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Algebraic generality vs arithmetic generality  
in the controversy  

between C. Jordan and L. Kronecker (1874). 

Frédéric Brechenmacher (1).  

Introduction. 

Throughout the whole year of 1874 Camille Jordan and Leopold Kronecker were quarrelling 
over two theorems. Although Jordan’s canonical form theorem and Karl Weierstrass’ 
elementary divisors theorem would be considered equivalent as regard to modern matrix 
theory, (2) not only had these two theorems been stated independently between 1868 and 
1870, they had also been lying within the distinct frameworks of two theories until some 
connections came to light, hence breeding the 1874 quarrel. As we shall see in this paper, the 
1874 controversy was underlain by an opposition over two practices - Jordan’s algebraic 
practice of canonical reduction and Kronecker’s arithmetic practice of invariant computation -
, and this opposition sheds some light on two conflicting perspectives on generality. The two 
geometers’ opposed views on the organisation of a mathematical “theory of forms” highlight 
issues about connections of “generality” to “genericity,” “formalism,” and “simplicity.” 
We shall frequently refer to a series of essays the historian Thomas Hawkins has devoted to 
the history of the theory of matrices in the nineteenth century. Hawkins argued that, although 
                                                      
1 F. BRECHENMACHER. Université d'Artois.  Laboratoire de Mathématiques Lens (LML, 
EA2462). Fédération de Recherche Mathématique du Nord-Pas-de-Calais (CNRS, FR 2956).   
Faculté des Sciences Jean Perrin, rue Jean Souvraz S.P. 18, 62 307 Lens Cedex France. 
Email: frederic.brechenmacher@euler.univ-artois.fr. 
2 As we shall see in greater details later, on the one hand, Jordan had stated in his 1870 Traité 
des substitutions et des équations algébriques a canonical form theorem for substitutions of 
linear groups; on the other hand, Weierstrass had introduced in 1868 the elementary divisors 
of non singular pairs of bilinear forms (P,Q) in stating a complete set of polynomial invariants 
computed from the determinant |P+sQ| as a key theorem of the theory of bilinear and 
quadratic forms. In the 1874 controversy Kronecker would actually defend his reworking of 
Weierstrass’ invariants: the invariant factors. 
From the standpoint of modern algebra, Jordan’s canonical form theorem for matrices with 
coefficients belonging to an algebraically closed field is equivalent to the elementary divisors 
theorem. An elementary divisor (λ-a)k corresponds to a k by k Jordan block, see (Gantmacher 
1959) or the Wikipedia’s articles devoted to “Jordan’s normal form”, “elementary divisors” or 
“invariant factors”. See also the notes n° 24, 49, 63 and n°72 about Kronecker’s and 
Frobenius’ invariant factors. We give below some examples of relations between three 
Jordan’s canonical forms and three polynomial decompositions of the characteristic 
polynomial |A-λI|=(λ-1)²(λ-2)3(λ-3). 
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“historians writing on this subject have tended to emphasize the role Arthur Cayley, (3). . . 
there is much more to the theory of matrices – and to its history – than the formal aspect, i.e. 
the symbolical algebra of matrices. There is also a content: the concepts and theorems that 
make it a bona fide theory. An important part of that content is what I have termed spectral 
theory: the concept of an eigenvalue, the classification of matrices into types (symmetric, 
orthogonal, Hermitian, unitary, etc.), the theorems on the nature of the eigenvalues of the 
various types and, above all, those on the canonical (or normal) forms for matrices”. (4) In 
1975, Hawkins related Augustin Cauchy’s 1829 important memoir on the classification of 
conics and quadrics to the mechanical investigations of Joseph-Louis Lagrange and Pierre-
Simon Laplace thereby considering what he referred to as “eigenvalue problems” throughout 
the eighteenth an nineteenth centuries. (5) A few years later he presented what he considered 
as the “keystone” of this history: “the theory of canonical matrix forms” and laid special 
emphasis on Weierstrass’ theorem of elementary divisors because “in [1868] and a 
preliminary memoir [1858] Weierstrass demonstrated more than theorems. He also 
demonstrated the possibility and desirability of a more rigorous approach to algebraic analysis 
that did not rest content with the prevailing tendency to reason vaguely in terms of the 
“general case”. Weierstrass’ memoir thus served as a paradigm for further research by his 
colleagues and students such as Kronecker and Frobenius so that, according to Hawkins, 
“through his theory of elementary divisors [1868] and his influence upon other 
mathematicians, he [Weierstrass] more than anyone, was responsible for the emergence of the 
theory of matrices as a coherent, substantial branch of twentieth-century mathematics”. (6)  
Although Hawkins’ work laid foundations for the investigations presented in this paper, we 
shall develop new considerations on “generality” connected to issues about the status of 
algebra in the nineteenth century by looking through the prism of the 1874 controversy. 
Methodologically speaking we shall wonder about Kronecker’s and Jordan’s perspectives on 
generality without focusing on the issues about the origins of abstract notions, theories, ways 
of reasoning and, more generally, structures, most authors have been dealing with while 
studying the history of linear algebra. The theoretical identity of the 1920-1930’s “modern 
algebra” has often served as a lens for looking into the past, selecting relevant texts and 
authors, thereby giving structure to its own history while other identities that did not fit in this 
retrospective theoretical glance have stayed out of sight. The question therefore arises as to 
the identities and significations taken on by the algebraic practices that had been developed 
within various disciplines - such as mechanics, arithmetic or geometry - and had passed from 
one theory on to another before the time of unifying algebraic theories such as the 1930’s 
theory of matrices when these practices would be seen as methods for the classification of 
similar matrices. (7)  

                                                      
3 In 1858 A. Cayley published A memoir on the theory of matrices in which he developed 
symbolic laws of addition and multiplication on the “matrices” that had been introduced by 
Sylvester in 1851. See (Hawkins 1977), (Brechenmacher 2006c), and for a broader 
perspective (Durand-Richard 1996). 
4 (Hawkins 1977 : 1).  
5 From the standpoint of modern algebra, Cauchy’s 1829 memoir provided the first “general” 
proof that the eigenvalues of a symmetric matrix are real and that the corresponding quadratic 
form can be transformed into a sum of square terms (i.e. diagonalized) by means of an 
orthogonal transformation. 
6 (Hawkins 1977 : 119). 
7 This paper originated in a doctoral research devoted to the Jordan canonical form theorem 
(1870-1930) under the supervision of J. Dhombres (Brechenmacher 2006a). Major sources of 
inspirations have been C. Goldstein’s investigation s on the identities taken on by a theorem 
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As we will be looking into the 1874 controversy our purpose will thus also be to discuss how 
Jordan’s and Kronecker’s internal philosophies of generality were related to some complex 
issues about the algebraic or non algebraic natures of the practices they were quarrelling 
about. Such practices were related to distinctive cultural features and we shall therefore 
appeal to former publications which have already been dealing with some of the cultural 
issues highlighted by the 1874 controversy such as tacit knowledge, local ways of thinking, 
internal philosophies, and disciplinary ideals peculiar to individuals or communities ; (8) as 
well as the different perceptions expressed by the two opponents of a long term history 
involving authors such as Lagrange, Cauchy and Charles Hermite. (9) 

1. A polemical “general” theory. 

The controversy started in the winter 1873-1874 when two papers were successively read to 
the Academies of Paris and Berlin and, although it would stay at the beginning on the private 
level of a correspondence between Jordan and Kronecker, it would turn in spring and summer 
into a public quarrel and to the publication of a train of notes and papers. The controversy was 
originally caused by Jordan's ambition to reorganise the theory of bilinear forms through what 
he designated as the "simple" notion of "canonical form." Jordan’s December 1873 note was 
actually the first contribution to the theory of bilinear forms to be published out of Berlin. The 
issue at stake was the organisation of a theory which used to be a local field of research 
limited to a few Berliners and in the process of turning into an international theory.  
In the 1870’s, not only did many recent applications herald the major role the theory of 
bilinear forms would play in the following decades, this theory was also giving a new 
"homogeneous" and "general" treatment to different problems referring to various theories 
developed throughout the nineteenth century. (10) The note Jordan communicated to the 
Parisian Academy on the 22nd of December (quoted below) alluded to geometry and Cauchy's 
results on the principal axis of conics and quadrics (first question), to the arithmetic of 
quadratic forms relating especially to the works of Carl Gauss and Hermite (second question) 

                                                                                                                                                                      
of Fermat (Goldstein 1995), H. Sinaceur’s history of Sturm theorem (Sinaceur 1991), the 
works of C. Gilain on the fundamental theorem of algebra (Gilain 1991), the researches of G. 
Cifoletti on Pelletier’s and Gosselin’s algebraic practices (Cifoletti 1992) as well as the long 
term perspectives on some fluctuations of mathematical elaborations given in the collective 
book on the history of fractions coordinated by P. Benoit, K. Chemla and J. Ritter (Benoit and 
al. 1992). 
8 For a full study of the 1874 controversy in its cultural context in the background of the war 
of 1870, and of the unpublished correspondence between Jordan and Kronecker see 
(Brechenmacher 2008). 
9 See (Brechenmacher 2007). 
10 In modern terms, bilinear forms played for a long time a role similar to the one matrices 
would be playing in twentieth century linear algebra. Developed at the beginning as a local 
field of research limited to a few geometers from Berlin such as Christoffel, Kronecker and 
Weierstrass, the theory of bilinear forms expanded to an international theory between 1874 
and 1880 thanks to the numerous applications developed in geometry (Klein 1868), the theory 
of quadratic forms (Kronecker 1874, Darboux 1874), various problems related to systems of 
differential equations (Jordan 1871-1872) as Fuchs equations (Hamburger 1872, Jordan 1874) 
or Pfaff’s problem (Frobenius and Darboux 1875-1880). See (Hawkins 1977) and 
(Brechenmacher 2006a). On Christoffel’s works see especially (Mawhin 1981). 
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as well as to analytical mechanic and the solution given by Lagrange to systems PY''+QY=0 
of linear differential equations with constant coefficients (third question). (11) 
 

It is known that any bilinear polynomial  
P= ΣAαβxαyβ  (α=1,2,…,n, β=1,2,…,n) 

can be reduced to its canonical form x1y1+…+xmym, by linear transformations applied 
to the two sets of variables x1,..,xn,  y1,..,yn.  We now consider the following questions 
among the many of this kind :  
1. To reduce a bilinear polynomial P to its canonical form by applying orthogonal 
substitutions on the two systems of variables  x1,…,xn ;  y1,…,yn. 
2. To reduce a bilinear polynomial P to its canonical form by using some substitutions 
simultaneously on the x’s and the y’s. 
3. To reduce simultaneously two bilinear polynomials P and Q to a canonical form by 
using some linear substitutions on each set of variables individually. (12) 
 

As we shall see in greater detail later, it was the general solutions the elementary divisors 
theorem, stated by Weierstrass in 1868, and Jordan’s 1870 canonical form theorem for 
substitutions of linear groups were both able to give to these problems, which had been 
tackled in the past by Lagrange, Cauchy or Hermite, that lead to a connection between the two 
theorems and which therefore prompted Jordan’s 1873 irruption in the theory of bilinear 
forms.  
 

. . . the third [problem has already been handled] by M. Weierstrass ; the solutions 
given by the geometers from Berlin are nevertheless incomplete as some exceptional 
cases have been left aside despite their significance. [The Berliners] analysis is also 
quite difficult to follow – especially M. Weierstrass’ one – and we shall therefore 
suggest an extremely simple new method that holds no exception. . . We will show 

                                                      
11 From the standpoint of modern algebra, the canonical form x1y1+…+xmym characterizes the 
equivalence classes of square matrices for the equivalence relation (ARB ∃⇔ P,Q∈GLn(Ê), 
PAQ=B). The first problem concerns the similarity relation for orthogonal matrices 
(ARB ∃⇔ P∈O(Ê), P-1AP=B). The second problem relates to the congruence relation for 
square matrices (ARB ∃⇔ P∈GLn(Ê), tPAP=B)). The third problem focuses on the equivalence 
of pairs of matrices (A, B) which is of importance for systems of differential equations with 
constant coefficients AY’’+BY=0. In the particular case where B=I, the equivalence relation 
for pairs (A,I) corresponds to the similarity relation B=P-1AP. In the above quotation, 
Kronecker pointed out that the first and second problems might be deduced from the third one 
because they might be respectively considered as relating to the congruence of pairs (A,I) and 
to the equivalence of pairs (A, tA). For some mathematical complements on the equivalence of 
pairs of matrices see (Dieudonné 1946). 
12 (Jordan 1873 : 7-11, translation F.B.). On sait qu’il existe une infinité de manières de 
ramener un polynôme bilinéaire P= ΣAαβxαyβ (α=1,2,…,n, β=1,2,…,n) à la forme canonique  
x1y1+…+xmym,. . . par des transformations linéaires opérées sur les deux systèmes de variables 
x1,..,xn, y1,..,yn.  Parmi les diverses questions de ce genre que l’on peut se proposer, nous 
considérons les suivantes : 1. Ramener un polynôme bilinéaire P à une forme canonique 
simple par des substitutions orthogonales opérées les unes sur x1,…,xn, les autres sur y1,…,yn. 
2. Ramener P à une forme canonique simple par des substitutions linéaires quelconques 
opérées simultanément sur les x et les y. 3. Ramener simultanément à une forme canonique 
deux polynômes P et Q par des substitutions linéaires quelconques, opérées isolement sur 
chacune des deux séries de variables.  
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that the problem of the simultaneous reduction of two functions P and Q is identical to 
the problem of the reduction of a linear substitution to its canonical form. (13) 

 
In 1866, two papers published by Elwin Christoffel and Kronecker in Crelle’s Journal had laid 
the foundations of a theory whose main problem was the characterisation of bilinear forms – 
given two forms P=ΣAαβxαyβ and P’=ΣBαβxαyβ, find the necessary and sufficient conditions 
under which P can be transformed into P’ by using linear substitutions – and whose methods 
were to look for invariants computed from the forms coefficients and which would be 
unaltered by linear transformations. It was actually the problem of the simultaneous 
transformations of two forms P and Q which would shortly become the main question of the 
theory. Although the determinant of the “network” (“Schaaren” : a pair of forms) P+sQ was a 
polynomial invariant, the roots of the characteristic equation |P+sQ|=0 would provide a 
complete set of invariants only under the condition that no multiple roots existed. (14) The 
general resolution of this problem, which had originally been tackled by Kronecker in 1866 in 
the context of his researches on abelian functions, regardless of whether |P+sQ| factored into 
distinct linear factors or not, had been given in two successive memoirs published in 1868. 
While Weierstrass introduced a complete set of invariants computed from a comparison of the 
algebraic decompositions of the determinant |P+sQ| and its successive minors, therefore 
giving a resolution to the non singular case where |P+sQ| did not vanish identically, 
Kronecker’s forthcoming paper was devoted to the singular case |P+sQ|=0. Since then, 
Weierstrass’ elementary divisors theorem had become the main result of the theory of bilinear 
forms.  
Jordan thus stroke at the heart of the theory when he claimed in December 1873 that “the 
problem of the simultaneous reduction of two functions P and Q is identical to the problem of 
the reduction of a linear substitution to its canonical form”, (15) and to the theorem he had 
stated in his 1870 Traité des substitutions et des equations algébriques. Jordan proposed to 
reorganise the theory of bilinear forms by appealing to a “general method” consisting in 
“reducing” “bilinear polynomials” to different kinds of “canonical forms” relating to the types 
of substitutions groups considered. In the paper he communicated to the Berlin Academy on 
the nineteenth of January, while responding to Jordan’s claims for the greater « simplicity » 
and « generality» of his methods of canonical reduction as opposed to Weierstrass’ invariant 
computations, Kronecker did not only reject the originality and validity of these methods but 
also the theoretical organisation relating to them. Recalling that as soon as 1868 Weierstrass 
and he had organised the theory around the sole problem of the characterisation of pairs of 
forms, he questioned the relevance of Jordan’s distinction between three problems of 
canonical reductions.   
 

In M. Jordan’s paper, "On bilinear forms", the solution to the first problem is not 
original, the solution to the second problem is incorrect and the solution to the third 

                                                      
13 (Ibidem). . . . le troisième  [problème a déjà été traité] par M. Weierstrass ; mais les 
solutions données par les éminents géomètres de Berlin sont incomplètes, en ce qu’ils ont 
laissé de côté certains cas exceptionnels qui, pourtant, ne manquent pas d’intérêt. Leur 
analyse est en outre assez difficile à suivre, surtout celle de M. Weierstrass. Les méthodes 
nouvelles que nous proposons sont, au contraire, extrêmement simples et ne comportent 
aucune exception. . .La réduction simultanée de deux fonctions P et Q est un problème 
identique à celui de la réduction d’une substitution linéaire à sa forme canonique  
14 For instance, the bilinear forms B(X,U)=ux+uy+vy and the identity I=ux+vy both have a 
single eigenvalue equal to 1 but these two forms are not equivalent one two another. 
15 (Jordan 1873: 1487, translation F.B.). 
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one is incomplete. In addition to that, the third problem, which actually includes the 
two others as particular cases, has been completely solved by M. Weierstrass’ work of 
1868 and by my additional contribution to it. Unless I am very much mistaken, there 
are serious grounds for questioning M. Jordan’s priority in the invention of his results, 
should they even be correct. (16) 

  
During winter, Kronecker would develop his views on the organisation of the theory of 
bilinear forms in communicating monthly papers to the Academy of Berlin. Meanwhile, he 
and Jordan engaged a private correspondence with the aim of settling the quarrel of priority 
bred by the connections which had arisen between the canonical form and the elementary 
divisors theorems. (17) Despite its function of scientific communication and although it would 
lead Jordan to recognise a partial anteriority of Kronecker and Weierstrass on some of his 
results as well as to grasp some tacit knowledge peculiar to the Berliners’ practices, (18) the 
correspondence would fail to reach agreement on a mathematical ground. On the one hand, 
Kronecker failed to bring Jordan round to his own ideas on the structure of the theory of 
bilinear forms, on the other hand Jordan did not succeed in convincing Kronecker of his 
“natural right” to claim the genuine originality of his method which, he said, “has rather 
brought to light than disparaged Weierstrass’ result in pointing out the resolution it implicitly 
gave to a fundamental problem in linear substitutions theory which, to my opinion, is a much 
more fertile theory than the algebraic theory of forms of the second order”. (19) In spring, the 
controversy would go public again and reach its climax with two successive communications 
of Jordan and Kronecker to the Academy of Paris. The quarrel of priority would then turn into 
an opposition over two theories (group theory vs theory of bilinear forms) and two disciplines 
(algebra vs arithmetic) as well as over two practices (canonical reduction vs invariant 
computation) relating to conflicting philosophies of generality. 

                                                      
16 (Kronecker 1874b : 1181, translation F.B.) Dans le Mémoire de M. Jordan. . ., la solution 
du premier problème n’est pas véritablement nouvelle ; la solution du deuxième est manquée, 
et celle du troisième n’est pas suffisamment établie. Ajoutons qu’en réalité ce troisième 
problème embrasse les deux autres comme cas particuliers, et que sa solution complète résulte 
du travail de M. Weierstrass de 1868 et se déduit aussi de mes additions à ce travail. Il y a 
donc, si je ne me trompe, de sérieux motifs pour contester à M. Jordan l’invention première 
de ses résultats, en tant qu’ils sont corrects. . . 
17 This correspondence which is kept in the archives of the Ecole Polytechnique has been 
edited in (Brechenmacher 2006a). 
18 In the analysis of the correspondence we have published in (Brechenmacher 2008), some 
tacit knowledge peculiar to the Berliners’ network have been highlighted. Until he received 
some detailed explanations thanks to his correspondence with Kronecker, Jordan had some 
difficulties in understanding the implicit properties of determinants Weierstrass and 
Kronecker resorted to for computing invariants as well as the connections between the various 
papers published during the 1860’s (especially because some paper were not explicitly 
mentioning “bilinear forms” in their titles and Jordan believed them to be only devoted to 
“quadratic forms”). For instance, when he published his first note in December 1873, Jordan 
was unaware of Christoffel and Kronecker works on bilinear forms and he did not realize the 
relation between Kronecker’s 1868 memoir on “quadratic forms” and  Weierstrass’ 1868 
paper despite the fact that these two papers had been conceived as the “two parts” of a same 
development and had thus been published successively in Crelle’s Journal.  
19 (Jordan to Kronecker, January 1874, translation F.B.). 
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2. The generality of Weierstrass’ theorem as marking a rupture in the history of 
algebraic reasonings. 

As we shall see in this section, Kronecker associated Weierstrass’ theorem with an ideal of 
generality. This ideal revealed itself on the occasion of Kronecker’s criticisms of the formal 
nature the latter imputed to Jordan’s canonical reduction. Because Jordan had designated as 
canonical forms three different algebraic expressions relating to his classification in three 
problems, he was accused of resorting to a notion without any “general relevance” nor 
“objective content”, therefore mixing up the “formal aspects” of some “means of action” 
(canonical forms) with the “true subject of investigation” and its “content”. Although “normal 
forms” similar to Jordan’s canonical form were being used by Kronecker himself; to the 
latter’s opinion, resorting to such algebraic expressions was legitimate provided that they 
would remain in their proper places of “methods” as opposed to the “notions” relating to the 
“other disciplines” - such as arithmetic - it was algebra’s duty to serve. (20) On the contrary, 
mixing up algebraic methods with notions and theoretical issues would lead to mistake a mere 
“formal” development for a “general” and “uniform” presentation. Kronecker thus mocked 
Jordan’s claims for the greater simplicity of his canonical reduction as a naïve simplism 
which contented itself with the illusionary generality and uniformity of a formal development.    
 

Should such general expressions be found, simplicity and generality motivations might 
eventually lead us to designate them under a common name of “canonical forms”. But 
shall we refuse to content ourselves with the mere formal aspects the most recent 
algebraic works have so often been pushing forward – with the most unlikely benefits 
for the cause of science -, we shall not neglect to justify by internal grounds the 
relevance of such canonical forms. These so called canonical or normal forms are 
actually established only because of the orientation given to the investigation and we 
thus shall consider them only as means of action as opposed to the aims of the 
research. . . It is not surprising that while looking for a completely general and uniform 
exposition the author [Jordan] was forced to introduce new principles in the paper 
already referred to [(Jordan 1874a)]. We should have been very surprised if, on the 
opposite and in accordance to Jordan’s claims (“The new methods we are proposing 
are, on the contrary, extremely simple…” “It is plain to see that we can 
transform….”), the simplest means would have been sufficient. (21)  

                                                      
20 For instance, in order to demonstrate that two non singular pairs of bilinear forms could be 
transformed one into the other, Weirstrass proved in 1868 that both could be linearly 
transformed to what Kronecker would refer to as a normal form similar to Jordan’s canonical 
form. But neither Kronecker nor Weierstrass would state a theorem about such normal forms 
which were not the purpose of their investigations. On Weierstrass’ 1868 demonstration see 
(Hawkins 1977) and (Brechenmacher 2006a).   
21 (Kronecker 1874a : 367, translation F.B.). Nachträglich, wenn dergleichen allgemeine 
Ausdrücke gefunden sind, dürfte die Bezeichnung derselben als canonische Formen allenfalls 
durch ihre Allgemeinheit und Einfachheit motiviert werden können ; aber wenn man nicht bei 
den bloss formalen Gesichtspunkten stehen bleiben will, welche –gewiss nicht zum Vortheil 
der wahren Erkenntnis- in der neueren Algebra vielfach in den Vordergrund getreten sind, so 
darf man nicht unterlassen, die Berechtigung der aufgestellten canonischen Formen aus 
inneren Gründen herzuleiten. In Wahrheit sind überhaupt die so genannten canonischen oder 
Normalformen lediglich durch die Tendenz der Untersuchung bestimmt und daher nur als 
Mittel, nicht aber als Zweck der Forschung anzusehen. . . . Dass sich aber für eine zugleich 
einheitliche und ganz allgemeine Entwickelung, wie sie in der ben erwähten Arbeit gegeben 
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Kronecker then developed his views on the opposition of two kinds of “generality”. Taking as 
a starting point the “fault” of using as a denominator an algebraic expression that might 
vanish he picked out Jordan’s December paper, (22) he blamed the “so called generality” of 
formal expressions which would actually lose any meaning in some singular cases.  
  

We are getting used to discover some new difficulties – especially in algebraic issues - 
as soon as we free ourselves from the restriction to such cases we would be tempted to 
consider as the general ones following our usual custom. As soon as we force our way 
through the surface of this so called generality which actually excludes any 
particularity, we penetrate inside the true generality covered with all its singularities 
and it is usually not until then that we come to face the true difficulties of a subject as 
well as the many new phenomenons and point of views concealed at its depth. (23) 
 

To Kronecker’s mind, Weierstrass’ theorem was a model of “true generality”. The general 
and homogeneous resolution the elementary divisors were giving to the problem of the 
characterisation of bilinear forms contrasted with the “inadequate results” of the “so called 
general” methods that had been sporadically developed “for over a century” with little 
attention given to difficulties that might be caused by singularities such as equal factors 
occurring in the polynomial determinant S=|P+sQ|. Kronecker was implicitly making 
reference to the works of authors such as Lagrange, Sturm, Cauchy or Carl Gustav Jacobi 
whose algebraic practices were blamed for their tendency to think in terms of the “general” 
case where S=0 had no multiple roots. As we shall see in greater detail later, such practices 
had been elaborated in investigating the symmetric case of “networks of quadratic forms”. 
These practices resorted to “general” polynomial expressions relating to polynomial 
factorisations of S and its sub determinants P1i (what we would now call matrix minors lying 
on the intersection of the first row and ith column subsets). Assigning specific values to the 

symbols involved in the general expression (*) )(1 x

sx
S
P

j

i

−

 (which gave the systems 

                                                                                                                                                                      
ist, gewisse neue Principien als nöthig erwiesen, kann durchaus nicht befremden, und es wäre 
im Gegentheil zu verwundern, wenn wirklich den Jordan’schen Behauptungen gemäss ("Les 
méthodes nouvelles que nous proposons sont, au contraire extrêmement simples..." "On voit 
par une discussion très simple, que l’on peut transformer...") die allereinfachsten Mittel dazu 
ausreichen sollten. 
22 Jordan promptly corrected this mistake which was of no consequence for his theoretical 
organisation, see (Brechenmacher 2006a :  689). 
23 (Ibidem). Denn man ist es gewohnt –zumal in algebraischen Fragen- wesentlich neue 
Schwierigkeiten anzutreffen, wenne man sich von der Beschränkung auf diejenigen Fälle 
losmachen will, welche man als die allgemeinen zu bezeichnen pflegt. Sobald man von der 
Oberfläche der sogenannten, jede Besonderheit ausschliessenden Allgemeinheit in das Innere 
der wahren Allgemeinheit eindringt, welche alle Singularitäten mit umfasst, findet man in der 
Regel erst die eigentlichen Schwierigkeiten der Untersuchung, zugleich aber auch die Fülle 
neuer Gesichtpunkte und Erscheinungen, welche sie in ihren Tiefen enthält. 
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ni
s

i
jx ≤≤1)( of solutions related to the root sj : js

ix = )(1
j

j

i s

sx
S
P

−

), (24) would hence cause 

difficulties as it would lead to  
0
 0  expressions if common roots should occur between S and its 

successive sub determinants. In 1858, Weierstrass had proven that, in the quadratic case, each 
root of multiplicity p of S(x)=0 had to be a root of P1i(x)=0 of a multiplicity at least equal to 
p-1 ; the expression (*) was therefore defined regardless of the multiplicity of roots. (25) To 
Kronecker’s mind the idea of elementary divisor took root in 1858 when Weierstrass had 
shifted the emphasis from the multiplicity of roots toward the investigation of the links 
between the polynomial decompositions of the successive determinants extracted from S 
thereby generalising the inertia law of single quadratic forms. (26) Because it proved that the 

                                                      
24 Given a symmetric matrix A, the coordinates of its eigenvectors are given by not equal to 
zero columns of the adjoint matrix of the characteristic matrix A-xI (i.e.  the matrix of 
cofactors). For instance, the matrix : 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
=

110
121
011

A
 

The characteristic equation and minors are given by : S=-x(3-x)(1-x), P11(x)=(1-x)(2-x)-1, 
P12(x)=(1-x) et P13=-1. 
The expression ((1-x)(2-x)-1, 1-x, -1) gives the polynomial coordinates of any eigenvector 

(while |S| gives the square of its norm), e.g. for the eigenvalue s1=1,  
S

 x−1 =x(3-x),  

,
2
1)1(

1

,0)1(

1

,
2
1)1(

1

11
3

12
2

11
1

111 −=

−

==

−

=−=

−

=

x
S

P
x

x
S

P
x

x
S

P
x sss

 

The coordinates of the normed eigenvector relating to the eigenvalue 1 are (1/ 2 , 0, 1/ 2 ).  
Similarly for the eigenvalues s2=0,  

3
1,

3
1,

3
1

222
321 −=== sss xxx  

and s3=3, 
6
1,

6
2,

6
1

333
321 −=== sss xxx

 

The corresponding normed vectors are (1/ 3 , 1/ 3 , -1/ 3 ) et (1/ 6 , 2/ 6 , -1/ 6 ).  
Interpretation for quadratic forms : la form associated to A in the canonical basis of Ë3,  

2
3

2
2

2
1

2
332

2
221

2
1321 .3.0.122),,( XXXxxxxxxxxxxA ++=+++−=  

with 1
3,2,1,3,2,1,321 )()(),,( −

=== ji
s
iji

s
i

jj xAxXXX where 
3,2,1,)( =ji

s
i

jx is the change of orhonormal basis matrix. 

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

==

6
1

3
1

2
1

6
2

3
10

6
1

3
1

2
1

)( 3,2,1, ji
s
i

jx

 

Interpretation for (symmetric) bilinear forms  : 
A(x,y) = x1y1-x1y2-y1x2+x2y2+x2y3+y3x2+x3y3=1.X1Y1+0.X2Y2+3.X3Y3. 

25 As opposed to the general case of bilinear forms, in the quadratic case Weierstrass had 
considered in 1858 the matrices were symmetrical and therefore diagonalizable.   
26 In 1858, Weierstrass stated that it was possible to transform simultaneously two quadratic 
forms ( ∑

=

=
n

i
jiij xxAP

1
∑
=

=
n

i
jiij xxBQ

1

)- P being definite positive - into sums of square terms 

(∑
=

n

i
iX

1

2 ,∑
=

n

i
ii Xs

1

2 ) by means of what we would designate today as orthogonal substitutions 
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roots s1, s2, …, sn of S=0 were real whatever their multiplicity, the “true generality” of 
Weirstrass’ 1858 statement heralded the 1860’s generalisations to bilinear forms. (27)  
 

[Such a situation] shows up in each of the few algebraic questions which have been 
tackled in minute details such as the theory of networks of quadratic forms whose 
main characteristics have been developed in this paper. For so long as no one dared to 
dispense with the presupposition that only unequal factors occurred in the 
determinants [|P+sQ|], we arrived only at inadequate results in the classical problem 
of simultaneous transformations of two quadratic forms and the true perspectives on 
the enterprise remained completely unknown in the past century. Freeing itself from 
this condition, Weierstrass’ 1858 work resulted in a higher insight in providing a 
complete solution of the case in which only simple elementary divisors occurred. . . . 
Despite this first step, it was not until the publication of Weierstrass’ 1868 paper that 
the fully general notion of elementary divisor was introduced, thereby shedding a new 
light on the theory of networks of forms for the arbitrary case with the sole restriction 
that the determinant should not vanish. After I had gone through this last restriction in 
developing  the notion of elementary divisor of general elementary networks the 
brightest light began to shine on numbers of new algebraic forms and, through this 
complete resolution of the question, higher ideas were gained concerning a theory of 
invariants developed in its true generality. (28) 

                                                      
27 According to the inertia law as it had been introduced by Hermite and Sylvester in the 
1850’s, it was possible to transform a quadratic form A into a sum of squares A=Δn-

1X1²+
1

2

−

−

Δ
Δ

n

n X2²+…+
1Δ
Δ Xn², where Δ, Δ1, Δ2, …, Δn-1, 1 were the principal minors of A. In 1874 

G. Darboux explicitly generalised the inertia law to polynomial quadratic forms A+sI  
(Darboux 1874 :  367). Darboux’s paper was published next to Jordan’s controversial one 
(Jordan 1874a) in Liouville’s Journal. Both proposed new demonstrations on Weierstrass’ 
theorems: while Jordan focused on the 1868 result on pairs of bilinear forms, Darboux worked 
out new perspectives on the 1858 theorem on quadratic forms in developing the methods 
introduced by Hermite and Sylvester in the 1850’s. Darboux was merely concern with the 
geometry of surfaces and his method was inserted by Gundelfinger in the third edition of 
Hesse’s analytical geometry. For a detailed description of this method see (Drach and Meyer 
1907).   
28 (Ibid.). Diess bewährt sich durchweg in den wenigen algebraischen Fragen, welche bis in 
alle ihre Einzelheiten vollständig durchgeführt sind, namentlich aber in der Theorie der 
Schaaren von quadratischen Formen, die oben in ihren Hauptzügen entwickelt worden ist. 
Denn so lange man es nicht wagte, die Voraussetzung fallen zu lassen, dass die Determinante 
nur ungleiche Factoren enthalten, gelangte man bei jener bekannten Frage der gleichzeitigen 
Transformation von zwei  quadratischen Formen, welche seit einem Jahrhundert so vielfach, 
wenn auch meist blos gelegentlich, behandelt worden ist, nur zu höchst dürftigen Resultaten, 
und die wahren Gesichtpunkte der Untersuchung blieben gänzlich unerkannt. Mit dem 
Aufgeben jener Voraussetzung führte die Weierstrass’sche Arbeit vom Jahre 1858 schon zu 
einer höheren Einsicht und namentlich zu einer vollständigen Erledigung des Falles, in 
welchem nur einfache Elementartheiler vorhanden sind. Aber die allgemeine Einführung 
dieses Begriffes der Elementartheiler, zu welcher dort nur ein vorläufiger Schritt gethan war, 
erfolgte erst in der Weierstrass’schen Abhandlung vom Jahre 1868, und es kam damit ganz 
neues Licht in die Theorie der Schaaren für den Fall beliebiger, doch von Null verschiedener 
Determinanten. Als ich darauf auch diese letzte Beschränkung abstreifte und aus jenem 
Begriffe der Elementartheiler den allgemeineren der elementaren Schaaren entwickelte, 
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Combining mathematical and historical arguments, Kronecker was the first to stress a history 
of what the historian T. Hawkins would refer to in the 1970’s as “generic reasoning” in the 
sixteenth-nineteenth centuries algebra. 
 

The generality of the method of analysis had been viewed as its great virtue since its 
inception. Thus Viète stressed that the new method of analysis "does not employ its 
logic on numbers – which was the tediousness of the ancient analysts – but uses its 
logic through a logistic which in a new way has to do with species". . . . Analysis 
became a method for reasoning with, manipulating, expressions involving symbols 
with "general" values and a tendency developed to think almost exclusively in terms of 
the "general" case with little, if any, attention given to potential difficulties or 
inaccuracies that might be caused by assigning certain specific values to the symbols. 
Such reasoning with "general" expressions I shall refer to for the sake of brevity as 
generic reasoning. (29)  
 

The opposition between generic and general reasoning in the ways the characteristic 
equation’s multiple roots were being handled structured a long term history of algebra from 
the mechanical systems studied by Lagrange and Laplace in the eighteenth century to the 
nineteenth century when some mathematicians such as Cauchy and Weierstrass concerned 
with raising the standards of rigor came to reject the legitimacy of generic reasoning: (30) 
 

. . . neither of them [Lagrange and Laplace] had pursued the study of the solutions of 
systems of linear differential equations with sufficient care to justify their claim [that 
the characteristic roots λ must be real]. They had no difficulty treating such a system 
when the characteristic roots are distinct, but their analysis of the case of multiple 
roots was inadequate. Given the generic tendency of their analytical methods, it is 
noteworthy that they considered the case at all. . . . Weierstrass recognition of the 
questionable nature of their claims formed the starting point of the investigation that 
culminated in his theory of elementary divisors. . . . In [1868] and a preliminary 
memoir [1858] Weierstrass demonstrated more than theorems. He also demonstrated 
the possibility and desirability of a more rigorous approach to algebraic analysis that 
did not rest content with the prevailing tendency to reason vaguely in terms of the 
"general" case. (31) 

 
To both Kronecker’s and Hawkins’ views, Weierstrass‘ theorem marked a rupture in the 
history of algebra. Not only did this theorem achieve a rigorous development as opposed to 
the generic nature of the reasonings of the past, it also resulted in a homogeneous olution 
which demonstrated that it was not necessary to resort to particular non algebraic arguments 
in order to handle the singular cases which restricted the range of validity of general algebraic 
expressions. In his work on the history of the spectral theory of matrices, Thomas Hawkins 

                                                                                                                                                                      
verbreitete sich die vollste Klarheit über die Fülle der neu auftretenden algebraischen Gebilde, 
und bei dieser vollständigen Behandlung des Gegenstandes wurden zugleich die wertvollsten 
Einblicke in die Theorie der höheren, in ihrer wahren Allgemeinheit aufzufassenden 
Invarianten gewonnen. 
29 (Hawkins 1977 : 122). 
30 See also the R. Chorlay’s article in this volume for issues about generality, genericity, 
arbitrariness, and rigour in the history of mathematical Analysis in the nineteenth century. 
31 (Hawkins 1977 : 123). 
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has displayed some evidences of such a rupture in the evolution of Kronecker’s mathematical 
work. In a paper devoted to theta functions published in 1866, Kronecker was still looking 
upon the occurrence of multiple roots as a “singular” case in which the “general” algebraic 
method failed. Kronecker thus tackled this singular case by appealing to arguments peculiar to 
the context of theta functions. In demonstrating the possibility of developing truly general and 
homogeneous methods, the invariants introduced by Weierstrass gave rise to new ideals of 
generality. According to Hawkins, not only would such ideals play a major role in the 
development of the theory of bilinear forms in Berlin, they would also mark a major stage in 
the history of the 1930’s “spectral theory of matrices”.   
 

I would suggest that, insofar as anyone deserves the title of founder of the theory of 
matrices, it is Weierstrass. . . . His theory of elementary divisors provided a theoretical 
core, a substantial foundation, upon which to build. His work demonstrated the 
possibility of dealing by the methods of analysis with the non-generic case, thereby 
opening up a whole new world to mathematical investigation, a world that his 
colleagues and students proceeded to explore. . . .  On motivational force common to 
the entire nineteenth century was a concern for a more rigorous level of reasoning in 
mathematics. . . . A concern for higher standards of reasoning was a driving force 
behind Weierstrass’ work and also behind that of Cauchy and Dirichlet which 
preceded it and behind that of Kronecker and Frobenius whoch succeeded it. The rise 
of the theory of matrices was directly related to the fall of the generic approach to 
algebraic analysis. A concern for rigor did not mark the end of the creative 
development of the theory but its beginning. (32) 

 
It was however in the very special context of a controversy that Kronecker came to emphasise 
the generic nature of some algebraic reasonings of the past century. (33) The question 
therefore arises as to the different views that were being held by Jordan on what his opponent 
referred to as the “history of the theory of networks of quadratic forms”. For the purpose of 
investigating how Jordan came to develop some connections between his researches on 
substitutions groups and the theory of forms we shall develop a complementary approach to 
the work of Thomas Hawkins on the generic nature of algebraic reasoning. 

3. A mechanical misinterpretation related to an algebraic practice dating back to 
the time of Lagrange. 

In a note he addressed in 1870 to the geometers of the Academy of Paris, the astronomer 
Antoine Yvon-Villarceau pointed out a mistake in the classical method “for integrating the 
equations of a rotating solid body under the action of gravity” which had been “introduced by 
the illustrious author of the Mécanique analytique for the special case of the small oscillations 
of a loaded string whose equilibrium is slightly disturbed while one its end remains in 
position.”. In 1766 Lagrange had devised a “general method” for the “general case” involving 
an arbitrary (finite) number of masses – as opposed to the particular case of a string loaded by 
two or three masses that had already been tackled by Jean d’Alembert - and hence for the 
resolution of a system of n linear differential equations with constant coefficients.   

                                                      
32 (Ibidem : 157-159) 
33 On the construction of history by mathematical texts see (Goldstein 1995), (Dhombres 
1998), (Cifoletti 1992 and 1995), and (Brechenmacher 2006c). 
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Making use of his principle of reduction of order, Lagrange had been looking for n particular 

solutions y=Esin(t K+ε) related to the n independent equations 2

2

dt
yd +Ky =0 whose 

combination would give the general solution. The K’s emerged as the roots of an algebraic 
equation of the nth order obtained through the “elimination” of the system’s linear equations.  
As Villarceau illustrated it with a system of two equations, the problem had thus been reduced 
to an equation which turned out to characterise the mechanical system : (34) 
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[These methods] give the characteristic equation: 
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[…] designating the absolute values of its roots as ρ and ρ’, we find the following 
expressions for s and u :  
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It was therefore a necessary condition that this equation had n single roots for reducing the 

system to the n independent equations the roots were related to ( 2

2

dt
ud +ρu=0 and 2

2

dt
ud +ρ'u=0 

in Villarceau’s example). Villarceau’s 1870 note aimed at criticising a mechanical 
interpretation dating back to Lagrange and according to which the presupposition of 
mechanical stability (the oscillation had to remain small) assured that only single roots could 
occur because multiple roots would cause unbounded oscillations as the “time t would be 
coming out of the sinus” and solutions would be taking the form  s=tsin(ρt+β). (36)  
 

I claim that this condition is not necessary for the oscillations to remain small. . . . A 
homogeneous solid body of revolution oscillating around a point of its axis gives a 

                                                      
34 u and s are functions of t while g, f, a are constant coefficients. Note that in Villarceau’s 
system (a), as opposed to Lagrange’s 1766 system quoted above, the pair (a,c) of coefficients 
of u and s in the second row is the mirror image of the coefficients (c,a) in the first row. In 
(Brechenmacher 2007) we have shown that this property of mechanical systems originated in 
the specific practice Lagrange had devised in 1766 for the problems of small oscillations. 
35 (Yvon-Villarceau 1870 : 763, translation F.B.). 
36 From the standpoint of modern algebra, the stability of a system depends upon whether its 
matrix is diagonalisable or not. The inequality of the system’s eigenvalues is a sufficient but 
not necessary condition. The mechanical systems studied by Lagrange are diagonalisable 
because they are symmetric.   
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very simple case where equal roots occur in the characteristic equation. As it is plain 
to see, the solid’s oscillations will remain small provided that the initial impulsion is 
not too strong and that the solid’s centre of gravity is chosen below its centre of 
suspension and not to far from the vertical axis passing through this point. (37) 
 

Even though he pointed out some serious « deficiencies » in the « general » resolution for 
problems of small oscillations in some similar way as Kronecker would blame in 1874 the “so 
called generality” of algebraic expressions, Yvon-Villarceau did not aim at criticizing a 
tendency of generic reasoning, his purpose was to question a practice which consisted in 
combining some mechanical interpretations with the algebraic nature of the roots of a specific 
equation. Although Villarceau’s intervention had been stemming from mechanical concerns 
such as the application of Lagrange’s method to the long term perturbations of the parameters 
determining the planetary orbits, it brought up a theoretical question to the attention of the 
Academy’s geometers. Because the occurrence of multiple roots was in no contradiction to 
mechanical stability and hence to the possibility of “reducing” a system of n equations to n 
single independent equations, the question therefore arose as to the characterisation of such 
system which could be resolved into separates equations.  
This question prompted the publication by Jordan of two notes in 1871 and 1872. In 1871 
Jordan applied the canonical form he had introduced in 1870 for linear substitutions to the 
reduction of a system of differential equations with constant coefficients: 

         
dx1
dt  =a1x1+…+l1xn ,…, 

(I)     
dx2
dt  =a2x1+…+l2xn ,…, 

……. 

     
dxn
dt  =anx1+…+lnxn, 

Jordan thus obtained a canonical form for the arbitrary case (regardless of the multiplicity of 
the roots). 

(6)  
dy1
dt  =σy1,   

dz1
dt  =σz1+y,  

du1
dt  =σu1,+z1, …,  

dw1
dt  =σw1 + v1 

Such a reduced form could then be integrated directly to yield w1=eσtψ(t), ν1=eσtψ’(t),..., y1= 
eσtψr-1(t),where ψ(t) was some polynomial of degree r-1 (where r is the number of “variables” 
in the series y1,…,w1). Jordan also characterised the systems which could be resolved into n 

separates equations 
dt
dyi =σyi (each of which could be directly integrated and which solutions 

thus involved no algebraic factors ψ(t)) by the necessary and sufficient condition that each 
characteristic root K of multiplicity μ had to be a root of each of the minors of order μ-1. In 
1872, Jordan proved that Villarceau’s mechanical systems satisfied the last mentioned 
property because of their quadratic nature. The initial mechanical question was thereby 

                                                      
37 (Ibidem : 765).  Je dis qu’il n’est pas nécessaire que cette condition soit remplie, pour que 
les petites oscillations se maintiennent. . . . Voici un cas très simple, auquel correspondent des 
racines égales de l’équation caractéristique : c’est celui d’un corps solide, homogène et de 
révolution, oscillant autour d’un point pris sur son axe de figure. Chacun comprendra sans 
recourir au calcul, que la petitesse des oscillations est assurée dans ce cas, si le centre de 
gravité  est, à l’origine du mouvement, au-dessous du centre de suspension, à une petite 
distance de la verticale passant par ce point, et si le mouvement oscillatoire initial est 
suffisamment faible.  
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extended not only to the theory of linear substitutions but also to the theory of quadratic forms 
which implicitly referred to the works of Cauchy and Hermite : 
 

It is plain to see that the question of the reduction of the system (1) to its canonical 
form is identical to the well known following problem: To have the angles of the 
variables of two quadratic forms T and U disappear at the same time. (38) 

 
In proving that the multiplicity of roots was of no relevance to the subject of mechanical 
stability, Jordan reached the same conclusion that Weierstrass had already been giving in 
1858 (symmetric case) and in 1868. (39) It was thus thanks to a hundred-year old mechanical 
problem that a first connection between Jordan’s and Weierstrass’ theorems came to light. 
This connection was pointed out in 1873 by Meyer Hamburger who mixed Jordan’s canonical 
reduction together with Weierstrass invariant computation with the aim of giving a “general” 
resolution to Fuchsian equations in the case of multiple roots. (40) Hamburger’s memoir called 
Jordan‘s attention to the work of Weierstrass on the theory of bilinear forms which prompted 
the ensuing controversy when Jordan pointed out in 1873 that the transformation of forms 
could be seen as the composition of linear substitutions and when he proved that his canonical 
reduction could be used to derive Weierstrass’ theorem. (41) 

4. The discussion  on the equation to the secular inequalities in planetary theory 
(1766-1874). 

The 1874 controversy might therefore be considered as opposing two different ends given to a 
common history. It was indeed because of their capacity to give a general solution to some 
problems that had been handled throughout the eighteenth and nineteenth centuries that some 
identities between Jordan’s and Weierstrass’ theorems had arisen between 1870 and 1873. 

                                                      
38 (Jordan 1872, p. 320, translation F.B.).  Il  est clair que la question de la réduction du 
système (1) à la forme canonique (7) est identique à ce problème connu : Faire disparaître les 
angles des variables à la fois dans les deux formes quadratiques T et U.  
39 Although Weierstrass had already stated such a condition for the symmetric case in 1858, 
he communicated the same result Jordan had stated in 1872 in a communication to the Berlin 
Academy in 1875 as an application of his theorem of elementary divisors (making therefore 
no reference to Jordan). From the standpoint of Weierstrass’ 1868 theorem, Jordan’s 
condition is equivalent to the necessary and sufficient condition stating that two bilinear forms 
P and Q  might be transformed simultaneously into sums of square terms if and only if the 
elementary divisors of pP+qQ are linear. If P and Q are real quadratic forms such that pP+qQ 
is definite for some p and q, then the elementary divisors are linear and P and Q can be 
transformed simultaneously into sums of square terms.   
40 See (Hamburger 1873 :  113). In 1866 Fuchs had investigated differential equations of the 
form 
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with variable coefficients pi=pi(z). In 1873, Hamburger pointed out that Jordan’s canonical 
reduction could be used to “simplify” the form Fuchs had given to fundamental systems of 
solutions in case of multiple roots. See (Hawkins 1977 : 147). 
41 Given a family of forms sΦ-Ψ, |Φ|≠0, applying Jordan’s theorem to the linear substitution 
ΨΦ-1 shows that there exists a non singular substitution U such that U-1(ΨΦ-1)U=J where J is 
in canonical form. Thus H(sΦ-Ψ)K=sI-J, where H=U-1 and K=Φ-1U. The family of forms sΦ-
Ψ can thus be reduced to its canonical form sI-J. 



 16

Both theorems were shedding some new light on the past as they were making some results of 
authors such as Lagrange or Cauchy appear incomplete because limited to what would be 
considered from now on as the special case in which only single roots occurred. For the 
purpose of a deeper understanding of the role played by such a history in the quarrel, a 
bibliographic research has been carried out, starting from the authors and texts Jordan and 
Kronecker referred to and working out systematically the references that appeared 
successively in this paper chase. This methodology resulted in a network covering the period 
1766-1874.  A simplified representation of this network is given in annex. (42) As it is plain to 
see by looking at the main knots appearing in the entanglement of bibliographic references 
and which point to the mechanical work of Lagrange as well as to Cauchy’s analytical 
geometry, this network can neither be identified to a theory nor to the resolution of a single 
problem (even though there was a problem at the origin of the network, this problem was 
being considered as resolved by Lagrange until Weierstrass’ 1858 and 1868 memoirs and 
Jordan’s 1871 and 1872 notes would give two different ends to the network).  (43) In the 
purpose of the questioning of its identity, we will be referring to this network as a 
“discussion” (between different authors as well as various theories) and we will designate it 
under the name of “the discussion on the equation to the secular inequalities in the planetary 
theory”. 
One of the main features of this discussion is its origin which, as it has already been 
illustrated with Villarceau’s 1870 note, was systematically traced back to the solution given 
by Lagrange to problems of “small oscillations”. This origin was more precisely associated to 
the mechanical meanings Lagrange had associated to the algebraic nature of roots when he 
stated a “general method” for deciding of a mechanical system’s stability. The validity of this 
method had remained unquestioned until Weierstrass proved in 1858 that the occurrence of 
“real, unequal and negative roots” was not a necessary and sufficient condition for the 
oscillations to remain bounded. When this method was extended in the 1770’s to the 
description of the “secular inequalities” of the parameters determining the planetary orbits, 
(44) the algebraic nature of roots was linked to the stability of the solar system and this new 
issue prompted Laplace’s intervention in the discussion and the latter attempts to give a 
general demonstration of the bounded nature of the system. Laplace’s 1789 demonstration 

                                                      
42 The constitution of this network is therefore depending upon the choice of the 1874 
controversy as a moment of reference for the bibliographic research. Alternative standpoints 
would lead to constitute different networks. For instance, taking as a point of departure the 
works of H. Poincaré on the three body problem discussed in A. Robadey’s paper in this 
volume would lead to focus on astronomical references on the stability of the solar system 
(see also (Laskar 1992)). Taking as a moment of reference the works of Sylvester and E. 
Weyr on matrices in the 1880’s  would highlight some papers such as the 1850-1851 works in 
which Sylvester had introduced the terms matrices and minors and which play a minor role in 
our network as they were only quoted once by Darboux in 1874 (see (Brechenmacher 
2006d)).  
43 From the standpoint of the 1930’s modern algebra, the different problems appearing in the 
discussion would be considered as belonging to the theory of matrices and consisting in the 
reduction of a pair (A,B) of matrices in (D,I) where A is symmetric, B is definite symmetric, D 
is diagonal and I the identity matrix such as, for instance the linear differential systems with 
constant coefficients BY’=AY which are related to the eigenvalue problem AX=λBX. See 
(Gantmacher 1959 : 311).  
44 (Lagrange 1781 : 125). 
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was based on the “remarkable relations” (1,2)=(2,1) and [1,2]=[2,1] between the differential 
system’s coefficients: (45) 
 

0 = (I)   
d²ξ
dt²  + (I,2)  

d²ψ
dt²  + (I,3)  

d²φ
dt²  +&c+ [I] ξ+ [I,2] ψ+ [I,3]φ+&c. 

0 = (2)  
d²ψ
dt²  + (I,2)  

d²ξ
dt²  + (2,3)  

d²φ
dt²  +&c+ [2]ψ+ [I,2]ξ+ [2,3]φ+&c  

0 = (3)  
d²φ
dt²  + (I,3)  

d²ξ
dt²  + (2,3)  

d²ψ
dt²  +&c+ [3]φ + [I,3]ξ+ [2,3]ψ+&c  

  
As it is illustrated by some of the titles given to papers published within the discussion, such 
as Cauchy’s 1829 “Sur l'équation à l'aide de laquelle on détermine les inégalités séculaires des 
planetes”, Hermite’s 1857  “Mémoire sur l’équation à l’aide de laquelle, etc. ” or James 
Joseph Sylvester’s 1883 “On the equation to the Secular Inequalities in the Planetary Theory”, 
even though the link of these papers with astronomy went no deeper than their titles, (46) the 
mechanical works of Lagrange and Laplace had given a specific identity to an algebraic 
equation recognisable by the special nature of its roots and by the “remarkable relations” 
occurring in the linear systems related to this equation. It was thanks to this specific identity 
that Cauchy recognised in 1829 a formal analogy between various problems such as the small 
oscillations of mechanical systems, the rotation of a solid body or the classification of conics 
and quadrics. (47) 
In a paper devoted to an extensive study of the discussion, (48) it has been shown that the 
special nature of the equation to the secular inequalities was closely related to a specific 

practice which resorted to the already mentioned polynomial quotients (*) )(1 x

sx
S
P

j

i

−

in 

expressing the solutions of linear systems (such expressions were at first regarded as 
involving some equations obtained by elimination methods and, after some authors such as 
Cauchy or Jacobi made the determinants concept a basis for their analytic methods it 
gradually came to be regarded as involving the successive sub-determinants 

i

i

Δ
Δ +1  extracted 

                                                      
45 By modern standards, Laplace’s proof, which was based on the conservation of the 
system’s energy, was not valid because what he did was to use symmetry together with the 
differential equations to derive an equality that implied the solution had to be bounded as 
function of time. Then, from the form of the solutions to the differential equation –which were 
not correctly formulated for multiple roots – he inferred the reality of eigenvalues. See 
(Hawkins,1975 : 15). 
46 Cauchy’s title was taken on at the last minute when Charles Sturm called his attention to the 
connection of his work in analytical geometry with secular perturbations; see (Hawkins 1975 : 
15). 
47 See (Cauchy 1829 : 173).  From the standpoint of modern algebra, Cauchy was interested in 
the transformation of a quadratic form in three variables into a sum of squares only. This 
problem also arose in the mathematical analysis of the rotational motion of a rigid body as 
studied by Lagrange in the 18th century. In Lagrange’s work this problem was nevertheless not 
connected to the swinging string problems. For a description of Cauchy’s work on the 
problem of the rotation of a solid body in connection to Lagrange’s analytic reformulation of 
the solution given by Euler, see (Hawkins 1975 :18).  
48 (Brechenmacher 2008). 
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from S). (49) Not only did the “remarkable relations” property of the coefficients of systems 
we would nowadays designate as symmetric systems appeared as a consequence of the 
specific practice Lagrange had been developing while working out the initial conditions 
solutions to problems of small oscillations, a heritage of this practice handed down through 
the network of the discussion within different methods and various theoretical frameworks. 
Even though we would be tempted to detect in such a practice an origin of the method of 
transformation of a pair of symmetric matrices (A, B) into the pair (D, I) where D is a 
diagonal matrix and I the identity matrix, before the time of algebraic theories such as the 
1930s theory of canonical matrix most of authors would not look upon this practice as a 
method within a theoretical framework. Related as it was to a specific equation, this practice 
had nevertheless taken on an algebraic identity within a consistent network and because the 
1874 controversy highlighted some conflicting views on the nature of algebra (as when 
Kronecker was criticizing Jordan’s algebraic organisation of the theory of forms) we shall 
look into this question more closely. Until the development of theoretical frameworks such as 
the ones Jordan and Kronecker were quarrelling about in 1874, it was above all a historical 
identity that characterised the discussion’s algebraic nature. It was indeed in appealing to a 
corpus referring to earlier texts they themselves consequently contributed to develop that 
authors pointed out the specific nature of the equation to the secular inequalities. For instance, 
when Cauchy, in 1829, transcended the framework of analytical geometry he was originally 
interested in, it was thanks to the references he made to the mechanical works of Lagrange 
and Laplace in order to identify the algebraic practice he inserted in his own method for 
determining the principal axis of conics and quadrics with the result of generalising to n 
variables an analytical method originally devised for two or three variables. 
 

5. On generality and the algebraic status of a polynomial practice. 
 
From the outset of the text corpus to its two ends in Weierstrass’ and Jordan’s papers, it was 
an ambition of generality which was driving authors on making reference on a discussion they 
consequently joined themselves. It was with the aim of generalising to the “oscillations of an 
unspecified system of bodies” d’Alembert’s investigations of a swinging a string loaded with 
two or three masses that Lagrange had been working out in 1766 the general polynomial 
practice at the origin of the discussion. Because of the generality he attributed to his 
description of a motion that Daniel Bernouilli had regarded as to be too irregular to be treated 
by analytic methods, (50) Lagrange made the problem of small oscillations come out first 

                                                      
49 As seen in note n°24, from the standpoint of modern algebra this practice could be 
considered as a method giving the general polynomial expressions of the eigenvectors of  
symmetric matrix A (such expressions are given by the columns of the matrix of cofactors 
computed from the polynomial matrix A-λI). This formulation nevertheless induces some 
anachronisms not only because it resorts to modern notions or theories but also because it is 
implicitly related to complex methods of “transformations” (which include some geometrical 
analogy such as the “symmetry” property of mechanical systems)  which were extraneous to 
the practices used during the discussion. When he gave an integrable “form” to his systems, 
Lagrange did not resort to a method of  “transformation” but to the computation of some 
mechanical parameters (the proper periods). The symmetric property of mechanical systems 
was a consequence of the practice devised by Lagrange for a direct computation of the 
solutions relating to the initial conditions from the characteristic equation, this practice, 
described in (Brechenmacher 2007) could be considered as making use of dual orthogonlality 
from the standpoint of modern algebra.  
50 See (Truesdell 1960 : 156).  
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among the examples of applications he gave to the “general principles” set in his 1788 
Mécanique analytique. While generality was the main impetus given to the development of 
the discussion on the qualitative nature of characteristic roots, it nevertheless took on 
changing meanings between 1766 and 1874. To Lagrange’s mind, the fact that his method 
would fail if multiple roots should occur did not restrict any of its generality because this 
method was resorting to implicit mechanical representations. Because it was known that the 
oscillations of a swinging string loaded with n masses could be mechanically represented as a 
combination of independent oscillations of n strings loaded with a single mass, differential 
systems had to be representable by combinations of independent equations dyi=kyi (i=1, . . . 
,n). In Lagrange’s method algebraic roots could not be dissociated from their mechanical 
representations as periods of oscillations and the occurrence of multiple roots was therefore 
(wrongly) believed to be contradictory to the existence of n independent oscillations ; that is 
why they were considered to imply unbounded oscillations and this eventuality had to be 
rejected “because of the nature of the problem” : multiple roots would be contradictory to the 
prerequisites that had been made on the bounded nature of the oscillations. D’Alembert, 
Lagrange and Laplace extended to the case of multiple roots the arguments, based upon 
physical considerations, they had developed for proving that the roots of the equation 
obtained by elimination method had to be real and negative : the problem concerned a 
swinging string and the displacements of the masses from the vertical must consequently 
remain small, but this would not be the case if the analytical solutions contain exponential eδt 
because then they would increase to infinity.  
The stakes in the implication of Lagrange’s conclusion –the roots have to be real and unequal 
because the oscillations have to remain bounded – changed when the method was generalised 
to the secular inequalities in planetary theory. The stability of the solar system could not be 
taken for granted and Lagrange therefore pointed out that “it would be difficult, perhaps 
impossible, to determine the roots of the equation in general” for it would mean 
demonstrating the reality and inequality of the roots of a very general nth degree polynomial 
while these roots could not be worked out in general as soon as n was be greater than five. (51) 
Although he had worked out an effective computation for a fourth planets system and 
determined that the roots of the associated fourth degree equation were real, negative and 
unequal, Lagrange came to the conclusion that “one could wonder whether, by changing these 
values, perhaps equal or imaginary roots might occur. In order to eliminate all doubt, it would 
be necessary to demonstrate, in general, that the roots of the equation will always be real and 
unequal, whatever the values of the masses, provided only that they be positive. That is easy 
when the mutual action of only two planets is considered simultaneously, since the equation is 
only of the second degree, but this equation becomes more and more complicated and higher 
[in degree] as the number of planets increases”. (52) Laplace did not stay content with this 
numerical computation and his aim of devising a “fully general” demonstration that would not 
depend upon the approximate values assigned to the masses of the planets brought him to 
engage in the discussion.  
As has already been pointed out before, Cauchy’s 1829 intervention was caused by the 
geometer’s ambition to generalise a method he had devised for two or three variables in a 
geometric framework. The calculus of skew functions (determinants) Cauchy had appealed to 
for proving the principal axis theorem of conics and quadrics could not only be used to 
translate Lagrange’s proof of the principal axis theorem for a rotational solid body but also the 
polynomial practice peculiar to the systems of n equations related to the equations to the 

                                                      
51 See (Lagrange 1766 :  538). 
52 (Lagrange 1784 : 316, translation T. Hawkins) 
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secular inequalities. (53) This generalization also induced some changes of perspectives on 
generality. Some algebraic expressions emerging from the generalisation to n variables of the 

method for changing rectangular coordinate systems could take a  
0
 0  value in the case of 

multiple roots. (54) The proof Cauchy had sketched for the reality of the roots was valid only 
if no successive equations Si(x) relating to the successive determinants extracted from S(x) 
had a root in common. The occurrence of multiple roots now appeared as a singular case 
limiting the range of validity of an algebraic expression. It thus seemed necessary to introduce 
some particular methods for this singular case such as the infinitesimal argument Cauchy 
made use of in 1829. (55) But Cauchy did not rest content with this situation ; aiming for a full 
homogeneous resolution - as opposed to the singular cases which overburdened general 
polynomial methods - he developed his calculus of residues. (56) The change of perspective on 
generality induced by this ideal of homogeneity would impulse the further developments of 

                                                      
53 As Thomas Hawkins argued, “Cauchy succeeded in generalizing Lagrange’s proof. . . by 
using the theory of determinants, a new mathematical tool he had brought to perfection in an 
earlier memoir [1815]; The reason Cauchy probably decided to generalize the principal axis 
theorem of mechanics and quadratic surfaces was that it provided an occasion for him to 
apply his theory of determinants” (Hawkins 1977 : 125). 
54 From the standpoint of modern algebra, the existence of the orthogonal transformation 
which diagonalized Cauchy’s quadratic form depended upon the reality of the eigenvalues 
(i.e. the roots of the characteristic equation) as well as upon the non existence of multiple 
roots. 
55 D’Alembert had already realized that his solutions to the swinging string problems might 
present some difficulties if the roots were not all distinct and he had appealed to some 
considerations on infinitesimals in order to handle the case of multiple roots. Such 
considerations would be retaken and developed later by Lagrange in 1766, Cauchy in 1829 
and Sylvester in 1881. 
56 In 1870, Yvon-Villarceau would argue that Lagrange’s mistake would originate in an 
abusive generalisation of the resolution of single equations of the nth order to systems of n 
equations.As seen before, when Cauchy had composed his 1829’s paper he was not 
particularly interested in systems of linear differential equations with constant coefficients. In 
the 1830’s however, Cauchy became increasingly interested in the problem of deriving the 
properties of light from a theory of the small oscillations of a solid elastic medium. When he 
aimed at covering the case of multiple roots in 1839, he rejected this method and developed a 
uniform and completely general method of expressing the solutions by using the calculus of 
residues he had introduced as soon as 1826 in order to cover the cases of multiple roots when 
integrating a single equation of the nth order with constant coefficients 
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resorted to an « analogy » between the polynomial expression F(r)= rn+a1rn-1+…+an-1r+an 
and a symbolical factorisation of the differential equation (D-r1)(D-r2)…(D-rn)y = - f(x)/a0, 
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In 1826 he would give a solution whatever the multiplicity of roots thanks to the introduction 
of the calculus of residues :  
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the discussion between 1830 and 1858, from Cauchy to Weierstrass, and involving Jacobi, 
Borchardt, Hermite and Sylvester. (57)       

 
After he had found and stated the integrals [of mechanical systems], Lagrange came to 

the conclusion that, as the oscillations x1,  
dx1
dt   had to remain small if there were so at 

the origin, the equation could not possibly have multiple roots because in that case the 
integrals would increase to no limit over time. As he was dealing with the planetary 
secular variations in his Mécanique céleste Laplace repeated a similar affirmation. The 
same conclusion was mentioned by a number of author such as Poisson for instance. 
This conclusion is nevertheless groundless […] and the same result may be stated 
whether the roots of the equation  f(s)=0 are distincts or not; if the homogeneity of this 
conclusion has not been reached before it is because this case [multiple roots] had 
always been dealt with by particular methods. (58) 

 
Even though ambitions of generality had been strongly linked to the algebraic identity of the 
discussion ever since its origin, it was actually the arithmetic nature of some processes of 
“transformations” of homogeneous forms of the second order” which supported Weierstrass’ 
general and homogeneous conclusion. What differed between the inertia law of the arithmetic 
theory of quadratic forms and Weierstrass’ 1858 theorem was that the latter was concerned 
with pairs of quadratic forms (Φ, Ψ) and thus by the expressions Φ+sΨ which, as it would be 
claimed later by Jordan, presented a polynomial and therefore algebraic nature. Whereas such 
terms as “forms” and “transformations” had been given an explicit mathematical definition in 

                                                      
57 See (Hawkins 1977 : 128-133) for some descriptions of the works of Jacobi and Borchardt 
and of the proof given by Dirichlet in 1846 (which would become an appendix to the third 
edition of Lagrange’s Mécanique Analytique in 1853) to the fact that a state of equilibrium in 
a conservative mechanical system is stable if the potential function assumes a strict maximum 
value. Sylvester’s works of 1850-1852 would lead him to introduce the notions of “matrix” 
and ‘minors” (in which Darboux would see in 1874 an origin of Weierstrass’ elementary 
divisors). See (Brechenmacher 2006d). The methods developed by Sylvester and Cayley in 
the context of the development of the theory of invariants would be invested by Hermite in an 
arithmetical framework (quadratic forms, decomposition in four squares). On the birth of the 
theory of invariants. See (Parshall 1989 and 2006).    
58 (Weierstrass 1858 : 244, translation F.B.). Nachdem Lagrange die Form der Integral 
angegeben und gezeigt hat, wie die willkürlichen Constanten derselben durch die 

Anfangswerthe von x1,  
dx1
dt  , u.s.w. bestimmt werden, führt er unter den Bedingungen die 

erfüllt sein müssen, damit  x1, dx1/dt stets unendlich klein bleiben, wenn sie es ursprünglich 
sind, auch die an, dass die genannte Gleichung keine gleiche Wurzeln haben dürfe, weil sonst 
in den Integralen Glieder vorkommen würden, die mit der Zeit beliebig gross werden könnten. 
Dieselbe Behauptung findet sich bei Laplace wiederholt, da wo er in der Mécanique céleste 
die Säcular-Störungen der Planeten behandelt, und ebenso, so viel mir bekannt ist, bei allen 
übrigen diesen Gegenstand behandelnden Autoren, wenn sie überhaupt den Fall der gleichen 
Wurzeln erwähnen, was z.B. bei Poisson nicht geschieht. Aber sie ist nicht begründet. . ., 
wenn nur die Function Ψ stets negativ bleibt, und ihre Determinante nicht Null ist, was 
stattfinden kann, ohne dass die Wurzeln der Gleichung f(s) = 0 alle von einander verschieden 
sind ; wie man denn auch wirklich besondere Fälle der obige, Gleichungen, bei denen die 
Bedingung nicht erfüllt ist, mehrfach behandelt und doch keine Glieder von der angegebene 
Beschaffenheit gefunden hat. 
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the arithmetic of quadratic forms in relation to the notion of equivalence relation that had been 
introduced by Gauss’ 1801 Disquitiones arithmeticae, they pointed to various and mostly 
implicit meanings within the algebraic framework of the discussion.  
To Lagrange and Laplace minds, mechanical representations induced the existence of 
“integrable forms” for the differential systems of small oscillations. It was not by appealing to 
an idea of “transformation” that the independent equations were found but through the 
computation of the systems’ mechanical parameters and of the polynomial factorisations  of 
the characteristic equation. (59) In Cauchy’s 1829 paper, the “transformations of homogeneous 
functions” were related to geometrical meanings and the processes of changes of rectangular 
systems of coordinates for conics and quadrics. Even though it might seem natural nowadays 
to wonder about those matrices which, because of their multiple eigenvalues, might not be 
transformed into some diagonal forms, this question was actually irrelevant to the ways the 
terms “forms” and “transformations” were being considered at the times of Lagrange or 
Cauchy. Such kind of question was on the contrary a natural one from the standpoint of 
authors working in the 1850’s on the arithmetic of quadratic forms –a framework which 
would be “generalised” to bilinear forms in the 1860’s - as well as on the algebraic framework 
of Jordan’s 1870 substitution theory. (60) In the general resolution Jordan gave in 1871 to the 
problem of the integration of linear differential systems with constant coefficients, such 
systems were algebraically “reduced” to a chain of “simple forms” related to the algebraic 
decomposition of the characteristic polynomial.  
To the different meanings and representations the term “form” had taken on within the 
methods of Lagrange, Laplace and Cauchy would succeed, at the time when Jordan’s and 
Weierstrass’ theorems would end the century long discussion, mathematical theories whose 
subject would be a “fully general” characterization of “forms”. Should such a subject belong 
to arithmetic or algebra? Even though Jordan and Kronecker were referring in 1874 to the 
discussion corpus as a shared history relating to a specific practice they had in common and 
which consisted in investigating pairs of bilinear forms (P, Q) by making use of the 
polynomial decomposition of S=|P+sQ|, as we shall see in the following section some 
disciplinary ideals on algebra and arithmetic induced conflicting perspectives on the 
generality of the theory of “forms”. 

6. Arithmetic generality vs algebraic generality. 

The purpose of the reorganisation Kronecker devised in 1874 for the theory of bilinear forms 
was to perform an arithmetical synthesis of different results that had been obtained in the 
1860s. (61) Although Kronecker had already been implicitly referring to the legacy of the 
works of Gauss and Hermite on the arithmetic of quadratic forms in 1866 – as when he 
preferred to make use of the term “form” to name what others would designate as a function 
(Weierstrass 1858) or as a “polynom” (Jordan 1873), his monthly communications to the 
                                                      
59 On the “mathematical interpretation of essential mechanical concepts” in Lagrange’s 
analytical mechanic see (Panza 1992 : 205). 
60 The origin of Christoffel’s interest on “bilinear functions” (already mentioned in note n°9) 
was the generalisation  he gave in 1864 of Weierstrass’ 1858 theorem to the hermitian case 
for some purposes relating to Cauchy’s theory light, Clebsch mechanical works of 1860, 
Hermite’s results on biquadratic residues and in reference to Jacobi’s 1857 memoir which 
gave a generalisation of the inertia law to “bilinear function” Σaijxiyj. see (Mawhin 1981). 
61 According to Kronecker, this arithmetizing ambition had been stemming from discussions 
the latter had with *E. Kummer. On Kummer’s ideal numbers see J. Boniface’s paper in this 
volume. 
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Academy of Berlin during the winter of 1874 were aiming at an explicit generalisation of the 
arithmetic notion of “equivalence classes” from forms to networks of forms. “As an 
application of Arithmetic notions to Algebra”, two bilinear forms or two networks of bilinear 
forms were designated as “equivalent” and belonging to a same “class” when one could be 
linearly transformed into another. (62) Some disciplinary ideals were coming along with this 
arithmetic orientation given to the theory. These ideals expressed themselves in the criticisms 
Kronecker made of Jordan’s statement that a sufficient condition for two forms to be 
equivalent was the identity of their canonical forms. According to Kronecker, despite being 
true, this proposition had to be rejected because it did not state any practical process for 
deciding of the equivalence. Jordan’s proposition thus had to be distinguished from the 
“immediate possibility afforded by the theoretical criteria of equivalence to set a complete 
system of invariants” effectively computed from the form’s coefficients as the result of the 
arithmetical process for computing the g.c.d.’s of the successive minors extracted from the 
polynomial determinant  |A+sB|. (63) 
 

In the arithmetical theory of forms, we actually have to content ourselves with 
indicating a method in order to decide of the equivalence. . . . (cf. Gauss : Disquitiones 
arithmeticae, Sectio V. . .). Although this method might induce to resort to reduce 
forms, we should make clear that in the arithmetic theory of forms such reduced forms 
would be endowed a relevance completely different from the one they would assume 
in algebra. Because of their own nature, the invariants of equivalent forms must be 
obtained as the results of arithmetical processes performed on the forms’ coefficients, 
and it is not surprising that such processes, despite being directly defined, can not be 
represented explicitly as the results of some arithmetical operations; as it so happens 
for most of the notions of arithmetic such as the simple notion of greater common 
divisor. (64) 

                                                      
62 Two families of bilinear forms sΦ-Ψ and sΦ’-Ψ’ are equivalent if one can be transformed 
into the other by (possibly different) non singular linear transformations of the x and y 
variables (where ∑
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63 Consider a family of bilinear forms sΦ-Ψ and let S(s) denote  the determinant | sΦ-Ψ|, the 
greatest common divisor of all the first minors of S(s) considered as polynomials in s is 
denoted by S1(s). Similarly, S2(s) is defined as the greatest common divisor of all the second 
minors of S(s) and so on. Then Si(s) divides Si-1(s) and if Ei(s) denotes the polynomial Si-

1(s)/Si(s) then  Ei(s) divides Ei-1(s). Thus, S(s) differs from the product of the Ei(s) by a 
constant and if s1,s2,…,sk are the distinct roots of S(s) then  
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where ci is constat and the mij are positive integers or zero. Each factor ijm
jij sse )( −= with mij>0 

is an elementary divisor of S(s). 
64 (Kronecker 1874b : 415, translation F.B.). In der arithmetischen Theorie der Formen muss 
man sich freilich mit der Angabe eines Verfahrens zur Entscheidung der Frage der 
Aequivalenz begnügen und das betreffende Problem wird deshalb auch ausdrücklich in dieser 
Weise formuliert (cf. Gauss : Disquitiones arithmeticae, Sectio V. . .) Das Verfahren selbst 
beruht auch dort auf dem Uebergange zu reductiren Formen : doch ist dabei nicht zu 
übersehen, dass denselben in den arithmetischen Theorien eine ganz andere Bedeutung 
zukommt als in der Algebra. Da nämlich die Invarianten äquivalenter Formen dort ihrer Natur 
nach nur zahlentheoretische Functionen der Coëfficienten sind, so kann es nicht befremden, 
wenn dieselben zwar direct definiert aber nicht explicite sondern nur als Endresultate 
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The ideal of effectivity, which the historiography has been usually linking to Kronecker’s 
1880 arithmetic theory of algebraic magnitudes, (65) had thus already been strongly expressed 
on the occasion of the 1874 controversy when Kronecker blamed “litteral expressions” such 
as Jordan’s canonical which resorted to an algebraic decomposition of the characteristic 
determinant for which no practical process could be given “in general”  as soon as the 
polynomial degree would exceed five. 
Throughout the 1874 controversy, Jordan was retorting to Kronecker’s assaults by claiming 
the greater generality and simplicity of his method. Way off the naïve simplism caricatured by 
Kronecker, Jordan’s ideal of simplicity was linked to a practice of “reduction” of “general 
problems” into chains of sub problems. It supported a criticism of Kronecker’s 1868 
characterization of singular pairs of bilinear forms as having failed to find the “true reduced 
forms” which had to be simplest links of the chain of reductions with no possibility of further 
simplification. (66) Jordan’s practice of reduction originated in the methods the author had 
devised in his researches on substitutions groups in the 1860’s.  
The purpose of these researches to whose the Traité des substitutions et des equations 
algébriques gave a synthesis in 1870 was the general investigation of the various types of 
equations that could be solved by radicals. In order to handle this very general problem, the 
Traité developed a “machinerie”, an “enormous récurrence on the degree n of the equation” as 
Jean Dieudonné would describe it, (67) which reduced the “gender” of a substitution group 
from the general to the particular. The investigation of general soluble groups was therefore 
being reduced to the analysis of successive particular groups such as “transitive”, “primitive”, 
“linear” or “symplectic” groups corresponded to the simplest links of Jordan’s chain of 
reduction.  Among others, the linear group and its properties such as the theorem stating the 
reduction of linear substitutions to their “simplest” or “canonical” forms, “originated” in the 
practice of reduction Jordan made use of in his 1860s investigations. It was only afterwards 
that a theoretical organisation would be given to such properties in the Traité of 1870. (68) In 

                                                                                                                                                                      
arithmetischer Operationen dargestellt werden können ; denn ganz ähnlich verhält es sich mit 
den meisten arithmetischer Begriffen, z.B. schon mit jenem einfachsten Begriffe des grössten 
gemeinsamen Theilers. 
65 The arithmetical aspects of polynomials already played an important role in Kronecker’s 
1850-1870 work on the solvability of equations and would later be essential in his 1882 
arithmetic theory of algebraic magnitudes and his conception of a “Rationalsbereich” which 
was based on polynomial forms as an alternative to Dedekind’s fields. 
66 See (Jordan 1874b : 13).  
67 (Dieudonné 1970 : 168) 
68 From a contemporary standpoint, in order to characterize which primitive equations were 
solvable by radicals, Galois had asserted that the degrees of such equations were of he form 
pn, p prime and that the corresponding group g of permutations had to be a solvable subgroup 
of the linear group. As opposed to his predecessors who often concentrated upon projective 
linear substitutions, Jordan made the consideration of homogeneous linear substitutions 
fundamental in his 1867 investigations on the determination of all the irreducible equations of 
a given degree which were solvable by radicals. It was for the purpose of establishing the 
three general types of solvable subgroups of the group of linear substitutions in two variables 
that he stated in 1868 the three kinds of “canonical forms” such a linear substitution S could 
be reduced to depending of the nature of the roots of |S-kI|≡0|p]. In 1870 the general 
canonical form theorem for n variables played a major role in Jordan’s method of building up 
solvable subgroups from their composition series which involved determining linear 
substitutions which commuted with a given substitution S. For a detailed analysis of the role 
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1871, when Jordan came to answer to the questions Yvon-Villarceau  had been asking to the 
geometers of the Academy, he did resort on his practice of reduction in bringing general 
systems of linear equations down to a sequence of “simplest forms” associated to the 
decomposition of the characteristic equation into its simplest (linear) factors. Requiring the 
resolution of a general algebraic equation, Jordan’s canonical reduction nevertheless showed 
an abstract nature as it did not actually provide any practical resolution of the problem. It was 
thanks to the practices –such as canonical reduction – he had originally devised as methods 
for group theory that Jordan succeeded in extending the range of his investigations to subjects 
such as differential equations (1871-1878), the theory of forms (1872-1875) as well as 
arithmetic and number theory (1878-1908). (69) These practices did not come alone in the 
applications and Kronecker’s criticisms highlighted some of the algebraic ideals - such as 
simplicity and abstraction - which were walking along with them.     
As an outcome of the 1874 controversy, in the two successive memoirs he would publish in 
1878 and 1879, Frobenius would give to the theory of bilinear forms an organisation which 
would remain unchanged until the 1920s. Although Frobenius would elaborate his theory 
upon an orientation resuming Jordan’s ambition to develop a single theory for both bilinear 
forms and linear substitutions, the Berliner would take up the arithmetizing tendency devised 
by Kronecker’s theoretical organisation. Frobenius would especially focus on rational 
invariant computations in spite of canonical reduction. (70) 
 

By means of rational operations one can therefore determine whether given forms 
A=sA1+A2, B=rB1+B2 are equivalent or not. By contrast, all proofs known to me for 
the theorem of Herr Weierstrass involve irrational operations, for they are based on the 
transformation of A into reduced forms whose coefficients depend upon the roots of 
the equation |A|=0. Hence I long ago had proposed to myself the problem of finding a 
proof for that theorem in which only rational operations occur. (71) 

                                                                                                                                                                      
played by canonical forms in Jordan’s investigations on solvable groups as well as on the 
evolution of the role played by linear groups between 1870 and 1900 see (Brechenmacher 
2006a). 
69 See (Brechenmacher 2008) on the relation between this practice of reduction and the 
Jordan-Hölder theorem. 
70 As it has been discussed earlier, Jordan pointed out in 1873 that the transformation of 
bilinear forms could be seen as the composition of linear substitutions. Frobenius 1878-1879 
papers developed a symbolical calculus on bilinear forms and added to the operations of 
addition and scalar multiplication the multiplication ∑ ∑=∂

∂
∂
∂

= βααβ
γγ

yxc
x
B

y
AAB where 

∑= γβαγαβ bac . The transformation of the form A by means of linear substitutions ∑=
β

βαβα Xpx , 

∑=
β

βαβα Yqy  thus corresponded to the product P’AQ , P and Q being bilinear forms identified 

with the linear substitutions (P’ denoting the transpose of P) : 
∑= βααβ yxpP , ∑= βααβ yxqQ  

Frobenius thus gave some symbolical expressions to the equivalence relations introduced by 
Kronecker in 1874. This symbolical calculus reflected an heritage of some English authors 
such as Cayley and Sylvester whose works had been called to Frobenius attention by 
Darboux’s 1874 paper and the same preoccupations both authors had in the 1870’s for the 
Pfaffs’ probem, see (Brechenmacher 2006a).  
71 (Frobenius 1879 : 483, translation T. Hawkins). 
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Frobenius’ success in giving a rational proof to Weierstrass’ theorem was due to the use he 
made of the invariant factors introduced by Kronecker and of a generalisation of Smith’s 
lemma for ordinary integers to forms A-sB with coefficients which were polynomials in s and 
could be treated by analogy by arithmetical methods such as the Euclidean algorithm. (72) The 
theory would thus revolve around the elementary divisor theorem from which Jordan’s 
canonical form would follow readily as a corollary. Jordan’s proposition would thereby lose 
its theorem status. (73) Following Weierstrass’ 1868 paper, Frobenius would consider 
canonical or normal forms only for the purpose of proving the existence of a form A+rA’ of 
first degree whose coefficients belonged to some field and which possessed some prescribed 
elementary divisors ,...))((,))(( '

1
εε rr ΦΦ  Frobenius would construct such a form as a sum of εi 

forms r(x1y1+…+xαyα)+y1(a1x1+….+aαxα)-(x1x2+x2y3+…+xα-1yα), corresponding to Φi(r), and 
with determinant : 
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72 See (Smith 1861). From the standpoint of modern algebra, Kronecker’s invariant factors 
can be introduced for any Euclidean ring while Frobenius’ derivation of the elementary 
divisors is valid for any field. Applied to a bilinear form A with integral coefficients, the 
lemma Smith had stated in 1861 asserts that A is equivalent to (that is A can be transformed 
into the following form by unimodular substitutions whoses determinants are +- 1) 

F=f1x1y1+f1f2x2y2+….+f1f2…flxlyl 
where l is the rank of A. Let eλ=f1f2..fλ and di =e1e2…ei then di and ei=di/di-1 are the analogues 
of the polynomial invariants Si(s) and Ei(s) of Kronecker’s theory (see note n°48). 
The derivation of Weierstrass’ theorem from Smith’s lemma was howewer not immediate as 
the latter implied that if a form A had coefficients that were polynomials in s then PAQ=F 
where P and Q have coefficients which were polynomials in s. It was therefore necessary to 
prove that P and Q could be replaced by forms P0 and Q0 with scalar coefficients when A was 
polynomial of first degree in s (such as for the forms’ similarity expressed by A-sI), Thomas 
Hawkins has pointed out that Frobenius’ proof of the existence of P0, Qo illustrated the 
operationally of his symbolical calculus of form which would later constitute an important 
method in matrix theory. 
For some perspectives about the tendency to view objects arithmetically that were not 
originally regarded as within the province of arithmetic -such as Euclidean algorithm or 
uniqueness of factorisation of polynomials - reflected in this generalisation as inspired by 
Gauss’1832 introduction of “Gaussian integers” to establish the law of biquadratic reciprocity 
and Dededind’s 1857 theory of higher congruences see (Hawkins 1977 : 150). The objects of 
Dedekind study were polynomials with integral coefficients taken modulo a prime p which 
adhered to the analogy with elements of the theory the theory of number such as the 
Euclidean algorithm from which the basic arithmetical properties were then derived. 
73 Until 1907 when de Séguier presented in a note to the Comptes rendus the Jordan’s 
canonical form as the basis of a  new organisation for the “theory of matrices”, Jordan’s result 
would only be considered as a theorem within the framework of group theory, on the posterity 
of Jordan see (Brechenmacher 2006a). 
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Frobenius would conclude his 1879 memoir by explaining how the “canonical form that 
Jordan had stated in his Traité des substitutions” was thus obtained in the particular “case 
where he elements aαβ of the system A are polynomials in r with integral coefficients and two 
such functions are not considered to be distinct when their corresponding coefficients are 
congruent relative to a prime number modulus p. . . and if use is made of the complex 
numbers introduced by Galois”. (74) 
Even though different methods had been developed in the successive works of the Berliners 
on bilinear forms - while Weierstrass would appeal to the successive algebraic 
decompositions of a polynomial determinant and its minors, Kronecker would compute   
g.c.d.s and arithmetical decompositions whereas Frobenius’ theory would be based on a 
symbolical calculus on forms -, these different methods would resort to a same practice. This 
practice, which consisted in resorting to polynomial invariants in order to handle 
mathematical “forms”, was not restricted to a single method, theory or discipline. This 
practice was strongly linked to some cultural aspects peculiar to the Berliners such as some 
modalities of handling generality in mathematics. As it would not appeal to any process of 
“transformation” but would resort to some polynomial computations, this practice was also 
inducing a specific static way of thinking about “forms”: it was not until the computation was 
done that the set of invariants that had been worked out would eventually be represented by 
some normal forms which would be nothing more than a specific way of representing a 
determinant.  
On the opposite of the static nature of invariant computations, the practice Jordan appealed to 
for the reduction of general problems to chains of simpler problems was inducing some 
dynamic ways of thinking about “transformations” and “reductions”. The operationality of the 
representation Jordan had developed for linear substitutions allowed to “see” not only how a 
substitution’s “indices” could be put into some sub groups in relation to the successive 
polynomial decomposition of the determinant but also the actions of the substitution on these 
sub groups : (75)  
 

The distinct functions y0, y’0,...;...;yρ, y’ρ,…;… can be chosen as independent indices in 
place of an equal number of primitive indices x,x’, …xn-1. Let m be the number of such 
functions, the substitution would thus be reduced to the form  
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. (76) 

 
By representing simultaneously the indices and the actions of the substitution on these 
indices, Jordan’s notation was depicting the successive steps of the practice of reduction itself. 
The form in the above quotation contained the substitution C on which the reduction had to be 
repeated 
                                                      
74 (Frobenius 1879 : 483, translation T. Hawkins 1977, p. 153) 
75 The Ki designates the characteristic roots. From the standpoint of modern algebra, a vector 
space is decomposed under the action of A as a sum of a stable subspace and his 
complementary space.  On Jordan’s demonstration see (Brechenmacher 2006a : 167-187). 
76 (Jordan 1870 :  117, translation F.B.) 
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This process of reduction had to be repeated until all the indices would be “grouped” in 
“distinct series Y0, Z0, u0,… ; Y’0,Z’0,… ;… ” on which A would act by the “simple law” K0Y0, 
K0(Z0+Y0), K0(u0+Z0),…;… associated to the canonical form : 
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Conclusion. 

We shall now come to some conclusions that may be drawn from the conflicting perspectives 
on generality relating to the two practices opposed by Jordan and Kronecker in 1874. In a 
word, while Jordan, on the one hand, criticized the lack of generality of Kronecker’s invariant 
computations because they did not state explicitly the simplest reduction of pairs of forms, 
Kronecker considered Jordan’ canonical form as a “formal notion” with no “objective 
meaning” and which thereby displayed a “generic” nature and failed to reach a true generality. 
It was in the first place the “general” solution they achieved for different problems that had 
been handled in the past by authors such as Lagrange, Laplace, Cauchy or Hermite, and 
furthermore their capacity to consider these various problems as a single “general” problem of 
“transformation” of pair of “forms” that prompted some connections between Jordan’s 
practice of canonical reduction and the practice of invariants computations used in the 
development of the theory of bilinear forms in Berlin. The reference to a common history 
therefore played key role in the controversy. Not only did Kronecker, with the aim of 
criticizing Jordan’s canonical form, stress a history of what the historian T. Hawkins would 
later refer to as the “generic reasoning” in the eighteenth-nineteenth centuries algebra, but the 
reference to the “discussion on the equation to the secular inequalities in the planetary theory” 
played also a major role in identifying a specific practice that consisted in expressing the 
solutions of linear equations as polynomial factors of their characteristic equation. Even 
though they were sharing this traditional polynomial practice of generality, Jordan and 
Kronecker melted it with practices of their own in order to design the two methods related to 
their conflicting views on the theoretical organisation of a “general theory of forms”. 
 On the one hand, in the algebraic organisation Jordan gave to the theory, transformations 
resulted from the action of some linear substitutions groups and, in order to achieve “general 
results” on forms, underlying substitutions had to be reduced to their “simplest canonical 
forms” depending on the nature of the linear group the substitutions were belonging to. On the 
other hand Kronecker blamed algebraic methods for their tendency to think in term of the 
“general” case with little attention given to difficulties that might be caused by assigning 
specific values to the symbols whereas Weierstrass’ invariants were considered as a model of 
“truly general” development. Even though Jordan’s canonical forms could not be charged 
with an indictment of “so called generality” as they were actually giving a solution whatever 
the multiplicity of the characteristic roots, it was the algebraic nature of the practice of 
reduction they were related to that prevented them from reaching a general and theoretical 
level because, Kronecker argued, one shall not mistake algebraic methods for the “general 



 29

notions” relating to arithmetic it was algebra duty to serve. Kronecker appealed to the 
tradition of Gauss on behalf of his claim that the theory of forms should be considered as 
belonging to arithmetic and should consequently focus on the characterisation of equivalence 
classes in establishing arithmetical invariants thanks to some effective procedures such as 
g.c.d.s computations. As long as they could not be effectively computed because they resorted 
to the solution of “general” algebraic equations, explicit resolutions such as Jordan’s 
canonical form had thus to be rejected because of their formal nature.  
On the opposite of Frobenius’ 1879 theoretical organisation, the “Jordan canonical form 
theorem” would be referred to as a central result of the “theory of matrices” in most of the 
many treaties that would be published in the 1930’s. This theorem would actually relate to 
two canonical forms : (77) 
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On the one hand the Jordan canonical matrix A would be considered as the simplest form in 
connection to the maximal decomposition of a matrix, on the other hand the “rational 
canonical form” B would be obtained as the result of effective procedures. While laying an 
emphasis on canonical forms the theory of canonical matrices would put to the foreground a 
method of decomposition resorting to an ideal of simplicity close to the one Jordan had been 
appealing to in 1874:  
 

The theory of canonical matrices is concerned with the systematic investigation of 
types of transformation which reduce matrices to the simplest and most convenient 
shape. (78) 

 
As it is illustrated by the examples given below from the Theory of canonical matrices written 
by C.C. Turnbull and A.G. Aitken, this method would resort to some operatory processes 
relating to the representation given to matrices in order to decompose matrices into partitions 
of submatrices :  
 

The theory of canonical matrices is concerned with the systematic investigation of 
types of transformation which reduce matrices to the simplest and most convenient 
shape. . . It is convenient to extend the use of the fundamental laws of combination for 
matrices to the case where a matrix is regarded as constructed not so much from 
elements as from submatrices, or minor matrices, of elements. For example, the matrix 

 
can be written 

                                                      
77 The two matrices given in this example both relate to the minimal polynomial 
λ8+α1λ7+…+α7λ+α8=(λ-λ1)²(λ-λ2)3(λ-λ3)(λ-λ4). 
78 (Aitken and Turnbul 1932 : 1). 
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Between 1874 and 1930, a tension between canonical forms and invariants would play a 
major role in the complex history of the practices that would come to give an operatory 
dimension to the matrical representation. This representation would depict how a general 
problem could be reduced into a chain of simpler problems as the basis of a method melting 
the computation of polynomial invariants to some other processes such as an algebraic 
symbolical calculus, a combinatory of submatrices, an arithmetic of rows and columns as well 
as the geometric decomposition of a vector space in stable subspaces, thereby.  

 
 
 
 

A careful study of the dynamic of this tension between canonical forms and invariants 
practices was used as a preliminary to a wider historical understanding of the history of linear 
algebra in our doctoral thesis. On the fringe of a dominant theory of bilinear forms which 
would resort to practices of invariants computations and which, as it has been documented by 
Thomas Hawkins, would globalize some ideals on generality developed in Berlin such as the 
opposition of “true generality” and generic reasoning, some authors such as Jordan, Henri 
Poincaré, Eduard Weyr, Theodor Molien, Kurt Hensel, William Burnside, Leonard Dickson 
or Léon Autonne would handle general problems through some practices of reductions to 
canonical forms thereby developing some operatory processes on imagery representations. 
Some of these practices would not resort to what would now be identified as the framework of 
linear algebra – such as the calculus of tables which was mainly developed in an arithmetical 
framework by authors such as Hermite, Jordan, Poincaré and Chatelet –. Studying how these 

                                                      
79 (Aitken and Turnbull 1932 : 1-20). 
 

×



 31

practices were fitting in some networks of references not only highlights how they were 
related to some modalities of handling generality peculiar to these networks but it also raises 
some issues about disciplines and communities formations, evolutions and connections in 
relation to the ambitions of  “generalisations” which, as has been portrayed in this paper for 
the case of the network of the discussion on the equation to the secular inequalities of 
planetary theory, are of particular importance for the history of linear algebra. 
 
 

Annex.  
The discussion on the equation to the secular inequalities on planetary theory. 
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