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Résumé. This paper deals with the problem of fault detection and iden-
tification in noisy systems. A proportionnal integral observer with un-
known inputs is used in order to estimate the state and the faults which
are assumed as unknown inputs. The noise’s effect on the system is also
minimized. The obtained results can be extended to non-linear systems
described by multiple model representations.

1 Introduction

The model’s state estimation is an important field of research with numerous
applications in control and diagnosis. Generally the whole system’s state is not
always measurable and the recourse to its estimation is a necessity. State esti-
mation permits also to replace expensive sensors or those with a difficult main-
tenance.
An observer is generally a dynamical system wich permit the system’s state re-
construction from the system’s model and the measurments of its inputs and
ouputs [Lu].
The state estimation methods of linear systems are efficient [Ed]. There exist a
class of systems which are more complex and the hypothesis of linearity is not
available. for these non linear systems, many studies are interested in the syn-
thesis of non linear observers which permit the reconstruction of non measurable
system’s states. For example we can cite sliding mode observres [ES] and the
Thau-Luenberger observers [Th].
Approaches using Takagi-Sugeno model’s (sometimes said multiple model) are
the object of many works in varied contexts including the take into account of
unknown inputs or parametrical uncertainties [AC,IM].
Various studies were published on the unknown inputs [SA,Ed,AC]. Some of
them tried to reconstruct the system’s state in spite of the unknown input ex-
istence. Those inputs can be faults or perturbations affecting the system. This
reconstruction is assured via the partial ellimination of unknown inputs [SA].
Other works choose to estimate the unknown inputs and the faults in order to
estimate the studied system’s state[Ed,AC].
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The idea behind the multiple model is to represent a non-linear system in an
interpolation’s form of many local linear models. Each one of them is a linear
time invariant (LTI) system valid around an operation point. The transition be-
tween models is done using the local model’s activation functions [Ch,JF]. The
Takagi-Sugeno structure is the most used in multiple model class representation
for the system’s design and analysis [MJ].
A non-linear model state estimation using this formalism is assured via a multi-
ple observer which is an extension of linear system’s observers [TS,PC,BP]. The
state estimations can be used to generate fault indicators.

2 Linear system case

The objective of this part is to estimate a fault as an unknown input affecting a
linear system via an unknown input proportional integral state observer.

2.1 Problem’s formulation

Consider the linear model affected by an actuator fault and measurement noise.
Its equation is given as following :

ẋ(t) = Ax(t) +Bu(t) + Ef(t) (1)

y(t) = Cx(t) +Dw(t) (2)

Where x(t) ∈ Rn represents the system’s state, y(t) ∈ Rm is the measured
output, u(t) ∈ Rr is the system’s input, f(t) represents the fault and w(t) is
the measurement noise. A, B and C are a known coefficients matrices with
appropriate dimensions. E and D are respectively the fault distribution and the
noise matrices which are supposed to be known. The observer is choosen to be
as following :

˙̂x(t) = Ax̂(t) +Bu(t) + Ef̂(t) +K(y(t) − ŷ(t)) (3)

˙̂
f(t) = L(y(t) − ŷ(t)) (4)

ŷ(t) = Cx̂(t) (5)

Where x̂(t) ∈ Rn is the estimated system’s state, f̂(t) represents the estimated
fault, ŷ(t) ∈ Rm is the estimated output, K is the proportional observer’s gain
and L is the integral gain to be computed. It is suposed that the fault affecting
the system is bounded. The expressions of the state reconstruction error x̃(t) and
the fault reconstruction error are given by the equations (6) and (7) as following
:

x̃(t) = x(t) − x̂(t) (6)

f̃(t) = f(t) − f̂(t) (7)
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The dynamics of the state reconstruction error is given by the computation of
˙̃x(t) which can be written :

˙̃x(t) = ẋ(t) − ˙̂x(t) = (A−KC)x̃(t) + Ef̃(t) −KDw(t)

The fault error estimation is given as following :

˙̃
f(t) = ḟ(t) −

˙̂
f(t) = ḟ(t) − LCx̃(t) − LDw(t)

In order to simplify the notations, the time index (t) will be omitted henceforth.
The following matrices are introduced :

ϕ =

[

x̃

f̃

]

, ǫ =

[

w

ḟ

]

(8)

From the equations (8) and (8), one can obtain :

ϕ̇ = A0ϕ+B0ǫ (9)

with :

A0 =

[

A−KC E

−LC 0

]

, B0 =

[

−KD 0
−LD I

]

(10)

The matrix I is the identity matrix with appropriate dimensions. A Lyapunov
function V is given as following :

V = ϕTPϕ (11)

Where P indicates a defined positive matrix.
The state reconstruction error x̃(t) and the fault reconstruction error f̃(t) tend
towards zero if V̇ (t) < 0. In addition to that, the effect of the vector ǫ is minimal
if the inequality (12) is solved with minimizing the positif scalar µ.

V̇ (t) + ϕTQϕϕ− µ2ǫTQǫǫ < 0 (12)

The matrices Qϕ and Qǫ are two defined positive matrices. The inequality (12)
can be written :

ψTΩψ < 0 (13)

with :

ψ =

[

ϕ

ǫ

]

, Ω =

[

AT
0
P + PA0 +Qϕ PB0

BT
0
P −µ2Qǫ

]

(14)

The inequality (12) is verified ifΩ < 0. The matrix A0 can be written as following
:

A0 = Ã− K̃C̃ (15)
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with :

Ã =

[

A E

0 0

]

, K̃ =

[

K

L

]

, C̃ =
[

C 0
]

(16)

The matrix B0 can be written on the following form :

B0 = −K̃D̃ + Ĩ (17)

The matrices Ĩ and D̃ are as following :

Ĩ =

[

0 0
0 I

]

, D̃ =
[

D 0
]

(18)

Let’s pose G = PK̃ and m = µ2. The matrix Ω can be written as :

Ω =

[

PÃ+ ÃTP −GC̃ − C̃TGT +Qϕ −GD̃ + P Ĩ

ĨTP − D̃TGT −mQǫ

]

(19)

The resolution of the inequality Ω < 0 leads to find P and G. K̃ is determined
via the resolution of K̃ = P−1G

2.2 Example

In order to validate the obtained results of the previous section, a linear system
described by the matrices A, B, C and D is choosen as following :

A =









−0.3 −3 −0.5 0.1
−0.7 −5 2 4

2 −0.5 −5 −0.9
−0.7 −2 1 −0.9









, B =









1 2
5 1
4 −3
1 2









,

C =





1 0 0 0
0 1 0 0
0 0 0 1



 , D =





0.5 0.5
0.2 0.2
0 0.1



E = B

The system’s input u(t) is defined as following :

u(t) =
[

u1(t) u2(t)
]T

The signal u1(t) is a telegraph type signal varying between zero and one.
The signal u2(t) is computed by the following equation u2(t) = 0.3 + 0.1 sin(πt).
The fault f(t) is written :

f(t) =
[

f1(t) f2(t)
]T
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with :

f1 =

{

0, t ≤ 0.6sec
sin(0.5πt), t > 0.6sec

, f2 =

{

0, t ≤ 1sec
0.4, t > 1sec

(20)

The µ, K and L computation gives the following results : µ = 0.8367,

K =









28.9634 4.2850 74.5131
0.9698 40.6182 22.2521
8.0409 −75.1960 −225.4935
−0.5976 2.2673 38.2344









, L =

[

−39.6662 215.4581 75.1533
34.8900 −22.8549 365.2186

]

The simulation results are shown in the figures (6) and (7). This method allows
to estimate the unknown inputs well even in the case of non constant input.
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Fig. 1. fault f1 and its estimate
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Fig. 2. fault f2 and its estimate

3 Extension to multiple model representation

The objective of this part is to estimate a fault as an unknown input affect-
ing a non-linear system represented by multiple model via an unknown input
proportional integral state multiple observer.

3.1 Problem’s formulation

The goal of this section is to extend the obtained results in paragraph 1 for
the multiple model structure. Considering a non-linear system affected by an
actuator fault, its equation is given as following :

ẋ(t) =
M
∑

i=1

µi(u(t))(Aix(t) +Biu(t) + Eif(t)) (21a)

y(t) = Cx(t) +Dw(t) (21b)
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Where x(t) ∈ Rn represents the system’s state, y(t) ∈ Rm is the measured
output, u(t) ∈ Rr is the system’s input, f(t) represents the fault and w(t) is
the measurement noise. Ai, Bi and C are a known coefficients matrices with
appropriate dimensions. Ei and D are respectively the fault distribution and the
noise matrices which are supposed to be known. The scalar M represents the
number of local models. The observer is choosen to be as following :

˙̂x(t) =

M
∑

i=1

µi(u(t))(Aix̂(t) +Biu(t) +Ki(y(t) − ŷ(t)) + Eif̂(t)) (22a)

˙̂
f(t) =

M
∑

i=1

µi(u(t))Li(y(t) − ŷ(t)) (22b)

ŷ(t) = Cx̂(t) (22c)

Where x̂(t) ∈ Rn is the estimated system’s state, f̂(t) represents the estimated
fault, ŷ(t) ∈ Rm is the estimated output, Ki are the local model’s proportional
observer’s gains and Li are the local model’s integral gains to be computed. Like
in paragraph 1, It is suposed that the fault affecting the system is bounded.
Using the same expression of x̃(t) and f̃(t) given by the equation (6) and (7),
the dynamics of the state reconstruction error is given by the computation of
˙̃x(t) which is written :

˙̃x(t) = ẋ(t) − ˙̂x(t) =

M
∑

i=1

µi(u(t))(Ai −KiCx̃(t) + Eif̃(t) +KiDw(t)) (23)

The fault estimation error can be written :

˙̃
f(t) = ḟ(t) −

˙̂
f(t) = ḟ(t) −

M
∑

i=1

µi(u(t))(LiCx̃(t) − LiDw(t)) (24)

Like the linear case and in order to simplify the notations, the time index (t)
will be omitted henceforth.
By the use of the defintions of ϕ and ǫ gives in (8), the equations (23) and (24)
can be written :

ϕ̇ = Amϕ+Bmǫ (25)

with :

Am =

M
∑

i=1

µi(u)Ãi, and Bm =

M
∑

i=1

µi(u)B̃i (26)

where :

Ãi =

[

Ai −KiC Ei

−LiC 0

]

, B̃i =

[

−KiD 0
−LiD I

]

(27)
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The matrix I is the identity matrix with appropriate dimensions. By considering
the same expression of th Lyapunov function V given in (11) the inequality (12)
can be written as following :

ψTΩψ < 0 (28)

with :

ψ =

[

ϕ

ǫ

]

, Ω =

[

AT
mP + PAm +Qϕ PBm

BT
mP −µ2Qǫ

]

(29)

The inequality (28) is verified if Ω < 0.
The matrix Am can be put on the following form :

Am = Ãm − K̃mC̃ (30)

The expressions of Ãm, K̃m and C̃ are given as following :

Ãm =

M
∑

i=1

µi(u(t))Ãmi, K̃m =

M
∑

i=1

µi(u(t))K̃mi, C̃ =
[

C 0
]

(31)

with :

K̃mi =

[

Ki

Li

]

, Ãmi =

[

Ai Ei

0 0

]

(32)

In the same way, the matrix Bm can be formulated as following :

Bm = −K̃mD̃ + Ĩ (33)

with :

Ĩ =

[

0 0
0 I

]

, D̃ =
[

D 0
]

(34)

Posing Gm = PK̃m and m = µ2,the matrix Ω can be put in the following form :

Ω =

[

PÃm + ÃT
mP −GmC̃ − C̃TGT

m +Qϕ −GmD̃ + P Ĩ

ĨTP − D̃TGT
m −mQǫ

]

(35)

the following equations can be solved for i = 1...M :

Ωi < 0 (36)

with :

Ωi =

[

PÃmi + ÃT
miP −GiC̃ − C̃TGT

i +Qϕ −GiD̃ + P Ĩ

ĨTP − D̃TGT
i −mQǫ

]

(37)

and Gi = PK̃mi.
The matrices P and Gi are computed via the resolution of the inequality Ωi < 0.
The matrix K̃mi is determined as following : K̃mi = P−1Gi.
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3.2 Example

Considering the non-linear system described by a multiple model structure with
two local models, four states and three outputs. Its structure is given by the
following equation :

ẋ(t) =

2
∑

i=1

µi(u)(Aix(t) +Biu(t) + Eif(t)) (38a)

y(t) = Cx(t) +Dw(t) (38b)

The system matrices are defined as below :

A1 =









−0.3 −3 −0.5 0.1
−0.7 −5 2 4

2 −0.5 −5 −0.9
−0.7 −2 1 −0.9









, A2 =









−0.2 −3 −0.6 0.3
−0.6 −4 1 −0.6

3 −0.9 −7 −0.22
−0.5 −1 −2 −0.8









, B1 =









1 2
5 1
4 −3
1 2









B2 =









4 6
0 0
−4 2
7 6









, C =





1 0 0 0
0 1 0 0
0 0 0 1



 , D =





0.5 0.5
0.2 0.2
0 0.1



 ,

E1 = B1, E2 = B2

The system inputs are : u(t) =
[

u1(t) u2(t)
]T

.
The signal u1(t) is a telegraph type signal whose amplitude is included in [0, 0.5].
The signal u2(t) is computed by the following equation u2(t) = 0.3 + 0.1 sin(πt).

The faultf(t) is written : f(t) =
[

f1(t) f2(t)
]T

with :

f1 =

{

0, t ≤ 0.6sec
sin(0.5πt), t > 0.6sec

, f2 =

{

0, t ≤ 1sec
0.4, t > 1sec

(39)

Choosing Qϕ = Qǫ = I, The µ, K1, K2, L1 and L2 computation gives the
following results : µ = 4.4721,

K1 =









18.5771 13.6432 130.4662
−6.5165 42.3315 67.5280
77.6976 −81.7903 −211.2738
0.1124 −5.8306 43.0292









, K2 = 105
∗









0.0448 −0.1260 0.0304
0.0172 −0.0509 0.0177
−0.4144 1.0144 0.0562
0.0411 −0.1029 −0.0005









L1 =

[

−92.3284 208.4753 185.6276
−22.2858 −23.9227 363.7863

]

, L2 = 105
∗

[

0.2031 −0.5101 0.0028
0.5230 −1.2936 −0.0427

]

The simulated results are shown in the figures (3,4,5,6 and 7). Even in the case
of multiple model, the method presented allows to estimate well the system’s
state and the unknown inputs.
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Fig. 3. first output reconstruction error
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Fig. 4. second output reconstruction error
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Fig. 5. third output reconstruction error
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Fig. 6. fault f1 and its estimate
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Fig. 7. fault f2 and its estimate
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4 Conclusion

This paper presents an estimation method of faults considered as unknown in-
puts in the linear and non linear case. The class of the considered non-linear
systems are those described by multiple model structure. This method uses a
proportionnal integral observer with unknown inputs and its advantage is the
take into account of the non-null fault dynamics. The validation of the method
is done on an academic example.

Références

[Lu] Luenberger D.G. An introduction to observers. IEEE Transactions on Auto-
matic Control, 16 (6):596-602, 1971.

[Ed] C. Edwards, A comparison of sliding mode and unknown input observers for
fault reconstruction,” IEEE Conference on Decision and Control, vol. 5, pp.
5279-5284, 2004.

[Th] Thau F.E. Observing the state of non-linear dynamic systems. International
Journal of Control, vol. 17, no. 3, pages 471-479, 1973.

[AC] Akhenak A., Chadli M., Ragot J., Maquin D. Synthse d’un multiobservateur
robuste pour multimodle incertain entres inconnues : approche LMI. Confrence
Internationale Francophone d’Automatique, CIFA’ 2006, Bordeaux, France, 30-
31 Mai - 1 Juin 2006.

[IM] Ichalal D., Marx B., Ragot J., Maquin D. Conception de mutiobservateurs
variables de dcision non mesurables. 2e Journes Doctorales MACS, Reims,
France, 9-11 Juillet 2007.

[Ch] Chadli M. Analyse des systmes non linaires dcrits par des multimodles. Doc-
torat de l’Institut National Polytechnique de Lorraine, 9 Dcembre 2002.

[JF] Johansen T.A., Foss A.B. Nonlinear local model representation for adaptive
systems. IEEE International Conference on Intelligent control and instrumen-
tation, Singapore, February 1992.

[MJ] Murray-Smith R., Johansen T. Multiple model approaches to modeling and
control. Taylor and Francis, London, 1997.

[TS] Tanaka K., Sano M. On the concept of regulator and observer of fuzzy control
system. IEEE World Congress on Computational Intelligence, Orlando, USA,
June 1994.

[ES] Edwards C., Spurgeon S.K. Sliding mode observers for fault detection and
isolation, Automatica, Vol. 36 (4), pp. 541-553, 2000.

[SA] Sharma R., Aldeen M. Estimation of unknown disturbances in nonlinear sys-
tems. In Control 2004, University of Bath, UK, 2004.

[PC] Patton R.J., Chen J., Lopez-Toribio C.J. Fuzzy observers for non-linear dy-
namic systems fault diagnosis. 37th IEEE Conference on Decision and Control,
Tampa, Florida, USA, December 1998.

[BP] Bergsten P., Palm R., Driankov D. Observers for Takagi-Sugeno fuzzy systems.
IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics,
32(1):114-121, 2002.


