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Imprecise reliability by evidential networks

Christophe SIMON and Philippe WEBER∗

October 3, 2008

Abstract

This article deals with an implementation of probist reliability problems in evi-

dential networks to propagate imprecise probabilities expressed as fuzzy numbers.

First, the problem of imprecise knowledge in reliability problems is described con-

cerning system and data reprsentation. Then, the basics of the evidence theory and

its use in a directed acyclic graph approach are given. The imprecise probist re-

liability of complex system by modelling the component failure probabilities as

real, interval or fuzzy numbers is pointed out. Two numerical studies of systems

are done. The results are discussed and some comparisons with a Monte-Carlo

simulation and a fuzzy fault tree approach are made.

1 Introduction

In reliability studies, the probabilities involved are usually considered as precise and

perfectly known. It is also supposed that all information on the behaviour of the sys-

tem and its components concerning reliability. As Utkin wrote [1], this completeness

assumes two main conditions:

• All probabilities or probability distributions are known or perfectly determinable.

• The system components are independent, i.e. all random variables which de-

scribe the component reliability behaviour are independent or alternatively, their

dependence is precisely known.

With real systems, the first condition is seldom fulfilled [1]. Usually, the reliability

assessments that are combined to describe systems and components come from vari-

ous sources. Some information can be objective measures from relative frequencies

or well-established models. Other information may be supplied by experts usually in-

corporating an epistemic uncertainty. In the first case, the probability model should be

used [2, 3] to tackle this random nature of uncertainty. In the latter case, many uncer-

tainty models can tackle the problem of imprecision. A pure probabilistic framework

suggests that all uncertainties whether of a random or an epistemic nature should be

represented in the same way. As mentioned by Baudrit and Dubois [4], uncertainties

are neither random nor can be objectively quantified and model parameters are often

incomplete. As suggested by Ferson or Helton [5, 6] distinct representation methods

are needed to adequately tell variability from imprecision. Many representations exist
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and it is very difficult to cite all of them. The reader can be interested in papers con-

cerning some of these representations like possibility theory [7], upper and lower prob-

abilities [8], evidence theory [9], imprecise probabilities [10], fuzzy probabilities [11],

Neumaier clouds [12] . . .

Imprecision can affect data for various reasons. Limbourg recounts in [13] that

in early product development phases, epistemic uncertainties are encountered with in-

complete component data, influencing factors, or vague estimations of failure functions

provided by experts. In the same way, Baudrit [4] explains that for time and financial

constraints, information regarding model parameters is often incomplete and experts

give information according to their experience and intuition. So, a convenient way

to represent uncertainty in reliability parameters can be intervals or fuzzy values. It

induces reliability models of studied systems to deal with these representations.

To deal with epistemic and random uncertainties, the evidence theory has proven

to be a well-suited framework [9]. It has been applied in various fields [14–16] for

example in reliability studies [17–19]. This theory is rather close to the probability

theory. As specified by Halpern [20, 21], a belief function can formally be defined as

a function satisfying axioms which can be viewed as a weakening of the Kolmogorov

axioms that characterize probability functions. Thus, it seems reasonable to understand

a belief function as a generalized probability function [22].

The goal of this paper is to propose a graphical formalism allowing to model im-

precise reliability with certain and uncertain probabilities (real, interval or fuzzy prob-

abilities) and to show how to propagate the random and epistemic uncertainties in reli-

ability models. For this purpose, directed acyclic graphs based on the Dempster-Shafer

structure [18] are used. Section 2 defines system reliability models used and the rep-

resentation of reliability parameters. Section 3 concerns the basics of evidence theory.

Section 4 is dedicated to evidential networks and reliability models. Finally, section 5

deals with two numerical experiments and comparisons with a Monte-Carlo simulation

and a fuzzy fault tree approach.

2 System and data description

The problem of uncertainty in reliability modelling has led to several approaches de-

fined by Cai [23–25]. To classify these approaches of reliability theories, Cai considers

the different types of measures to describe the component behaviour and how to de-

scribe the component states. PROBIST reliability concerns systems with two state

components and systems (functioning and malfunctioning: BInary STate) and proba-

bility measures (PRObability) to characterize the component and system behaviours.

PROFUST reliability considers probability measures and fuzzy states. In POSFUST

reliability possibility measures and fuzzy states are considered. The last case concerns

POSBIST reliability with possibility measures and two state hypotheses. The problems

involved in this study concern PROBIST reliability only. The components and the sys-

tems are supposed to have binary states with a functioning state (U p) and a failure state

(Down).
The data concerning the component performances are obtained from the manufac-

turer’s documentations and are sometimes reinterpreted by experts or directly obtained

from experts or from databases. They can take several forms like crisp, interval or fuzzy

values depending on their source. As our approach concerns failure probabilities at a

precise time, all information concerning the general performance of the components

used like failure rates or MTTF should be translated in probabilities according to their
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failure distribution. All these probabilities can be interpreted as fuzzy number even if

the source provides crisp values or interval valued probabilities which are considered

as a special case of fuzzy probabilities [26].

As the main idea of the paper is to handle imprecision on probabilities with fuzzy

sets, let us recall some basic elements. A fuzzy set is a class of objects with a continuum

of membership grades. Such a set is characterized by a membership function which

assigns to each object a grade of membership ranging between 0 and 1 [27]. A fuzzy

subset Ã on a universal set U , U 6= /0 is uniquely determined by its membership function

µ
Ã

: U 7→ [0,1] [27]. The value µ
Ã
(X) represents the membership degree of x to Ã. The

membership degree of an element u of U to Ã no longer belongs to {0,1} but to the

interval [0,1]. If µ
Ã
(X) = 0, x does not belong at all to Ã, if µ

Ã
(X) = 1, it belongs to it

completely. If 0 < µ
Ã
(X) < 1 then the membership of x to Ã is more or less complete.

A set SuppA =
{

X ∈U
∣∣µ

Ã
(X) > 0

}
is called the support of Ã. A set KerA ={

X ∈U
∣∣µ

Ã
(X) = 1

}
is the kernel of Ã. If the kernel of Ã is nonempty (KerA 6= /0), Ã

is known as normalized. The sets Aα =
{

X ∈U
∣∣µ

Ã
(X) ≥ α

}
,α ∈ [0,1] are called the

α-cuts of Ã. The α-cuts of Ã are nested, i.e. if α1 ≥ α2 then Aα2 ⊆ Aα1 .

A normalized fuzzy set Ã on the set of all real numbers IR whose α-cuts Aα are

closed intervals and whose support SuppA is bounded, is called a fuzzy number. A

fuzzy number Ã is defined on [a,b] if SuppA ⊆ [a,b]. If x is a real continuous variable

with membership function µ(x) ∈ [0,1], and satisfying the following conditions:

• µ(x) is piecewise continuous;

• µ(x) is convex;

• µ(x) is normalized (at least one value of x0 such as µ(x0) = 1).

Now, let us consider three real parameters (m,a,b), m, a and b are strictly positives,

and two functions, noted L and R, are defined on the real set IR+, with values in [0,1],
upper semi-continuous, such as:

L(0) = R(0) = 1,

L(1) = 0 or limx→∞ L(x) = 0,

R(1) = 0 or limx→∞ R(x) = 0.

(1)

A fuzzy number M̃ is L−R type if its membership function µ
M̃

is defined by:

µ
M̃

(x) =

{
R

(
(x−m)

/
b
)

if x > m

L
(
(m− x)

/
a
)

if x ≤ m
(2)

Let us note M̃ = (m,a,b)LR a L − R fuzzy number. m is its modal value with

µ
M̃

(m) = 1, a is the left width of its support from m, also called the left spread, and b

the right width from m, also called the right spread, on the real axis (cf. figure 1). L

and R are both functions which determine the membership function of M respectively

on the left and on the right of m. Here, L and R are linear functions.

Hence, to take into account the lack of knowledge on a probability value, a fuzzy

probability can be represented by a fuzzy number if 0 ≤ (m,a,b) ≤ 1 and L and R

are two functions from [0,1] to [0,1]. Of course, a probability interval and a singular
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Figure 1: L−R triangular fuzzy number

probability value are a special case of fuzzy probability and can be represented in the

same way for a convenient computation in the same model.

According to the generic representation of imperfect probabilities as fuzzy num-

bers, the main problem is now to deal with the fuzzy probabilities inside the probist

reliability model of the studied systems. A solution can be found by the nested inter-

val valued probabilities according to the α−cuts previously described and the evidence

theory. The nested intervals represent the imprecision at an α-level and the correspond-

ing frames of discernment that support this representation. Then, the propagation of

interval valued probabilities through a probist reliability model is solved by directed

acyclic graphs supporting the frames of discernment which are called evidential net-

works.

3 Basics of evidence theory

The evidence theory was initiated by Dempster [22], with his work on upper and lower

bounds of a probability distribution family, then reinforced by Shafer [9]. Several

models of imperfect data processing were proposed (e.g. upper and lower probabilities

[10], the evidence theory [9], the Hint Model [28], the Transferable Belief Model [29]).

On a discrete finite space, the model suggested by Dempster and Shafer can be

interpreted as a generalization of the probability theory where probabilities are assigned

to sets in opposition to mutually exclusive singletons [30]. In the probability theory,

a measure is assigned to only one possible event. On the other hand, in the evidence

theory, a measure can be assigned to a set of events. However, when the information

available allows the assignment of measures to single events (i.e. specific knowledge),

the Dempster-Shafer model merges with the traditional formulation of probabilities.

This information is called Bayesian evidence [31]. The closeness between these two

models reinforces the interest of the evidence theory for applications initially handled

by the probability theory.

3.1 Basic mass assignment

The main idea of the basic mass assignment is to allocate a measure between 0 and 1 to

indicate the degree of belief about events or assumptions [9]. There may be several in-

terpretations of these measures, which generate controversy on their use. The evidence
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theory does not make the assumption of an unknown probability measurement but sub-

jective beliefs based on non-specific information [32]. In the same way, Sentz [30]

argues that it is not really a question of probabilities. However, many works are di-

rected towards an objectivist approach of belief functions [33, 34]. Thus, the term of

basic probability assignment as that of basic mass assignment are both commonly read

in the literature [35] to model the same assignment process. The probability theory as

well as the evidence theory offers either an objectivist point of view or a subjectivist

point of view of knowledge [32]. When the process is carried out on a large amount of

data or directly starting from probabilities, the expression of basic probability assign-

ment could be preferred [33, 34]. Basic mass assignment is suitable in the treatment of

knowledge from experts’ opinions [36]. Ha Duong [32, p.70] argues about the unim-

portance of this interpretation problem, which occults a mathematical unit. In this

article, the term of belief masses is used indifferently.

In the evidence theory, a set of mutually exclusive and exhaustive q elements called

the frame of discernment is considered and defined by:

Ω =
{

H1,H2, . . . ,Hq

}
. (3)

Ω is the set of all possible issues where each issue or hypothesis Hi can support any

information from different sources. The information sources can distribute masses on

every subset of the frame of discernment:

Ai ∈ 2Ω : { /0,A1 = {H1}, . . . ,Aq = {Hq},Aq+1 = {H1,H2}, . . . ,A2q−1 = {H1, . . . ,Hq}}. (4)

An information source assigns a belief mass between 0 and 1 only on hypotheses on

which it has a direct knowledge, i.e. it does not assign any belief mass to any subset of

these hypotheses [37]. This process, called basic mass assignment, is represented by a

function m defined by:

m : 2Ω → [0,1] . (5)

such as:

m( /0) = 0. (6)

and

∑
Ai∈2Ω

m(Ai) = 1. (7)

Each Ai supporting 0 < m(Ai) ≤ 1 is called a focal set. The constraint defined

on /0 by 6 is not mandatory. It supposes that all hypotheses Hi are known, i.e. the

problem is defined in the context of closed world assumption. The goal of /0 is to

formalize the fact that all hypotheses are not known. In this case, m( /0) 6= 0 supports

this consideration [38].

3.2 Belief and plausibility measures

The upper and lower bounds of a probability interval can be defined from a belief

mass distribution. This interval contains the probability of a set of hypotheses or focal

sets and is bounded by two non-additive measures called belief (Bel) and plausibility

(Pls) [39].

The measure of belief Bel (Ai) is the lower bound of probability of a focal set Ai. It

is the sum of the belief masses of all subsets B that contribute to Ai such as B ⊆ Ai. The
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Figure 2: Plausibility and belief measures and their complement [43]

upper bound of probability Pls(Ai) is the sum of all belief masses assigned to subsets

B such as B∩Ai 6= /0. Pls(Ai) and Bel (Ai) are defined by the following equations:

Pls(Ai) = ∑
B|Ai∩B 6= /0

m(B). (8)

Bel (Ai) = ∑
B|B⊆Ai

m(B). (9)

It results in the bounding property defined by the following equation:

Bel (Ai) ≤ Pr(Ai) ≤ Pls(Ai) . (10)

where Pr(Ai) defines the occurrence probability of Ai but remains unknown. It can

take any value in [Bel(Ai) Pls(Ai)]. The bounding property 10 is well known and has

been defined since 1976 in the work of Shafer [9]. Many authors used it to connect the

interval defined by [Bel (Ai) Pls(Ai)] and the belief mass distribution [40–42].

Plausibility and belief measures are not dual because they are not additives within

the meaning of the probability theory (Bel (Ai) 6= Pls(Ac
i )) where Ac

i is the complement

of Ai according to Ω. However, the relations below can be established between Ai and

Ac
i :

Bel (Ac
i ) = 1−Pls(Ai) , (11)

and

Pls(Ac
i ) = 1−Bel (Ai) , (12)

with

Bel (Ac
i ) ≤ Pls(Ac

i ) . (13)

(Pls(Ai)−Bel (Ai)) describes the uncertainty concerning hypothesis Ai represented by

interval [Bel (Ai) Pls(Ai)] (cf. figure 2).

From plausibility and belief measures, the basic mass assignment is computed by

the Möbius transform [44]:

m(Ai) = ∑
B|B⊆Ai

(−1)|Ai|−|B|
Bel (B) , (14)

where |Ai| is the cardinal of set Ai.
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3.3 Probability intervals and belief mass assignment

If the imprecision on a probability measure is described by an interval, the relation with

a basic mass assignment is directly obtained by:

[
PHi

PHi

]
= [Bel(Hi) Pls(Hi)] , (15)

where PHi
is the lower bound of probability of hypothesis Hi, PHi

is the upper

bound of probability with i from 1 to q the number of hypotheses. The transformation

of a probability interval set [PX ] of a random variable X to a basic belief assignment

MX is easily obtained by 8, 9 and 14. If :

[PX ] =
[
[PHX

1
PHX

1
] . . . [PHX

q
PHX

q
]
]
, (16)

then

MX = [m( /0) m(AX
1 ) . . . m(AX

i ) . . . m(AX
2q−1)]

= [P /0 PAX
1

. . . ∑
B|B⊆AX

i

(−1)|A
X
i |−|B

X |PBX . . .], (17)

with AX
i ∈ 2ΩX .

As argued by Smets [45], the knowledge of Bel(AX
i ) and Pls(AX

i ) measures is equal

to the knowledge of the basic mass assignment on the frame of discernment.

3.4 Fuzzy probability and basic mass assignment

If the imprecision on a probability measure is described by a fuzzy probability, it is easy

to compute all its nested intervals corresponding to the different α-cuts of the fuzzy

number. Thus, a set of nested upper and lower bounds of probabilities are obtained and

the corresponding belief mass distribution for each level α can be computed:

[
Pα

Hi
P

α
Hi

]
=

[
Pα(Hi) P

α
(Hi)

]
= [Belα(Hi) Plsα(Hi)] , (18)

where Belα(Hi) is the lower bound of the fuzzy probability cut of level α and

Plsα(Hi) the upper bound.

Thus, the belief mass distribution Mα
X at level α which describes a variable X is

computed from the probability interval distribution [Pα
X ] on ΩX by 8, 9 and 14:

[Pα
X ] = (

[
Pα

H1
P

α
H1

]
, . . . ,

[
Pα

Hq
P

α
Hq

]
), (19)

then

Mα
X = [mα({H1}) . . . mα({Hi}) . . . mα({H1, . . . ,Hq})]

= [Pα
H1

. . . , ∑
H j|H j⊆Hi

(−1)|Hi|−|H j|Pα
H j

. . . ∑
H j|H j⊆Hq

(−1)|Hq|−|H j|Pα
H j

].(20)

By varying α ∈ [0,1] the fuzzy probabilities of a variable can be coded by a set of

basic mass assignments.
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4 Evidential networks to model reliability

In complex system models for their reliability analysis, the variables, which represent

the system, its components, its function, or the events of the system, are related to each

other. These relations can be represented by conditional dependencies. In this section,

we propose to define an evidential network to represent the conditional dependencies

between variables in a frame of discernment integrating uncertainty as belief masses in

the meaning of the evidence theory.

The proposed evidential networks are directed acyclic graphs, which represent un-

certain knowledge in random and epistemic ways [18, 46]. An evidential network is a

couple: G = ((N,A) ,M), where (N,A) represents the graph with N the set of nodes, A

the set of edges and, M the set of belief masses associated to each node. When a node

is not a root node, i.e. when it has parent nodes, its belief mass distribution is defined

by a conditional belief mass table quantifying the relation between the node and its

parents. When a node is a root, an a priori belief mass table is defined.

A discrete random variable X is represented by a node X ∈ N with its frame of

discernment ΩX constituted by q mutually exhaustive and exclusive hypotheses (cf. 3).

The vector M(X), also noted MX , is the belief mass distribution over the 2q focal sets

AX
i (cf. 4). M (X) is defined by the following equation:

M(X) = [m(X ⊆ /0) m(X ⊆ AX
1 ) . . .m(X ⊆ AX

i ) . . . m(X ⊆ AX
2q−1)], (21)

with m(X ⊆ AX
i ) ≥ 0 and ∑

AX
i |A

X
i ∈2Ω

m
(
X ⊆ AX

i

)
= 1, where m(X ⊆ AX

i ) is the belief

that variable X verifies the hypotheses of focal element AX
i .

When a node is a child node, M is represented by its own conditional belief mass

table. Each conditional belief mass table defines the relation between the belief masses

assigned on the frame of discernment of the variable expressed by each parent node

and the belief masses assigned on the child node frame of discernment. Figure 3

shows two nodes X and Y defined with the frame of discernment 2ΩX :
{

/0,AX
1 , . . .AX

M

}
,

2ΩY :
{

/0,AY
1 , . . .AY

K

}
and lies to a node Z with its own frame of discernment 2ΩZ :{

/0,AZ
1 , . . .AZ

L

}
. The conditional belief mass table of Z is defined by conditional belief

mass M (Z |X ,Y ) for each hypothesis AZ
i given the focal sets of its parents X and Y .

For a root node, i.e. without parents like X and Y , the belief mass table is a vector

representing the a priori belief mass distribution defining the amount of belief that a

variable verifies the hypotheses of the frame of discernment.

Figure 3: Elementary network: 2 parents, 1 child

To compute the marginal belief mass distributions of each node, inference algo-

rithms are used. The exact inference is carried out by the algorithm proposed by Jensen

based on the construction of a junction tree [47, pp. 76] as we proposed in [18]. This
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algorithm updates the marginal belief mass distribution on each node given the knowl-

edge introduced into the evidential network. The computation mechanism is based on

the Bayes theorem, which is extended to the representation of uncertain information

according to the framework of evidence theory. Specific evidence (Hard evidence) is

modelled by a mass of 1 assigned to one focal element of the frame of discernment.

Non-specific evidence (soft evidence) corresponds to a mass distribution on several

focal elements of the frame of discernment.

When modelling probist reliability problems, the frame of discernment (Ω = {{U p},{Down}})

becomes a Dempster-Shafer structure (2Ω = { /0,{U p},{Down},{U p,Down}}) which

can be reduced to the three following hypotheses:

• m{U p}: belief mass that the system is in operating condition,

• m{Down}: belief mass that the system is in fail condition,

• m{U p,Down}: belief mass that the system is exclusively in one of the previous

conditions without distinguishing exactly which.

Under the assumptions of probist reliability, the studied components as well as the

system can only be in one of the two operating conditions. This is a closed world

problem [38] and the hypothesis /0 does not carry any belief mass. In the analysis of

reliability or risk integrating human factors, it can be interesting to assign a belief mass

to /0 to characterize the lack of completeness of assumptions (open world) on which the

analysis is based rather than introducing a safety coefficient or a margin of probability

on the global result in order to take into account the possible missed scenarios. In

this study, the problem of reliability analysis of systems as a problem of closed world

(m( /0) = 0) is considered.

4.1 Modelling system reliability

To model the reliability of systems by evidential networks, we transpose the approach

suggested by Bobbio et al. [48, 49] to evidential networks. The goal is to convert a

fault tree into an equivalent network with the hypothesis suggested by Guth [40] as

presented in [18]. A fault tree describes the propagation process of a failure within

the functional structure of a system. The reliability of the modelled system follows the

assumptions of independence of the events and of coherence of the systems [50].

The reliability is described by ’AND’, ’OR’, ’k out of n’ gates combining the el-

ementary events. To integrate the frame of discernment of the evidence theory, the

evidential network models the truth tables of ’AND’ gate (cf. table 1) and ’OR’ gate

(cf. table 2) [40] by conditional belief mass tables 3 and 4 [18].

Table 1: Truth table of a ’AND’ gate

AND {Up} {Down} {Up,Down}

{Up} {Up} {Down} {Up,Down}
{Down} {Down} {Down} {Down}

{Up,Down} {Up,Down} {Down} {Up,Down}

The conditional belief mass table representing a ’AND’ gate is defined by table 3.

EX corresponds to the state of the component X , EY to the state of component Y , and

EX ,EY are the inputs of the ’AND’ gate. EZ corresponds to the output of the gate. The

conditional belief mass table of a ’OR’ gate is defined by table 4.

9



Table 2: Truth table of a ’OR’ gate

OR {Up} {Down} Up,Down

{Up} {Up} {Up} {Up}
{Down} {Up} {Down} {Up,Down}

{Up,Down} {Up} {Up,Down} {Up,Down}

Table 3: Conditional belief mass table of a ’AND’ gate

EZ

EX EY {Up} {Down} {Up,Down}

{Up} {Up} 1 0 0

{Down} {Up} 0 1 0

{Up,Down} {Up} 0 0 1

{Up} {Down} 0 1 0

{Down} {Down} 0 1 0

{Up,Down} {Down} 0 1 0

{Up} {Up,Down} 0 0 1

{Down} {Up,Down} 0 1 0

{Up,Down} {Up,Down} 0 0 1

The conditional belief mass table can be adapted to gates with more inputs and to

k out of n gates (cf. table 5). In addition, the coefficients of the conditional belief mass

table take their value in {0,1} since it is a translation of the truth tables of logical gates.

These coefficients can take different values from {0,1} if the modelling of different

behaviours is expected, in particular when there is an uncertainty about the propagation

of belief masses through the evidential network.

4.2 Belief and plausibility measures in evidential networks

To compute belief and plausibility measures in an evidential network, it is necessary

to apply 8 and 9. When an evidential network is implemented in a tool respecting the

additivity axiom, if the exact inference algorithm should compute Bel and Pls measures

then it cannot be done in the same node. Simon and Weber [18] proposed to compute

each measure on a focal element of a variable by two particular nodes (cf. figure 4).

The node dedicated to compute Bel(AX
j ) is described by two hypotheses Believe and

Figure 4: Nodes to compute Bel and Pls measures.

Doubt according to the conditional belief mass table given on table 6.
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Table 4: Conditional belief mass table of a ’OR’ gate

EZ

EX EY {Up} {Down} {Up,Down}

{Up} {Up} 1 0 0

{Down} {Up} 1 0 0

{Up,Down} {Up} 1 0 0

{Up} {Down} 1 0 0

{Down} {Down} 0 1 0

{Up,Down} {Down} 0 0 1

{Up} {Up,Down} 1 0 0

{Down} {Up,Down} 0 0 1

{Up,Down} {Up,Down} 0 0 1

The node dedicated to compute Pls(AX
j ) is described by hypotheses Plausibility et

Disbelie f according to table 7.

The structure of these nodes is generic. It is useful for the computation of belief and

plausibility measures of each node of the network and for each hypothesis. Moreover,

taking into account the bounding property (cf. 10), these nodes allow the definition of

probability interval on any hypothesis of a studied variable.

5 Numerical studies

In this section, we propose to study the reliability of two different systems in order to

show the applicability of the method. The inference in evidential networks is made

by the algorithm of exact inference defined in Bayesialab c©. Evidential networks are

directly modelled by using the graphic interface of this tool.

5.1 Bridge system

For this study, we have chosen a complex system concerning reliability as written by

Villemeur [50] but with few components in order to facilitate the comprehension. The

bridge system (cf. figure 5) was largely studied in the literature and Torres-Toledano

[51] modelled its reliability with Bayesian networks. It is not a parallel-series system

and its structure function contains repeated events. It consists of 5 components. Each

component has two disjoint states ({U p},{Down}) for a probist reliability problem.

The elementary events on these components are supposed to be independent. The

system is homogeneous and no repair is considered.

Figure 5: Bridge system
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Table 5: Conditional belief mass table of a ’2 out of 3’ gate

EZ

EV EX EY {Up} {Down} {Up,Down}

{Up} {Up} {Up} 1 0 0

{Down} {Up} {Up} 1 0 0

{Up,Down} {Up} {Up} 1 0 0

{Up} {Down} {Up} 1 0 0

{Down} {Down} {Up} 0 1 0

{Up,Down} {Down} {Up} 0 0 1

{Up} {Up,Down} {Up} 1 0 0

{Down} {Up,Down} {Up} 0 0 1

{Up,Down} {Up,Down} {Up} 0 0 1

{Up} {Up} {Down} 1 0 0

{Down} {Up} {Down} 0 1 0

{Up,Down} {Up} {Down} 0 0 1

{Up} {Down} {Down} 0 1 0

{Down} {Down} {Down} 0 1 0

{Up,Down} {Down} {Down} 0 1 0

{Up} {Up,Down} {Down} 1 0 0

{Down} {Up,Down} {Down} 0 0 1

{Up,Down} {Up,Down} {Down} 0 0 1

{Up} {Up} {Up,Down} 1 0 0

{Down} {Up} {Up,Down} 0 0 1

{Up,Down} {Up} {Up,Down} 0 0 1

{Up} {Down} {Up,Down} 0 0 1

{Down} {Down} {Up,Down} 0 1 0

{Up,Down} {Down} {Up,Down} 0 0 1

{Up} {Up,Down} {Up,Down} 1 0 0

{Down} {Up,Down} {Up,Down} 0 0 1

{Up,Down} {Up,Down} {Up,Down} 0 0 1

By enumerating the minimal cuts or the minimal success paths, the evidential net-

work shown in figure 6 is obtained to evaluate the bridge system reliability. Each root

node labelled Ci contains the basic mass distribution according to the frame of dis-

cernment of each component Ci as previously presented. Each child node contains the

conditional mass tables according to the truth tables previously defined in section 4.1

according to the system structure function. From node OR3 defining the system state,

two nodes Pls and Bel are linked in order to compute the probability bounds on the

system state {U p} according to the conditional mass tables 6 and 7.

In the first part of this example, we propose to deal with crisp probabilities to ob-

tain a reference value for the system reliability. The following values are considered

for the probability of components to be in state {U p}: Pα(Ci|i∈{1,2,5} = {U p}) =
0.81873 and Pα(C j| j∈{3,4} = {U p}) = 0.67032 for all α . Using 8, 9 and 14, we ob-

tain the a priori belief mass distributions: Mα
Ci

= [0.81873 0.18127 0] ,∀α and Mα
C j

=

[0.67032 0.32968 0] ,∀α . The reader can note that there is no imprecision, thus the

belief mass assigned to the epistemic state {U p,Down} is 0.

The propagation of the a priori belief masses through the network gives the system

reliability R = 0.850134 as shown in figure 6. It has been shown in [18] that this value

12



Table 6: Conditional belief mass table of node Bel(AX
j )

AX
j

AX
i ∈ 2ΩX Believe Doubt

. . . . . . . . .

AX
i

{
1 if AX

i ⊆ AX
j ;

0 else

{
0 if AX

i ⊆ AX
j ;

1 else

. . . . . . . . .

Table 7: Conditional belief mass table of node Pls(AX
j )

AX
j

AX
i ∈ 2ΩX Plausibility Disbelie f

. . . . . . . . .

AX
i

{
1 if AX

i ∩AX
j 6= /0

0 else

{
0 if AX

i ∩AX
j 6= /0

1 else

. . . . . . . . .

is the exact value obtained from other evaluation methods like Markov chains.

Now, let us consider the imprecise value of probabilities as fuzzy probability in the

bridge system reliability evaluation. The evidential network described in the previous

section is used and the fuzzy probabilities are described by fuzzy numbers with the

following values: P(Ci|i∈{1,2,5} ) = (0.81873,0.80252,0.98019) and P(C j| j∈{3,4} ) =
(0.67032,0.65704,0.68386) as defined in section 2. For each level α , an a priori

basic mass distribution for each parent node Ci is computed according to 20. The

corresponding belief (Belα (S = {U p})) and plausibility (Plsα (S = {U p})) measures

for the system at each level α are obtained and the fuzzy probability of the system to

be in state U p is reconstructed by embodying all nested intervals obtained (Figure 7).

To show that fuzzy probabilities computed by the evidential network encompass

the probability distribution given by a probabilistic approach, a crude Monte Carlo

simulation has been done. As we have no information about the failure rate distribution

any distribution can be used. For the sake of simplicity, a uniform distribution for each

failure rate has been chosen. This choice is usual in probability framework but does not

correctly express our ignorance about the real probability distribution of failure rates.

It should be considered as a usual example. By the following equation, we compute

the failure probability of each component Ci:

PCi
= 1− exp(−λi ∗Ti) (22)

with λi 7→U([λ i,λ i]).
Our Monte Carlo simulation consists of sampling 1000 values of each failure rates

according to uniform probability laws of failure rates. Then, the quintuplet PC1
,PC2

,PC3
,PC4

,PC5

is computed by 22. The evidential network computes the failure probability distribu-

tion of the system PS by an exact inference from the failure probability distribution of

the 5 components.

The resulting system failure probability distribution is shown in figure 8.

The histogram shown in figure 8 looks like a normal distribution. This result is reg-

ular according to the central limit theorem, which defines the combination of uniform

laws through the network structure as a normal law. From the data, we note that the

13



Figure 6: Bridge system reliability by EN

Figure 7: System fuzzy failure probability
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Figure 8: Histogram of Monte-Carlo simulation results

lower probability obtained on the system operating state is 0.8376, the upper probabil-

ity is 0.8627 and the average probability is 0.8502. This average value is very close to

the expected reliability value R = 0.8501 previously computed.

In the results obtained from the Monte-Carlo simulation and the proposed ap-

proach, several elements are particularly interesting. First, the support of the fuzzy

failure probability is [0.8339 0.8658], which corresponds to the upper and lower proba-

bilities computed by the Monte-Carlo simulation ([0.8376 0.8627]). Moreover, obtain-

ing a quintuplet of the component failure probabilities, which brings to these upper and

lower values of the system failure probability by crude Monte Carlo simulation, is rare.

So, the number of simulations must grow to obtain them or advanced Monte-Carlo

simulations should be applied (Latin Hypercube Sampling for example). Secondly, the

average value of the Monte Carlo simulation results converge towards the real reliabil-

ity value R = 0.8501. The value of the kernel of the fuzzy probability of the system

operating state is KernPs = 0.8501. The evidential networks has computed the exact

value.

5.2 Safety instrumented systems

For this second example, we propose a comparison of our approach with a fuzzy fault

tree approach dedicated to the performance evaluation of a safety instrumented system

studied in [11]. The goal of the safety instrumented system is to reduce the probability

of failure of the process under a referenced level (PSIS ≤ 10−2h−1). For this purpose

the structure of the safety instrumented system used and the process under control are

given in figure 9.

To evaluate the system performance, the fault tree in figure 10 and the fuzzy proba-

bilities in table 8 have been used. According to the authors, events are independent and

no repair is considered. Moreover, the rare event approximation is considered. More

details can be obtained from [11].

In order to compare the resulting fuzzy probability of the safety instrumented sys-

tem according to the method proposed in [11] and the result obtained from our ap-

proach, we encode the fuzzy probabilities in the evidential network given in figure 11

which is equivalent to the fault tree previously given. As it can be seen, the evidential

15



FT1 FT2 FT3

2oo3 1oo2

PT1 PT2 TS1 TS2

1oo2 1oo2

Storage Tank

LS21oo2LS1

Figure 9: Process and its safety instrumented system

SIS fails on demand

T1

Pressure
transmitter 1

fails

X1

Pressure
transmitter 2

fails

X2

Logic solver
fails

X3

T3

2/3

Flow
transmitter 3

fails

X6

Flow
transmitter  2

fails

X5

Flow
transmitter  1

fails

X4

T4

Temperature
switch 1 fails

X8

Temperature
switch 2 fails

X7

T5

G15G16

Block valve
2 fails

X12

Solenoid
2 fails

X11

Block valve
1 fails

X10

Solenoid
1 fails

X9

T6

Level switch
1 fails

X14

Level switch
2 fails

X13

Figure 10: Fault tree and its SIS
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Table 8: Truth table of a ’AND’ gate

SIS components mi(10−2) ai(10−2) bi(10−2)

X1, X2: Pressure transmitters 3.2 2.13 4.8

X3: Logic solver 0.6 0.5 0.72

X4, X5, X6: Flow transmitters 1.7 1.31 2.21

X9, X11: Solenoids valves 2.8 1.65 4.76

X7, X8: Temperature switches 4 3.64 4.4

X10, X12: Block valves 2.8 1.65 4.76

X13, X14: Level switches 3.99 3.07 5.19

network is based on the minimal cut set obtained from the fault tree in figure 10.

Figure 11: Evidential network for SIS performance evaluation

Figure 12 gives the resulting fuzzy probability obtained from the fuzzy fault tree

approach [11] in a large dotted line and the fuzzy probability obtained from the eviden-

tial network in a dotted line. Due to rare event approximation the fault tree approach

doesn’t give the exact most likely value (KernP(SIS)) whereas the fuzzy probability

obtained from the evidential network gives the exact value. Moreover, the support of

the fuzzy probability (SuppP(SIS)) given from the evidential network is more tenu-

ous than the one given by the fuzzy fault tree approach because of the repeated events

involved in the minimal cut sets.
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Figure 12: Performance comparison

6 Conclusion

In this article, we address the problem of imprecision in the assessment of system

reliability. For this purpose, we have proposed the use of the evidence theory in a

network approach to easily tackle random and epistemic uncertainties as real, interval

or fuzzy probabilities. We have defined the useful basics of the evidence theory and

how it has been introduced in a directed acyclic graph to build an evidential network.

Evidential networks are thus used to model reliability and two different systems were

studied in order to show the performance of the proposed approach.

The proposed study has shown that evidential networks are an interesting tool to

handle random and epistemic uncertainties in probist reliability of complex systems. It

gives accurate results, and a powerful modelling approach to studying systems. More-

over, different representations of imprecise reliability parameters can be used (precise,

interval or fuzzy values) and mixed in the same representation. The modelling ap-

proach proposed is not reduced to modelling uncertainties in reliability and can be used

in a more general model of knowledge under uncertainties. However, the α−cut ap-

proach used considers a dependence between sources of information/expert and further

works should deal with other hypotheses of dependencies between sources.
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