of conservations laws[END_REF], we obtain a decomposition (referred to as the fundamental decomposition) of t ij in function of the two other directions:

t ij = k∈ν(i) k =j β ijk t ik , (19) 
with the explicit expression of the β coecients

β ijk = - ρ ik ρ ij |B i B j | |B i B k | .

The slope limiter

We now focus on the reconstruction of U ij . To this end, we consider the physical variable vector

V =               ρ u r u z u θ P              
, and denote by v a generic component of the vector V , i.e. v = ρ, u r , u z , u θ or P . We construct a rst set of slopes, that will be referred to as downstream slopes, and dened by

p + ij = v j -v i |B i B j | for all C i ∈ T h , j ∈ ν(i).
The slopes represent an approximation of the directional derivative following t ij . Obviously, we have to construct ve slopes p + ij , one for each variable. We dene the upstream slopes by

p - ij = k∈ν(i) k =j β ijk p + ik for all C i ∈ T h , j ∈ ν(i).
We nally compute the slopes p ij using a limiting procedure, for example

p ij = minmod (p + ij , p - ij ).
We eventually construct the new value v ij by setting

v ij = v i + p ij |B i Q ij |. (20) 
With V ij and V ji in hand, we compute the conservative variable vector U ij and U ji on both sides of the interface S ij to provide the ux evaluation

F(U ij , U ji , n ij ).
Remark 1 Thanks to the fundamental decomposition [START_REF] Vasil'evskii | Numerical simulation of equilibrium induction plasma ows in a cylindrical plasmatron channel[END_REF] we can prove that this reconstruction is exact for linear functions, i.e. v(

Q ij ) = v ij , if v is piece- wise linear.
Remark 2 The positivity of the barycentric coordinates implies that β ijk < 0.

An important consequence is that if v i is a local extremum then p + ij p - ij ≤ 0. This implies p ij = 0, which prevents the extrema from increasing (see [START_REF] Clain | The multislope MUSCL method[END_REF]). Remark 3 The main issue is that we consider only onedimensional reconstruction in each direction. This enables using any classical 1-D limiter to compute the slope p ij (see [START_REF] Clauzon | Analyse de Schémas d'ordre élevé pour les écoulements compressibles[END_REF] for more details). In the case where C i has a common edge with the boundary, we set p ij = 0 which results in a rstorder scheme.

Remark 4 It is important to perform the reconstruction with the physical variables instead of the conservative variables. Indeed, in some situations a reconstruction based on the conservative variables can yield a negative internal energy since it is obtained by subtracting the kinetic energy from the total energy.

Steady-state radial solutions

Let us investigate the particular case of steady-state radial solutions. This case is helpful in the sense that it provides a reference solution to test the chosen numerical scheme. In practice, a stationary solution is obtained by supplying adequate boundary conditions to the time dependent problem and letting the solution converge to a stationary one. In addition, as far as some compressible ows for industrial applications like in induction plasma problems (see [START_REF] Vasil'evskii | Numerical simulation of equilibrium induction plasma ows in a cylindrical plasmatron channel[END_REF] for instance) are concerned, stationary solutions are to be considered.

It turns out that it is rather dicult to compute an exact solution for stationary ows. To provide a simple case, we resort then to restrict this section to radial solutions, i.e. that do not depend on z and such that u z = 0. Under these assumptions, equations [START_REF] Cumming | Supersonic, turbulent ow computation and drag optimization for axisymmetric afterbodies[END_REF] [START_REF] Clauzon | Analyse de Schémas d'ordre élevé pour les écoulements compressibles[END_REF] reduce to:

d dr (rρu r ) = 0, (21) 
d dr (r(ρu 2 r + P )) = ρu 2 θ + P, (22) 
d dr (ρu θ u r ) = -ρu θ u r , (23) 
d dr (ru r (E + P )) = 0. ( 24 
)
Using the state equation of an ideal gas (4), the integration of equations ( 21), ( 23) and (24) gives:

ρu r = α 1 r , (25) 
ρu θ u r = α 2 r 2 , ( 26 
) u r γ γ -1 P + 1 2 ρ (u 2 r + u 2 θ ) = α 3 r , (27) 
where α 1 , α 2 and α 3 are constants.

Thanks to relations (25) and ( 26), the expression of the tangential velocity u θ becomes

u θ = α 2 α 1 r . ( 28 
)
Let us introduce two new variables: a = ρu 2 r and b = ρu 2 θ . The system becomes then:

                 ab = α 2 2 r 4 , γ γ -1 P + 1 2 (a + b) = α 1 α 3 ar 2 , d (a + P ) dr = b -a r . (29) 
We now show how to reduce system (29) to an ordinary dierential equation that we solve numerically. We rst deal with the simple case where u θ = 0, i.e. b = 0. Then, we consider the more general case of a swirling ow.

4.1

First case: u θ = 0

Let us rst consider the case where the uid ow has the property u θ = 0.

Then system (29) is reduced to:

       γ γ -1 P + 1 2 a = α 1 α 3 ar 2 , d (a + P ) dr = - a r . (30) 
From this we deduce

d dr γ -1 γ α 1 α 3 ar 2 + γ + 1 2γ a = - a r .
Therefore

da dr = - a r 2A -1 A -γ+1 2γ , (31) 
where

A = γ -1 γ α 1 α 3 a 2 r 2 = γ -1 γ α 3 α 3 1 r 2 ρ 2 .
By dierentiating the identity α 2 1 = r 2 ρa, we deduce

dρ dr = -α 2 1 2a + ra ′ r 3 a 2 .
From (31), we get

dρ dr = α 2 1 γar 3   1 A -γ+1 2γ   .
This eventually gives the ordinary dierential equation for the density:

dρ dr = ρ α 3 α 3 1 ρ 2 r 2 - γ + 1 2(γ -1) (γ -1)r . ( 32 
)
The numerical solution of equation ( 32) is described in section 4.3.

Remark 5 An analytical solution of equation ( 32) can be obtained if we assume that

α 3 α 3 1 ρ 2 r 2 ≫ γ + 1 2(γ -1)
.

This assumption is valid in particular for subsonic ows at ambient temperature for instance. Neglecting the higher order term, the dierential equation (32) reduces to

2ρ dρ dr = α 3 1 (γ -1)α 3 2 r 3 .
Using the initial condition ρ(r = R 0 ) = ρ 0 , we obtain the solution

ρ(r) = ρ 2 0 + α 3 1 α 3 (γ -1) 1 R 2 0 - 1 r 2 .

The general case (swirling ow)

We now deal with the general case where u θ = 0. Dierentiating the rst equation of system (29) yields

b da dr + a db dr = - 4ab r . (33) 
Thus

db dr = - b a da dr - 4b r . ( 34 
)
Let us substitute P in the system (29) and use ( 33) and (34). We get

d dr γ -1 γ α 1 α 3 ar 2 - γ -1 2γ b + γ + 1 2γ a = b -a r .
We compute the derivative of the previous expression and eliminate the derivative of b by using (34),

γ -1 γ a b 2 - α 1 α 3 ar 2 da dr = a r b a - γ -1 γ a 4b 2 - 2α 1 α 3 ar 2 -1 .
Since α 2 1 = r 2 ρa, we obtain

dρ dr = -C 2 1     2ra + r 2 da dr r 4 a 2     .
After calculation, the two previous equations give:

dρ dr = - α 2 1 ar 3       a + b (γ -1) b 2 - α 1 α 3 ar 2 + (γ + 1) 2 a      
.

Using the denitions of ρ and P , we nally obtain the ordinary dierential equation for the uid density:

dρ dr = ρ r a + b γP -a . (35) 
Remark 6 In equation ( 35), functions a, b, P depend only on ρ, r and the constants. Indeed, for a given ρ, we can compute b = ρu 2 θ using (28). We then deduce a with the rst relation of system (29). We nally compute P with the help of the second relation of system (29).

A numerical method for stationary radial solutions

We consider a uniform subdivision of the domain [R 0 , R 1 ] with K elements where r k = R 0 + k∆r, k = 0, ..., K with ∆r = (R 1 -R 0 )/K. To avoid the singularity at r = 0, we have taken R 0 > 0. To obtain an approximation of the density ρ for the equations (32) and (35), we use the explicit Euler method:

case u θ = 0 : ρ k+1 = ρ k + ∆r ρ k α 3 α 3 1 ρ 2 k r 2 k - γ + 1 2(γ -1) (γ -1)r k , (36) 
case u θ = 0 :

ρ k+1 = ρ k + ∆r ρ k r k a k + b k γP k -a k . ( 37 
)
The other parameters, namely the radial velocity u r , the tangential velocity u θ and the pressure P , are deduced using:

u r,k+1 = α 1 ρ k+1 r k+1 , u θ,k+1 = α 2 α 1 r k+1 , P k+1 = γ -1 γ α 1 α 3 ρ k+1 u 2 r,k+1 r 2 k+1 - 1 2 ρ k+1 (u 2 r,k+1 + u 2 θ,k+1 ) .
The a and b values are then updated by relations:

a k+1 = ρ k+1 u 2 r,k+1 , b k+1 = ρ k+1 u 2 θ,k+1 ,

Numerical tests

We present several numerical tests to show convergence and accuracy properties of the MUSCL scheme presented throughout this paper. The rst test shows that the algorithm preserves the situation when the gas is at rest which proves that the scheme is well-balanced in this sense.

A second series of tests concerns radial steady-state solutions. We observe convergence for large time to the stationary solution computed with the numerical method proposed in subsection 4.3.

A third series of numerical experiments is dedicated to the Riemann problem.

We consider a domain Ω = [0, 1] × [0, 1] and impose an initial condition made of two constant states for z < 1/2 and z > 1/2. We obtain a classical onedimensional Sod tube problem in the Oz direction. We then compare the numerical solutions to the analytical ones.

Finally, we describe two more signicant test problems. The rst one is an adaption of the well-known front-facing step problem of [START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks[END_REF] for an axisymmetric conguration where a stationary Mach 3 ow hits a step. The second test produces a converging spherical shock simulating a gas bubble compression. This test problem allows to check the capacity of the numerical scheme to preserve the spherical symmetry of the problem.

Computations have been carried out using the nite element / nite volume library OFELI described in [START_REF] Touzani | An Object Finite Element Library, Copyright c 19982008 Rachid Touzani[END_REF]. We detail all these numerical experiments in the sequel.

Conservation of the gas at rest

In this test, we check the capacity of the algorithm to preserve a situation where the gas is at rest. We consider a domain Ω = [0, 1] × [0, 1] and prescribe the following initial conditions:

u r = u θ = u z = 0, P = 1 × 10 5 Pa, ρ = 1.2 kg•m -3
We also consider a second test where the initial null axial velocity is given by u z = 100 m•s -1 .

On the boundaries r = 0 and r = 1 we impose a reection condition using the ghost-cell technique [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics, A practical Introduction[END_REF] while we enforce a Dirichlet condition for the boundaries z = 0 and z = 1 equal to the initial condition. In both situations, we observe the preservation of the gas at rest. A few numerical artifacts of order 10 -14 which correspond to the precision of the computer are present.

Stationary solution

The goal of the study is to consider steady-state radial solution approximations and show that any non-stationary solution of the system (15) using judicious boundary conditions U inlet and U outlet converges asymptotically to the stationary solution given in section 4.

To compute the stationary solution, we use a subdivision following the onedimensional radial direction (R 0 = 0.1, R 1 = 0.4) of 10000 cells. Since the problem reduces to an ordinary dierential equation, we prescribe the initial condition at point R 0 (named the inlet condition U inlet ). Using the algorithm given in subsection 4.3, we obtain a numerical approximation on domain [R 0 , R 1 ] and we denote by U outlet the solution at point R 1 .

To compute the non-stationary solution, we use the rectangular domain Ω = [0.1, 0.4] × [0, 0.1] discretized in 6800 triangle cells (approximately 100 cells along the radial direction). We prescribe the reection condition at the boundaries z = 0 and z = 0.1 while we impose the inlet and outlet conditions at the boundaries r = R 0 and r = R 1 respectively. We initialize the solution with the inlet condition. Two numerical experiments have been performed, the rst one concerns the simple case where u θ = 0. The second test deals with the general case which corresponds to the swirling ow.

5.2.1

Case u θ = 0

We use the numerical scheme (36) and impose the following inlet conditions at r = R 0 :

C inlet =               ρ inlet = 2 u r,inlet = 200 u θ,inlet = 0 u z,inlet = 0 P inlet = 2 × 10 5              
.

We compute all the variables of vector U at each point of the subdivision, in particular we obtain the outlet condition at r = R 1

C outlet =               ρ outlet = 2.283222 u r,outlet = 43.79776 u θ,outlet = 0 u z,outlet = 0 P outlet = 2.407435 × 10 5              
.

We now introduce the two boundary conditions in the non-stationary scheme and run until a stationary situation is achieved.

In gure 3, we show the density, the pressure and the radial velocity in function of r at z = 0.05. We also propose a zoom of the density distribution to highlight the dierence between the Rusanov and the HLLC solver but also between the rst and the second order scheme. These two solutions clearly coincide and as we can expect, the second order scheme with the HLLC ux provides the best approximation.

5.2.2

Case u θ = 0

We now deal with the swirling ow where we use the algorithm (37) and the new inlet conditions: 

C inlet =               ρ inlet = 2 tu r,inlet = 200 u θ,inlet = 10 u z,inlet = 0 P inlet = 2 × 10 5               .
We also provide the outlet condition:

C outlet =               ρ outlet = 2.283956 u r,outlet = 43.78367 u θ,outlet = 2.5 u z,outlet = 0 P outlet = 2.408519 × 10 5               .
With the two boundary conditions in hand, we compute the non-stationary solution until a stationary solution is obtained. Figure 4 shows density and velocity components u r and u θ . We also include a zoom of the density to highlight the second order scheme eciency. As in the previous case, we succeed in reaching the steady-state solution and the second order scheme with the HLLC ux provides the best solution.

A shock tube test

We decompose the domain

Ω = [0, 1] × [0, 1] into two subdomains Ω L = [0, 1] × [0, 1 2 ] and Ω R = [0, 1] × [ 1 2
, 1] and denote by D the line D = {(r, 1

2 ); r ∈ [0, 1]}. We then consider the Sod tube problem prescribing the initial condition

U (t = 0) = U L in Ω L and U (t = 0) = U R in Ω R .
We also impose the reection condition at the boundary of Ω. It results that the solution is invariant with respect to r and we obtain a classical one-dimensional Sod tube problem in the Oz direction with an initial discontinuity at z = 1/2.

We compare exact solutions of the Riemann problem to the numerical approximations obtained using the rst and second-order schemes and the Rusanov and HLLC schemes. All the computations have been performed with an unstructured mesh of 20748 elements.

First conguration: Rarefaction and shock

We consider a rst conguration providing a rarefaction for the u -c characteristic eld and a shock for the u+c characteristic eld. We denote by U * L , the state just after the rarefaction while U * R represents the state just before the shock. Of course, a contact discontinuity occurs between the two intermediate states. We sum up in table 1 the used values in the test. We solve the Riemann problem with the algorithm for axisymmetric congu- Internal energy (J.kg -1 ) Fig. 5. Comparison of density and internal energy obtained by rst-order Rusanov scheme (dashed) and rst-order HLLC scheme (dotted) with the exact solution (continuous) at time t = 0.8 ms for the rst conguration. energy between the exact solution and the approximations using the Rusanov and HLLC ux with the rst order scheme. In gure 6, a similar comparison is shown but we use the second order MUSCL technique. The solutions are ) Fig. 6. Comparison of density and internal energy obtained by second-order Rusanov scheme (dashed) and second-order HLLC scheme (dotted) with the exact solution (continuous) at time t = 0.8 ms for the rst conguration. in good agreement with the exact solution and the second order technique provides the best approximations.

Second conguration: double shock

Here; we are concerned with the double shock conguration. Table 2 lists the states we employ in this test. We compute the solution approximations with the algorithm dedicated to axisymmetric geometries and visualize the density and the internal energy using the rst order scheme (gure 7) or the second order scheme (gure 8).

As expected, the MUSCL technique reduces the diusion eect close to the discontinuities. We also remark that the Rusanov and HLLC schemes provide the same approximation quality in the second order context whereas the HLLC ux is less diusive if one uses a rst-order scheme. Internal energy (J.kg -1 ) Fig. 8. Comparison of density and internal energy obtained by a second-order Rusanov scheme (dashed) and a second-order HLLC scheme (dotted) with the exact solution (continuous) at time t = 1.984 ms for the second conguration.

Third conguration: double rarefaction

The third conguration is composed of two symmetric rarefaction waves where the solution involves a state near vacuum. We list in table 3 the states we use for the calculation. Approximations have been computed using the rst (gure 9) and the second order technique (gure 10). The main issue is the internal energy approximation. First order methods give a non physical peak at z = 0.5 while second order methods reduce this numerical artifact. We note that the HLLC ux with the MUSCL technique reduces signicantly the undesired peak. Internal energy (J.kg -1 ) Fig. 9. Comparison of density and internal energy obtained by rst-order Rusanov scheme (dashed) and rst-order HLLC scheme (dotted) with the exact solution (continuous) at time t = 0.6 ms for the third conguration. ) Fig. 10. Comparison of density and internal energy obtained by second-order Rusanov scheme (dashed) and second-order HLLC scheme (dotted) with the exact solution (continuous) at time t = 0.6 ms for the third conguration. This numerical test deals with a Mach 3 ow in a wind tunnel with a forwardfacing step. This test is analogous to the well-known test problem of [START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks[END_REF]. We have considered here a discretization of the domain into 21186 nite volume cells. A stable shock wave pattern develops after a few time units. We impose the inow boundary conditions with ρ = 1.4, u z = 3, u r = u θ = 0 and P = 1. Figure 11 shows the snapshot of ow eld at t = 15 s. 
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  denote an axial cut of the three dimensional space (the set of parameters) and let Ω be an open set of P. The open set Ω ⊂ R 3 will denote the threedimensional volume obtained by rotation around the axial direction 0z, i.e. Ω := {(r cos θ, r sin θ, z); (r, z) ∈ Ω, 0 ≤ θ < 2π}.
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 1 Fig. 1. Geometrical ingredients and notations.
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 2 Fig.2. Radial, axial and tangential velocity distribution following the radial direction at z = 0.5 for the rst test (Left) and radial velocity following the radial direction at z = 0.5 for the second test (Right).
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 3 Fig. 3. Comparison of density, pressure and the radial velocity distributions versus the radial direction between the stationary solution and numerical results.
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 4 Fig. 4. Comparison of density, radial and tangential velocity distributions versus the radial direction between the stationary solution and numerical results.
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  (kg • m -3 ) u z (m • s -1 ) P (Pa) 1.08767 × 10 4 rations using the Rusanov and HLLC ux and using the rst and second order techniques. We present in gure 5 a comparison of the density and internal
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 7 Fig.7. Comparison of density and internal energy obtained by rst-order Rusanov scheme (dashed) and a rst-order HLLC scheme (dotted) with the exact solution (continuous) at time t = 1.984 ms for the second conguration.
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 4 Mach 3 wind tunnel with a forward-facing step

Fig. 11 .

 11 Fig.11. Forward-facing step using a second-order HLLC scheme. 100 contours of the density (left) from 0.762 to 5, pressure (centre) from 0.462 to 11.8 and Mach number (right) from 0.077 to 3.02.5.5Converging spherical shock test

Fig. 12 .

 12 Fig. 12. Density at t = 0.2, 31 contours from 1 to 4. Rusanov rst-order (top left) and second-order (top right), HLLC rst-order (bottom left) and second-order (bottom right).

Fig. 13 .

 13 Fig.[START_REF] Clain | The multislope MUSCL method[END_REF]. Comparison of density at t = 0.2 for r = 0 and z = 0 using rst-order (Left) and second-order (Right) schemes.
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 1 Data for the rst Riemann problem

Table 2

 2 Data for the second Riemann problem
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 3 Data for the third Riemann problem
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Conclusion

We have proposed a new second order cell-centered nite volume formulation for compressible Euler equations using cylindrical coordinates to compute axisymmetric solutions. The nite volume scheme is based on a mean value approximation using the r dr dz metric instead of the traditional dr dz metric to simplify the boundary condition on the Or axis. An original MUSCL method (multislope MUSCL method) is introduced where an estimate of the directional derivatives is performed to construct more accurate approximations of the solution on both side of the edges. New numerical tests based on the steady-state situation has been proposed to validate the numerical scheme and to compare the dierent schemes performances.

and Oz axis.

To simulate the spherical bubble compression using the axisymmetric model, we consider a quarter of disk D = {(r, z); √ r 2 + z 2 ≤ 1/2} in the unit square Ω = [0, 1] × [0, 1] and we state the following initial conditions:

(1, 0, 0, 0, 1) in D, (4, 0, 0, 0, 4) in Ω \ D.

We also prescribe reecting boundary conditions on the whole boundary. We have performed numerical tests with a discretization of the domain into 20640 nite volume cells.

In gure 12 we reproduce the density distribution at time t = 0.2 using the Rusanov and the HLLC uxes. A small asymmetry appears when the Rusanov ux is employed but it disappears when we use the MUSCL procedure. This is conrmed by the visualization of the density value along the Or and Oz axis in gure 13.