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Evidential networks for reliability analysis and

performance evaluation of systems with imprecise

knowledge
Christophe SIMON and Philippe WEBER

Abstract—This paper deals with evidential networks to manage
imprecise probabilities. We also extend utility functions to eviden-
tial networks. We apply evidential networks in reliability analysis
with imprecise parameters and evaluate system performance with
imprecise probabilities and utility functions. Two examples are
analyzed to show the interest of the proposed method.

Index Terms—Imprecise probability, Dempster-Shafer Theory,
Utility functions, credal networks.

I. INTRODUCTION

THE reliability study of systems is a major part of process

control in companies. Many methods exist for quantita-

tive analyses of the reliability of systems and many of them

are perfectly referred. Such methods like Fault trees, Markov

chains and simplified equations are quoted in standards [1]–[3]

or are the subject of a standard [4].

The study of system reliability is now an old science, so, the

developments and the improvements of existing analysis tools

offer broad possibilities of modeling compared to the tools

referred in these standards [1]–[3]. For instance, we can quote

the dynamic fault trees, stochastic Petri nets, homogeneous

or non-homogeneous Markovian processes, binary decision

diagrams, Monte Carlo simulations [5], [6], . . .

In our opinion, Bayesian networks are an innovating tool

for the study of system dependability. They allow graphical

approach to the functioning and malfunctioning of systems

and allow computing of reliability and other parameters. They

offer a compact, modular approach and can be instantiate [7]

that gives them many powerful modeling capacities. Moreover,

many authors showed the equivalence with the standard tools

under certain assumptions [8]. These various characteristics

made Bayesian networks a tool of interest and their improve-

ments and applications are important in many fields [9].

In reliability studies of systems, the probabilities are usually

considered as precise and perfectly determinable. Moreover,

all the information on the behavior of reliability of a system

and its components is available. This completeness assumes

two essential conditions [10]:

• All the probabilities or probability distributions are

known perfectly.

• The system components are independent, i.e. each ran-

dom variables describing the components’ reliability are

independent or their dependences are known precisely.
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Utkin [10] wrote that the first condition is rarely fulfilled

and advocates the use of probability intervals to manage this

problem [11]. We agree with this analysis but consider that

the use of imprecise probabilities as intervals is just one

of the multiple ways to handle the problem of precision in

the knowledge of probabilities. Indeed, many other authors

considered the problem of precision with probabilities densi-

ties [12], envelop of probabilities [13], imprecise probabilities

[14], fuzzy numbers [15]–[18] or belief functions [19]. In our

opinion, the question is not to oppose these various methods

but rather to choose correctly the framework of study in which

they have the best assets [20].

When the components reliability is computed from

databases, the problem of imprecision is critical and can be

easily handled by a probability distribution if the amount

of data is sufficient. However, the problem of incoherency

and completeness of data cannot be suitably handled by the

probability theory. Indeed, these problems cannot be viewed

as an uncertainty on the value of a probability but like a

problem of uncertainty on the state of the components, an

epistemic uncertainty. Thus, the theory of evidence proposes

an interesting and suitable formalism to handle this type of

uncertainty.

The theory of evidence also called the theory of the belief

functions is rather close to the theory of probability on certain

points. On one hand, this closeness is interesting for engineers

in reliability. On the other hand, the theory suffers from a

major drawback in its use in complicated contexts. Indeed,

the assignment function of the elementary belief masses, which

can be compared to the elementary probabilities on the subsets

of a random variable, requires allocating all the belief masses

to each combination of the states of affairs, 1 to 1, 2 to

2 . . . Since the number of state of affairs is important, the

operation becomes tedious. However, this operation can be

singularly reduced in the case of the reliability analysis. Thus,

we show in this paper how it is possible to simply apply the

evidence theory to the reliability analysis and the analysis of

performance of multi-states systems.

The goal of this article is to propose an evidential network

for the study of reliability and of the performance of systems

by the use of junction tree inference algorithms as it was

proposed by Simon and Weber [21], [22]. Much work exists

around the concept of credal networks applied to the analysis

of the reliability or other problems of knowledge management

by taking account of epistemic uncertainty. Shenoy et. al

developed ’Valuable Networks’ [23], [24]. They are pow-
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erful tools and well suited to the modeling of knowledge.

In addition, equivalences with the Bayesian networks under

certain conditions were proven [25]. Smets [26] also proposed

a similar graphic formalism for the handling of uncertain

knowledge in the epistemic meaning. Cozman [27], [28]

proposes a kind of credal network for the modeling of the

imprecise probabilities by networks. Recently, Ben Yaghlane

proposes evidential networks based on the transferable belief

model of Smets with Dempster-Shafer rule of combination and

binary joint tree [29].

To show the handling of epistemic uncertainty by a network

approach, we structured our article as follows. In the second

section, we give the useful bases of the evidence theory.

The third section is dedicated to the formalization of the

evidential networks for the handling of imprecise probabilities.

We specify the use of the utility functions for the evaluation

of performances of multi-states systems. The fourth section

is dedicated to the evaluation of the probist reliability and the

performance of the systems. The last section is devoted to two

case studies in order to show the interest of our approach.

II. USEFUL BASICS OF EVIDENCE THEORY

The evidence theory was initiated by Dempster [30] with its

work on the upper and lower bounds of a family of probability

distributions then reinforced by Shafer [31]. Several models of

imperfect data processing were proposed:

• Upper and lower probabilities [32];

• Theory of Dempster-Shafer [31];

• The Hint Model of Kholas and Monney [33];

• The Transferable belief model of Smets [34].

On a discrete finite space, the model suggested by Dempster

Shafer can be interpreted as a generalization of the theory

of probability where the probabilities are assigned to sets in

opposition to singletons mutually exclusive [35]. In the theory

of probability, a measure is assigned to only one possible

event. On the other hand, in the theory of Dempster-Shafer,

a measure can be assigned to a set of events. However, when

the information available allows the assignment of measures to

single events (i.e. specific knowledge), the model of Dempster-

Shafer merges with the traditional formulation of the proba-

bilities and there are known as Bayesian evidence [36]. The

closeness between these two models reinforces the interest of

the Dempster-Shafer theory for applications initially handled

by the theory of probability.

A. Basic mass assignment

The main idea of the basic mass assignment is to allocate

a measure between 0 and 1 to indicate the degree of belief

about an event or assumption [31]. There can be several

interpretations of these measurements which generate contro-

versy on their use. The Dempster-Shafer theory doesn’t make

the assumption of an unknown probability measurement but

subjective beliefs based on nonspecific information [37]. In

the same way, Sentz [35] argues that it is not really a question

about probabilities. However, many works are directed towards

an objectivist approach of belief functions [38], [39]. Thus,

the term of basic probability assignment as well as that of

basic mass assignment are both commonly read in literature

[40] to model the same assignment process. The theory of

probability as well as the theory of Dempster-Shafer offers

an objective point of view or a subjective point of view of

knowledge [37]. When the process is carried out on large

volumes of data or directly starting from probabilities, the term

of basic probability assignment could be perhaps preferred

[38], [39]. Basic mass assignment is suitable in the treatment

of knowledge from experts’ opinions [41]. Duong [37, p.70]

argues about the unimportance of this interpretation problem,

which occults a mathematical unit. For our part, we will use

the term of belief masses in this article.

In the Dempster-Shafer theory, we consider a set of q

elements mutually exclusive and exhaustive called the frame

of discernment defined by:

Ω = {H1,H2, ...,Hq} (1)

Ω is the finite set of all possible issues where each proposition

or hypothesis Hi can support any information from different

sources. The sources of information can distribute masses on

every subset of the frame of discernment:

Ai ∈ 2Ω : { /0,A1 = {H1}, . . . ,Aq = {Hq},Aq+1 = {H1,H2},

. . . ,A2q−1 = {H1, . . . ,Hq}} (2)

A source of information assigns a belief mass between 0 and

1 only on hypotheses Ai on which it has a direct knowledge,

i.e. it does not assign any belief mass to any subset of Ai [42] :

0 ≤ m(Ai) ≤ 1 (3)

This process called basic mass assignment is represented by

a function m defined by:

m : 2Ω → [0,1] (4)

such as:

m( /0) = 0 (5)

and

∑
Ai∈2Ω

m(Ai) = 1 (6)

Each Ai supporting m(Ai) > 0 is called a focal set. The

constraint defines on /0 by 5 is not mandatory. It supposes

that all hypotheses Hi are known i.e. we are in the context of

closed world assumption. The goal of /0 is to formalize that

all hypotheses are not known. In this case, m( /0) 6= 0 supports

this consideration [43].

B. Belief and plausibility measures

From a belief mass distribution, the upper and lower bounds

of a probability interval can be defined. This interval contains

the probability of a set of hypotheses or focal sets and is

bounded by two non-additives measures called belief (Bel)
and plausibility (Pls) [44].

The measure of belief Bel (Ai) is the lower bound of a focal

set Ai. It is defined as the sum of the belief masses of all

subsets B that contribute to Ai such as B ⊆ Ai. The upper

bound Pls(Ai) is the sum of all belief masses assigned to
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Fig. 1. Plausibility and belief measures and their complement [48]

subsets B such as B∩Ai 6= /0. Pls(Ai) and Bel (Ai) are defined

by the following equations:

Pls(Ai) = ∑
B|Ai∩B 6= /0

m(B) (7)

Bel (Ai) = ∑
B|B⊆Ai

m(B) (8)

It results in the bounding property defined by the following

equation:

Bel (Ai) ≤ Pr(Ai) ≤ Pls(Ai) (9)

where Pr(Ai) defines the occurence probability of Ai but

remains unknown. It can take any value in [Bel(Ai),Pls(Ai)].
The bounding property 9 is well known and has been defined

since 1976 in the work of Shafer [31]. Many authors used it

to connect the interval defined by [Bel (Ai) ,Pls(Ai)] and the

belief mass distribution [45]–[47].

Plausibility and belief measures are not dual because they

are not additive within the meaning of the probability theory

(Bel (A) 6= Pls(Ac)) where Ac is the complement of A accord-

ing to Ω. However, the relations below can be established

between A and Ac :

Bel (Ac
i ) = 1−Pls(Ai) (10)

and

Pls(Ac
i ) = 1−Bel (Ai) (11)

with

Bel (Ac
i ) ≤ Pls(Ac

i ) (12)

(Pls(Ai)−Bel (Ai)) describes the uncertainty concerning hy-

pothesis Ai represented by interval [Bel (Ai) ,Pls(Ai)] (cf. fig-

ure 1).

From plausibility and belief measures, we obtain the basic

mass assignment by the möbius transform [49]:

m(Ai) = ∑
B|B⊆Ai

(−1)|Ai|−|B|
Bel (B) (13)

where |Ai| is the cardinal of set Ai.

C. P-box and belief mass assignment

Ferson et al. [50] argues that each frame of discernment

or each Dempster-Shafer structure specifies a unique p-box

(probability box) and that each p-box specifies an equivalent

class of Dempster-Shafer structure [51], [52]. Ferson [53]

describes the relation between these two generalizations of

probability distributions. P-boxes are sometimes considered as

a granular approach of imprecise probabilities [32] which are

arbitrarily sets of probability distributions.

If the imprecision of a probability measure is described by

a p-box, the relation with a basic mass assignment is directly

obtained by:
[

PHi
,PHi

]

= [Bel(Hi),Pls(Hi)] (14)

where PHi
is the lower probability of hypothesis Hi, PHi

is the

upper probability with i from 1 to q the number of hypotheses.

The transformation of a set of probability intervals [P] to a

basic belief assignment M is obtained easily by the equations

7, 8 and 13. If :

[PX ] =
[

[PH1
,PH1

] . . . [PHq
,PHq ]

]

(15)

then

MX = [m( /0) m(A1) . . . m(Ai) . . . m(A2q−1)]

= [P /0 PA1
. . . ∑

B|B⊆Ai

(−1)|Ai|−|B|
PB . . .] (16)

with Ai ∈ 2Ω.

As argued by Smets [54], the knowledge of measures

Bel(Ai) and Pls(Ai) is equal to the knowledge of the basic

mass assignment on the frame of discernment.

Nevertheless, as usually defined in works with interval

valued probabilities [11], two conditions should be considered

when defining the probability interval distribution:

q

∑
i=1

Pi ≤ 1 (17)

and
q

∑
i=1

Pi ≥ 1 (18)

III. EVIDENTIAL NETWORKS

In the modeling of complex systems for the analysis of

their reliability or their performances, the variables which

represent the system, its components, its function or the events

of the system are related to each other. These relations can

be represented by conditional dependencies. In this section,

we propose to define an evidential network in order to rep-

resent the conditional dependencies between variables in a

description space integrating uncertainty as belief masses in

the meaning of the Dempster-Shafer theory.

The proposed evidential networks are directed acyclic

graphs which represent uncertain knowledge as a random and

epistemic ways [22]. An evidential network is defined as a

couple: G = ((N,A) ,M), where (N,A) represents the graph

with N the set of nodes, A the set of edges and, M represents

the set of belief masses associated to each node. When a node

is not a root node i.e. when it has got parents’ nodes, its
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belief mass distribution is defined by a conditional belief mass

table quantifying the relation between the node and its parents.

When a node is a root, an a priori belief mass table is defined.

A discrete random variable X is represented by a node X ∈N

with its frame of discernment Ω constituted by q mutually

exhaustive and exclusive hypotheses (cf. eq.1). The vector

M(X), also called MX , is the belief mass distribution over the

2q focal sets AX
i . M (X) is defined by the following equation:

M(X) = [m(X ⊆ /0) m(X ⊆ AX
1 ) . . .m(X ⊆ AX

i )

. . . m(X ⊆ AX
2q−1)] (19)

with m(X ⊆ AX
i ) ≥ 0 and ∑

AX
i |A

X
i ∈2Ω

m
(

X ⊆ AX
i

)

= 1, where

m(X ⊆ AX
i ) is the belief that variable X verify the hypotheses

of focal element AX
i .

When a node is a child node, M is represented by its own

conditional belief mass table. Each conditional belief mass ta-

ble defines the relation between the belief masses on the frame

of discernment of the variable of each parents nodes and the

belief masses of the frame of discernment of the child node.

Figure 2 shows two nodes X and Y defined with the frame

of discernment 2ΩX :
{

/0,AX
1 , . . . ,AX

M

}

, 2ΩY :
{

/0,AY
1 , . . .AY

K

}

and lies to a node Z with its own frame of discernment

2ΩZ :
{

/0,AZ
1 , . . .AZ

L

}

. The conditional belief mass table of Z

is defined by conditional belief masses M (Z |X ,Y ) for each

hypothesis AZ
i knowing the focal sets of its parents X and Y .

For a root node, i.e. without parent, the belief masse table

is a vector representing the a priori belief mass distribution

defining the amount of belief that a variable verifies the

hypotheses of the frame of discernment.

Fig. 2. Elementary network: 2 parents, 1 child

To compute the marginal belief mass distributions of each

node, we use inference algorithms. The exact inference is

carried out by the algorithm proposed by Jensen based on the

construction of a junction tree [55, pp. 76]. This algorithm

updates the marginal belief mass distributions on each node

according to the evidence representing the knowledge intro-

duced into the evidential network. The computation mecha-

nism is based on the Bayes theorem, which is extended to

the representation of uncertain information according to the

framework of Dempster-Shafer theory (eq.20).

Specific evidence (Hard evidence) is modeled by a mass of

1 on one of the focal elements of the frame of discernment.

Non-specific evidence (Soft evidence) corresponds to a mass

distribution on the focal elements of the frame of discernment.

A. Belief and plausibility measures

To compute belief and plausibility measures in an evidential

network, it is necessary to apply 7 and 8. When an evidential

network is implemented in a tool, the exact inference algorithm

allows us to compute Bel and Pls measures. These measures

cannot be computed in the same node because they are non

additive measures. Simon and Weber [22] proposed to compute

each measures on a focal element of a variable by two

particular nodes (cf. figure 3). The node dedicated to compute

Fig. 3. Nodes to compute Bel and Pls measures.

Bel(AX
j ) is described by two hypotheses Believe and Doubt

according to the conditional belief mass table given on table I.

TABLE I
CONDITIONAL BELIEF MASS TABLE OF NODE Bel(AX

j )

AX
j

AX
i ∈ 2ΩX Believe Doubt

. . . . . . . . .

AX
i

{

1 if AX
i ⊆ AX

j ;

0 else

{

0 if AX
i ⊆ AX

j ;

1 else
. . . . . . . . .

The node dedicated to compute Pls(AX
j ) is described by

hypotheses Plausibility et Disbelie f according to table II.

TABLE II
CONDITIONAL BELIEF MASS TABLE OF NODE Pls(AX

j )

AX
j

AX
i ∈ 2ΩX Plausibility Disbelie f

. . . . . . . . .

AX
i

{

1 if AX
i ∩AX

j 6= /0

0 else

{

0 if AX
i ∩AX

j 6= /0

1 else
. . . . . . . . .

The structure of these nodes is generic. It is useful for the

computation of belief and plausibility measures of each node

of the network and for each hypothesis. Moreover, taking into

account the bounding property (cf. 9), these nodes allow the

definition of a p-box on any hypothesis of a studied variable.

B. Integration of utility functions in evidential networks

In some problems, a measure of satisfaction of a need

or the achievement of a service is required. The concept of

utility allows this measurement. Thus, for the evaluation of

performances using the evidential networks, it is necessary to

introduce the concept of utility.

The utility function translates the behavior of a decision

maker according to risk. It is a function, which the decision

maker must define for each decision. It is ordinal if the

decision maker preferably expresses a relation between the

decisions or cardinal if a mathematical function (for example
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M(Z |X ,Y ) =



























m(Z ⊆ /0 |X ⊆ /0,Y ⊆ /0 ) m
(

Z ⊆ /0

∣

∣

∣
X ⊆ AX

i ,Y ⊆ AY
j

)

. . . m
(

Z ⊆ /0
∣

∣X ⊆ AX
M,Y ⊆ AY

K

)

m
(

Z ⊆ AZ
1 |X ⊆ /0,Y ⊆ /0

)

m
(

Z ⊆ AZ
1

∣

∣

∣
X ⊆ AX

i ,Y ⊆ AY
j

)

. . . m
(

Z ⊆ AZ
1

∣

∣X ⊆ AX
M,Y ⊆ AY

K

)

. . . . . . . . .

m
(

Z ⊆ AZ
L |X ⊆ /0,Y ⊆ /0

)

m
(

Z ⊆ AZ
L

∣

∣

∣
X ⊆ AX

i ,Y ⊆ AY
j

)

. . . m
(

Z ⊆ AZ
L

∣

∣X ⊆ AX
M,Y ⊆ AY

K

)

(20)

linear) is used to formalize the preference quantitatively. Thus,

the goal is to build function U from the decision space to

IR+ such as U(A) > U(B) implies that decision A is preferred

to decision B. More generally, the decision can take account

of several parameters, it is a function of IRn in IR. Thus,

the higher the value of the function U for a decision is, the

more appreciated is this decision. The function U : IRn 7→ IR

represents the preference º of the decision maker if and only if

whatever Z = (z1,z2, . . . ,zn) and Z′ = (z′1,z
′
2, . . . ,z

′
n), we have :

U(z1,z2, . . . ,zn) ≥U(z′1,z
′
2, . . . ,z

′
n) ⇔ Z º Z′ (21)

If we associate consequences X : {H1
k , . . . ,H

j
k , . . . ,Hn

k } to

each decision Sd : {sd
1 , . . . ,s

d
k , . . . ,s

d
K} that can take K’s states

and probabilities Pk : {p1
k , . . . , p

j
k, . . . , pn

k} to each consequence,

the decision-maker choose the decision state sd
k that maximizes

the expected utility EU(sd
k ) computed by the following relation

[56] :

EU
(

sd
k

)

=
n

∑
j=1

p
j
k.u

(

H
j

k

)

(22)

with

p
j
k : P(X = H

j
k |Sd = Sd

k )

and u(H j
k ) is the utility of H

j
k .

Utility functions can be used in decision networks as we

can read in [57], [58] and combines perfectly with Bayesian

networks as Jensen shows in [55, p. 134] (cf. figure 4). To

compute relation 22, the weights u(H j
k ) should be defined in

an utility node associated to a node of the network, i.e. with

a random variable.

Fig. 4. Utility node of X

The use of the utility function in evidential networks rests on

the same principle. However, the probabilities Pk are replaced

by belief and plausibility measures from which we deduce the

associated belief masses Mk : {m1
k , . . . ,m

j
k, . . . ,m

2n

k }. Indeed,

the nodes of the evidential network on which the utility is

computed contains only belief masses. However, the utility

was defined on specific hypothesis in the case of probabilities.

In the case of belief masses, it is necessary to define a utility

associated to the focal sets of the frame of discernment related

to the node representing the studied variable, while respecting

the logic of attribution of the utilities in the probabilistic case

[59]. Thus, the relation 22 is divided into two equations related

to the belief measure or lower probability and the plausibility

measure or upper probability to define the lower expected

utility (cf. 23) and upper expected utility (cf. 24).

EU
(

sd
k

)

=
2n

∑
j=1

m
j
k.u

(

A
j
k

)

(23)

and

EU
(

sd
k

)

=
2n

∑
j=1

m
j
k.u

(

A
j
k

)

(24)

If we consider non-specific hypothesis A j = {H i
k,H

l
k},

meaning that hypothesis H i
k or H l

k is verified knowing that

H i
k and H l

k are mutually exclusive, the corresponding utility

u(A j = {H i
k,H

l
k}) must be given by the utilities u(H i

k) and

u(H l
k). Thus, in the computation of lower expected utility u{.},

which is the pessimistic case, we propose to use the least

preferable utility among utilities u(H i
k) and u(H l

k) by checking

the dominance properties between the hypothesis [59, p.110].

For higher expected utility u{.}, the most preferable utility is

selected. Equations 23 and 24 becomes:

EU
(

sd
k

)

=
2n

∑
j=1

m
j
k.u

(

A
j
k

)

(25)

with

u(A j
k = {H i

k,H
l
k}) = min(u(H i

k),u(H l
k)) (26)

and

EU
(

sd
k

)

=
2n

∑
j=1

m
j
k.u

(

A
j
k

)

(27)

with

u(A j
k = {H i

k,H
l
k}) = max(u(H i

k),u(H l
k)) (28)

The main requirement to define utilities is to warrant

EU(sd
k ) ≥ EU(sd

k ) and can be translated into utilities as

follows:

u(H i
k) ≥ u(A j

k = {H i
k,H

l
k}) ≥ u(A j

k = {H i
k,H

l
k}) ≥ u(H l

k) (29)

We define the utility in evidential networks from the prob-

abilistic case where all u(H j
k ) are known. Thus, all u(Ai

k)
are deduced. On this basis, the utilities in eq.25 and 27 are

easily obtained. Nevertheless, experts may want to change

them while they respect eq.29.
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C. Discussion

The evidential networks proposed here are based on the

exact inference algorithm and junction tree as defined by

Jensen in [55]. The imprecision on probabilities is coded by

Dempster Shafer structures (frame of discernment) introduced

on each root nodes. The focal elements that combine elemen-

tary hypothesis of the probability framework, quantitatively

support the imprecision on elementary probabilities.

The conditional belief mass tables explain the relation

between variables and also the imprecision. The computation

of inference is made with the total probability theorem or the

Bayes theorem extended to belief masses in the same way

as proposed by Jensen. Thus, the computational complexity

in Evidential networks is NP-hard as Cooper defined it for

Bayesian networks [60].

At last, believe and plausibility measures, or superior and

inferior bounds, are computed by particular conditional mass

tables in two separated nodes in order to respect the additivity

axiom inherent to the inference algorithm used.

One main advantage to code Dempster Shafer structure into

evidential network is to directly tackle imprecision without

choosing probability laws for elementary probabilities and,

without using Monte Carlo simulations. In the latter case,

uniform laws were usually chosen and a normal law is ob-

tained for the top event considering the central limit theorem.

As mentioned by Ferson [53], the central limit theorem is

widely abused as a justification for a normal or lognormal

distribution shape and usually we didn’t know the initial

distributions. Another advantage of evidential networks is that

belief masses are additives and found a good correspondence

with the inference algorithm.

IV. RELIABILITY MODELING BY EVIDENTIAL NETWORKS

As Rakowsky argues [48], the community of safety and

reliability engineers discovered the Dempster-Shafer theory

through the work of Guth [45] at the beginning of the Nineties.

Guth proposes to compute the probist reliability [15] of a

system by a fault tree containing three hypotheses on the

state of the components or the system. Actually, as argued by

Simon and Weber [22], Guth extends the frame of discernment

corresponding to the hypotheses of the probist reliability to the

frame of discernment of the Dempster-Shafer theory:

• Probabilistic hypothesis: the system functioning is com-

pletely described by probability measures.

• Binary state hypothesis: the system can have only two

operating conditions, the state of failure {Down} and the

normal operating state {U p}.

Thus, the probabilistic frame of discernment (Ω =
{{U p},{Down}}) becomes a Dempster-Shafer structure

(2Ω = { /0,{U p},{Down},{U p,Down}}) which can be re-

duced to the three hypothesis:

• m{U p}: belief mass to be in operating condition,

• m{Down}: belief mass to be in fail condition,

• m{U p,Down} : belief mass to be exclusively in one of the

previous conditions without distinguishing exactly which.

Under the assumptions of probist reliability, the studied

components as well as the system can be only in one of the

two operating conditions. This is a closed world problem [43]

and the hypothesis /0 does not carry any belief mass. In the

analysis of reliability or risk integrating human factors, it can

be interesting to assign a belief mass to /0 to characterize the

lack of completeness of assumptions (open world) on which

carries the analysis rather than to introduce a safety coefficient

or a margin of probability on the global result in order to take

account the possible missed scenarios in the analysis. In this

study, we consider the problem of reliability analysis or the

performance analysis of systems as a problem of closed world

(m( /0) = 0).

To model the reliability of systems by evidential networks,

we transpose the approach suggested by Bobbio et al. [61],

[62] with Bayesian networks to evidential networks. The goal

is to convert a fault tree into an equivalent network with the

hypothesis suggested by Guth [45].

A. Probist modeling

A fault tree describes the propagation process of a failure

within the functional structure of a system. The reliability of

the modeled system follows the assumptions of independence

of the events and of coherence of the systems [63]. The

reliability is described by ’AND’, ’OR’, ’k-out-of-n’:G gate

combining the elementary events. To integrate the frame of

discernment of the Dempster-Shafer theory, the evidential net-

work must model the truth tables of ’AND’ gate (cf. table III)

and ’OR’ gate (cf. table IV) [45] by tables of conditional belief

mass [22].

TABLE III
TRUTH TABLE OF A ’AND’ GATE

AND {Up} {Down} {Up,Down}

{Up} {Up} {Down} {Up,Down}
{Down} {Down} {Down} {Down}

{Up,Down} {Up,Down} {Down} {Up,Down}

TABLE IV
TRUTH TABLE OF A ’OR’ GATE

OR {Up} {Down} Up,Down

{Up} {Up} {Up} {Up}
{Down} {Up} {Down} {Up,Down}

{Up,Down} {Up} {Up,Down} {Up,Down}

The conditional belief mass table representing a ’AND’

gate is defined by table V. EX corresponds to the state of

the component X , EY to the state of component Y , and EX ,EY

are the inputs of the ’AND’ gate. EZ corresponds to the output

of the gate. The conditional belief mass table of a ’OR’ gate

is defined by table VI.

The conditional belief mass table can be adapted to gates

with more inputs and also to k-out-of-n:G gates (cf. table VII).

In addition, the coefficients of the conditional belief mass table

take their value in {0,1} since it is a translation of the truth

tables of logical gates. These coefficients can take different

values from {0,1} if the modeling of different behaviors is

expected in particular when there is an uncertainty about the

propagation of belief masses in the evidential network.
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TABLE V
CONDITIONAL BELIEF MASS TABLE OF A ’AND’ GATE

EZ

EX EY {Up} {Down} {Up,Down}

{Up} {Up} 1 0 0
{Down} {Up} 0 1 0

{Up,Down} {Up} 0 0 1
{Up} {Down} 0 1 0

{Down} {Down} 0 1 0
{Up,Down} {Down} 0 1 0

{Up} {Up,Down} 0 0 1
{Down} {Up,Down} 0 1 0

{Up,Down} {Up,Down} 0 0 1

TABLE VI
CONDITIONAL BELIEF MASS TABLE OF A ’OR’ GATE

EZ

EX EY {Up} {Down} {Up,Down}

{Up} {Up} 1 0 0
{Down} {Up} 1 0 0

{Up,Down} {Up} 1 0 0
{Up} {Down} 1 0 0

{Down} {Down} 0 1 0
{Up,Down} {Down} 0 0 1

{Up} {Up,Down} 1 0 0
{Down} {Up,Down} 0 0 1

{Up,Down} {Up,Down} 0 0 1

1) Plausibility and belief measures: To define the imprecise

probist reliability of a system, it is necessary to compute the

p-box on the hypothesis {U p} of the belief mass distribution

of the system using adapted nodes as it was defined in section

III-A. The conditional belief masses of belief measure node

Bel({U p}) is given by table VIII and those of plausibility

measure is given by table IX.

TABLE VIII
CONDITIONAL BELIEF MASS TABLE OF NODE Bel({U p})

Bel({U p})
Believe Doubt

{Up} 1 0
{Down} 0 1

{Up,Down} 0 1

TABLE IX
CONDITIONAL BELIEF MASS TABLE OF NODE Pls({U p})

Pls({U p})
Plausibility Disbelief

{Up} 1 0
{Down} 0 1

{Up,Down} 1 0

2) Simplified Development of conditional belief mass table:

The growth of the size of set of states Ω immediately implies

the growth of the size of the frame of discernment requiring

a great effort of modeling. Thus, for a component or system

in two states, |Ω| = 2, the frame of discernment comprises

|2Ω| = 4 hypotheses and 4 a priori belief masses to define. If

we consider that /0 is not taken into account in the study, the

cardinal of the useful frame of discernment is equal to 3. When

3 states are considered, |2Ω|= 8 and even if /0 is not used, 7 a

priori belief masses are to be defined. The growth of the size of

the frame of discernment influences directly the gates modeled

by the conditional belief mass tables. Indeed, a ’AND’ gate

with 2 inputs and 1 output with 3 possible assumptions each

forces the definition of 73 conditional masses.

This growth of the number of a priori and conditional belief

masses is a major drawback for easy use of the Dempster-

Shafer theory and has been often used to reject its use. Within

the studies done in this article, the effort required for the

definition of the conditional belief mass tables can be largely

reduced by the use of the De Morgan’s laws. Let us consider

the conditional belief mass table a ’AND’ gate with two

inputs X ,Y and 1 output Z (cf. table V). The definition of

the third line of this table is done from the first 2 lines.

Let us recall that according to probist reliability, {U p,Down}
means that the component is either in the state U p, or in the

state Down. By no means, a component can be in both states

simultaneously (exclusive assumption). Thus, {U p,Down} is

interpreted as {U p}⊕ {Down} where ⊕ is the or exclusive

logical operator. The equation of the third line of table V is

written {U p,Down}.{U p} and becomes :

{U p⊕Down}.{U p} = ({U p}.{U p})⊕ ({U p}.{Down})

= {U p}⊕{Down}

= {U p,Down} (30)

Consequently, for a ’AND’ gate with 2 inputs, only 8 con-

ditional belief masses corresponding to the combinations of

specific states of a usual ’AND’ gate are to be defined among

the 27 of the table. The other conditional belief masses are

automatically deduced by the De Morgan’s laws.

As Weber claims with Bayesian networks [7], the knowl-

edge of the components or system operating modes is not nec-

essarily precise and can be uncertain. This can also concerns

evidential networks and the conditional belief mass table. The

conditional belief masses do not take their values from {0,1}
but in [0,1]. Thus, we have more flexibility to describe the

influence between the operating modes. In this last case, there

is no possible reduction of the analysis effort by the use of the

De Morgan’s laws to define the conditional belief masses. The

analyst must define each mass according to effective relations

between the operating modes. However, these conditional

belief masses can be estimated from databases.

3) Imprecise reliability parameters: Generic databases of

reliability are often used to provide the failure rates of the com-

ponents of systems in particular for the safety instrumented

systems [64]–[67]. Scalar values of failure rates are gener-

ally used to estimate the failure probabilities of components.

However, the data acquisition of reliability and the use of this

data to estimate the failure rates of other components of the

same type introduce uncertainties. According to [68], the data

of reliability collected for a component can change with a

range of 3 or 4, and sometimes a range of 10. In [63], [69],

the authors propose to use coefficients of influence to take

account the real conditions of use of the generic values of

failure rates suggested by the databases of reliability. Some

databases of reliability [70]–[72] provide the lower and upper

limits, the average or median values and the error factors of

the component failure rate.
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When we work with lower and upper bounds for the

constant failure rates of a component X coming from databases

(
[

λ X ,λ X

]

), it is easy to define the bounds of the component

reliability at a time of mission Ti given using the following

equation:

[

PX ,PX

]

= 1− exp(
[

λ X ,λ X

]

.Ti) (31)

The definition of associated belief mass distribution is easily

determined by 16. In the case of probist reliability, we write:

MX = [m({U p} m({Down} m({U p,Down}]

=
[

PX ({U p}) (1−PX ({U p}))

(PX ({U p})−PX ({U p}))
]

(32)

B. Multistate systems

In many cases, the system as well as its components can

function in various states or operating modes characterized by

various levels of performance. Such systems refer to multistate

systems [73]. Applied to multistate systems, a reliability

analysis allows computing a measure of the capacity of a

system to provide a necessary level of performance according

to its level of degradation. Multistate systems can also be

subjected to undetected failures, which lead to the complete

failure of the system or its subsystems.

At the same time, the binary state assumption of compo-

nents’ operating modes can be removed because it does not

suitably represent the degradation of components’ operating

mode of systems [15], [74]. Various approaches allow handling

the degradations of components. Some authors propose to deal

with this problem within the framework of profust reliability

[74]–[76]:

• Probability assumption: the operating condition of the

system is completely characterized by probability mea-

sures.

• Fuzzy state assumption: the operating condition of the

system is characterized by two fuzzy states allowing a

gradual transition between the normal operating condition

to the failure state [77].

A second solution is to propose a description of the operating

condition of the components and of the system by several

states [78]. The accuracy of the description is more or less

closed to the real state of the degradation and operating modes

of the components or of the system.

1) Modeling of the reliability of multistate systems by

evidential networks: To analyze the reliability or the perfor-

mance of multistate systems, it is necessary to know all the

operating modes of the studied system and of its components.

The operating mode of each component is supposed to be

independent of the operating mode of the other components.

Moreover, the system is supposed to be coherent.

Let us consider a system with K + 1 operating modes

S = {s0, . . . ,sK} and levels of performance U = {u0, . . . ,uK}
expressed like utility. Each level of performance ui corre-

sponds to an operating mode si of the system. Operating mode

sK corresponds to normal operation and is associated to the

maximum level of performance uK . Mode s0 corresponds to a

total failure of the system, which induces a minimum level of

performance u0.

The system is composed of n components Ci having each

one KCi
+1 operating modes SCi

= {sCi0, . . . ,sCiKCi
}. Operating

mode sCiKCi
is the normal operating mode of the component

and mode sCi0 corresponds to the state of total failure of the

component. The operating condition of the system depends on

the operating condition of its components. Thus, the reliability

of the system is expressed as the following structure function

φ :

S = φ (SC1
, . . . ,SCn) : Sn

Ci
→ S (33)

with

Sn
Ci

=
{

sC10, . . . ,sC1KC1

}

× . . .×
{

sCn0, . . . ,sCnKCn

}

where Sn
Ci

is the space of all possible combinations of

components’ operating modes and S is the space of the

system operating modes. At any time, the operating mode

of a multistate system can be described by a random vari-

able Y = {y0, . . . ,yk, . . . ,yK}. The operating mode of each

component can be also described a random variable XCi
=

{xCi0
, . . . ,xCiKCi

}. Then, we can write Y as a combination of

the random variables XCi
according to the structure function

φ .

Y = φ(XCi
) (34)

At every time, the level of performance of the system is

computed by the expected utility according to the following

equation:

U =
K

∑
k=0

yk.uk (35)

As in Bayesian networks [7], to take into account the multiple

operating modes of a system and of its components in the

reliability analysis by an evidential networks is easy. It consists

in defining the a priori belief mass tables and the conditional

belief mass tables. The qualitative aspect of the network, i.e.

the graph, models the propagation mechanism of the influence

of the operating modes, i.e. it models the structure function φ .

The interest of using evidential networks is to represent the

structure function φ synthetically in a factorized way while

taking into account imprecision and uncertainties.

We can also claim that the definition of the conditional

belief mass tables for multistate systems is more tiresome

because of the exponential growth of the combinations of

operating modes. However, as we specified in section IV-A2,

it is possible to reduce this stage, either by carrying out an

estimation or by using the De Morgan’s laws. The De Mor-

gan’s laws allow simplifying the definition of all nonspecific

hypotheses from the relations between specific hypotheses.

2) Imprecise probabilities in multistate systems: In mul-

tistate systems, the probability for each component to be in

one of its operating modes is given as a scalar value. If

the provided probabilities are imprecise, these probabilities

can be defined by intervals
[

PX
i ,PX

i

]

where X is the random

variable characterizing the operating mode of an element. The



9

translation of probability intervals to belief mass distribution is

done as in the previous section by 16 or by the set of equations

7, 8 and 13.

For instance, let us consider a system composed

of components with three operating modes each S =
{s2,s1,s0} and three associated levels of performance U =
{u2,u1,u0} where u2 is the most powerful level and

u0 the least. The frame of discernment is thus: 2Ω =
{{s2},{s1},{s0},{s2,s1},{s2,s0},{s1,s0},{s2,s1,s0}}.

If we lay out probability intervals at one mission time Ti

for each defined mode:

[P] =
[[

PX
s2

,P
X
s2

]

,

[

PX
s1

,P
X
s1

]

,

[

PX
s0

,P
X
s0

]]

(36)

Then, the a priori belief mass table are defined by:

M = [m({s2}) m({s1}) m({s0}) m({s2,s1}) m({s2,s0})

m({s1,s0}) m({s2,s1,s0})] (37)

According to 13, the following relations are obtained:

m({s2}) = Bel ({s2}) = P({s2})
m({s1}) = Bel ({s1}) = P({s1})
m({s0}) = Bel ({s0}) = P({s0})

Moreover:

m({s2,s1}) = −Bel ({s2})−Bel ({s1})+Bel ({s2,s1})

and from 7 and 8 :

Bel ({s2,s1}) = 1−P({s0})

The same approach can be carried out to compute the prob-

ability interval on each focal element of the a priori belief

mass table as specifies by 16.

V. STUDY CASE

This section is dedicated to the analysis of the suggested

evaluation method of system reliability. We study two systems

of different complexity with on the one hand two operat-

ing conditions and on the other hand a multistate point of

view. Two cases are distinguished according to whether the

probabilities are precise or not. The inference in evidential

networks is made by the algorithm of exact inference defined

in Bayesialab c©. Evidential networks are directly modeled by

using the graphic interface of this tool.

A. Probist reliability of a 2-out-of-3:G system

For the first example, we propose to simulate a 2-out-of-

3:G system. The goal is to show the capacity of evidential

networks to compute the systems reliability. The evidential

network of a 2-out-of-3:G system is defined in Bayesialab c©
with the structure presented on figure 5 and the conditional

belief mass table (TableauVII).

Fig. 5. Evidential network of a 2-out-of-3:G system

1) Precise probabilities: To simplify the example and with-

out loss of generality, let us consider that each component has

the same failure rate λ . The elementary events which lead the

components from state {U p} to state {Down} are independent.

The system is homogeneous and no repair is considered. The

system reliability R(Ti) is given by the following equation:

R(Ti) =
n

∑
i=k

C
i
nr (Ti)

i (1− r (Ti))
n−i

avec Ci
n = n!

i!(n−i)!

(38)

where r (Ti) is the probability of each component to be in state

{U p}, Ti is the time of mission and k the number of working

components out of n.

Let us consider λ = 10−3h−1 and Ti = 200h. The probability

for each component Ci to be in state {U p} is given by:

PCi
({U p}) = 0.81873. The a priori belief mass distribution

of node Ci is:

MCi
= [m({U p}) = 0.8187 m({Down}) = 0.18127

m({U p,Down}) = 0] (39)

Without imprecision on the value of λ , belief mass

m({U p,Down}) = 0 expresses that evidences are Bayesian

and Bel(Ci = {U p}) = P(Ci = {U p}) = Pls(Ci = {U p}). So,

the problem is completely Bayesian and follows 38. The

system reliability is R(Ti) = 0.9133. Figure 6 shows that the

evidential network computes the exact value of the system

reliability.

This simple example shows that the coding of a priori belief

masses with Bayesian evidences in the evidential network

gives the exact value of the system reliability. Thus, as claimed

by Simon and Weber in [22], there is a complete equivalence

between evidential networks and other probabilistic methods

such as Bayesian networks in computation of system reliabil-

ity.

2) Imprecise probabilities: Now, let us consider an impre-

cise failure rate of the components as an interval:
[

λ ,λ
]

=
[

0.9e−3,1.1e−3
]

. The a priori belief mass distribution defining

each component state at mission time Ti = 200h is obtained

by 7, 8, 13 and 31:

MC = [m({U p}) = 0.80252 m({Down}) = 0.16473

m({U p,Down}) = 0.03275] (40)

The imprecise value of λ induces a belief mass

m({U p,Down}) > 0 expressing the doubt about the
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Fig. 6. Reliability of a 2-out-of-3:G gate with precise probabilities

knowledge of the exact value of λ . It translates a non strict

Bayesian frame and Bel(Ci = {U p}) < P(Ci = {U p}) <

Pls(Ci = {U p}). Figure 7 shows the result obtained by the

evidential network.

The system reliability is obtained by the probability of the

system to be in operating condition ({U p}) at time Ti. It is

between
[

R(Ti) ,R(Ti)
]

= [0.8984,0.9275]. Compared to the

result obtained in the previous section, we notice that the

bounding property (cf. 9) is verified :

Bel({U p}) = 0.8984 < P({U p}) = 0.9133

P({U p}) < Pls({U p}) = 0.9275 (41)

with

Bel({U p}) = P({U p}) et Pls({U p}) = P({U p})

B. 2-out-of-3:G multistate system

In order to show the mechanism of evidential networks

for the study of multistate system performances, we study

the 2-out-of-3:G system provided by Gopal [79]. The sys-

tem is composed of 3 components with 3 operating modes

each SCi=1,2,3
= {si0,si1,si2}. The system also has 3 operating

modes S = {s0,s1,s2} associated to 3 levels of performance

U = {u0,u1,u2}. The structure function φ giving the relation

between the components’ operating modes and the system

operating modes is given by the following table:

TABLE X
STRUCTURE FUNCTION OF A MULTISTATE 2-OUT-OF-3:G SYSTEM [79]

SC1
SC2

SC3
φ(S) SC1

SC2
SC3

φ(S)

0 0 0 s0 1 1 2 s1

0 0 1 s0 1 2 0 s1

0 0 2 s0 1 2 1 s1

0 1 0 s0 1 2 2 s2

0 1 1 s1 2 0 0 s0

0 1 2 s1 2 0 1 s1

0 2 0 s0 2 0 2 s2

0 2 1 s1 2 1 0 s1

0 2 2 s2 2 1 1 s1

1 0 0 s0 2 1 2 s2

1 0 1 s1 2 2 0 s2

1 0 2 s1 2 2 1 s2

1 1 0 s1 2 2 2 s2

1 1 1 s1

The function defining the relation between system perfor-

mance US and the components operating modes is expressed as

the expected utility (cf. 22) defined by the following relation:

US = ∑
si

(ui.yi) = ∑
si

ui.φ(xCi
) (42)

where yi is the probability of the system to be in operating

mode i, xCi
is the probability of component Ci to be in

operating mode i and φ the structure function given by table X.

To compute the system performance by an evidential net-

work, we translate the structure function suggested by Gopal

(cf. table X) by a conditional belief mass table in node KN

on figure 8.

By adding an utility node Us, we compute the system

performance according to 42. The table of the corresponding

utilities allows computing the performance (cf. table XI).

TABLE XI
TABLE OF UTILITIES

Focal set utility

s2 2
s1 1
s0 0

1) Precise probabilities: According to Gopal [79], if

the distribution of component operating modes is: PsCi1
=

(0.1,0.3,0.6),PsCi2
= (0.3,0.5,0.2),PsCi3

= (0.4,0.2,0.4) then

the system performance is 0.822 units. We notice that the

evidential network presented on figure 8 gives the same value

of the expected utility with a priori belief masses according

to the a priori probability distributions provided above.

2) Imprecise probabilities: Now let us consider the prob-

lem of imprecise probabilities on the component states. For

example and without loss of generality, we will consider

that the probabilities of the previous problem are given with

an uncertainty ±0.05. We must compute the performance as

defined by Gopal [79]:

US = ∑
si=1,2,3

ui.φ(xCi
) (43)
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Fig. 7. Imprecise reliability of a ’2-out-of-3:G’ system

Fig. 8. Evidential network solution of [79]

with

φ(xCi
) = φ(([0.05,0.15] , [0.25,0.35] , [0.55,0.65]),

([0.25,0.35] , [0.45,0.55] , [0.15,0.25]),

([0.35,0.45] , [0.15,0.25] , [0.35,0.45])))

The evidential network on figure 9 models the problem

of imprecise probabilities and allows the computation of the

system performance with its imprecision.

The computation nodes of Bel and Pls measures on system

operating modes s1 and s2 were added to show that the bound-

ing property of the values of probabilities in the precise case

(previous section) is verified. The utility function integrated

in the evidential network on figure 8 is now divided into

two utility functions to compute upper limit US according to

table XIII and lower limit US according to table XII as we

proceed in section III-B.

As we can see on figure 9, the imprecision on the compo-

nents probabilities to be in each operating modes is propagated

through the network and induces a distribution of belief masses

highlighting the imprecision on the system probability to be in

its various operating modes. Taking into account the associated

performances, the utility nodes introduced give a bound of

TABLE XII
UTILITY US

Focal set utility

s2 2
s1 1
s0 0

s2,s1 1
s2,s0 0
s1,s0 0

s2,s1,s0 0

TABLE XIII
UTILITY US

Focal set utility

s2 2
s1 1
s0 0

s2,s1 2
s2,s0 2
s1,s0 1

s2,s1,s0 2

the real utility value. Thus, the utility previously specifies

Us = 0.822 on figure 8 when the a priori belief masses are



12

Fig. 9. EN to evaluate imprecise performance of a multistate system [79]

affected to the specific focal sets, is bounded by the lower

and upper utilities [U s,U s] = [0.688,0.961] as can be observed

on figure 9. The bounding property is checked because we

took care to bound each a priori belief mass of the problem

without imprecision to deal with the problem with imprecision

where we took a variation of ±0.05. We can notice that the

symmetrical bounding of the a priori belief masses does not

necessarily give a symmetrical bounding of the utility.
3) Conclusion: The imprecision is propagated through the

evidential network as well as in a problem of modeling

of imprecise reliability of a system as for the performance

evaluation by imprecise utility functions. This characteristic

of evidential networks opens significant possibilities to model

problems of reliability in a general way.

C. Bride system: probist reliability

For this second example, we have chosen a complex system

in the reliability meaning as written by Villemeur [63] but

with few components in order to facilitate the comprehension.

The bridge system (cf. figure 10) was largely studied in

the literature and Torres-Toledano [80] modeled its reliability

with Bayesian networks. It consists of 5 components and

each component has two disjoint states ({U p},{Down}) for a

problem of probist reliability. The elementary events on these

components are supposed to be independent. The system is

homogeneous and no repair is considered.

By enumerating the minimal cuts or the minimal success

paths, the evidential network shown on figure 11 is obtained

Fig. 10. Bridge system

to evaluate the reliability of the bridge system. This model

was studied in [22].

1) Precise Probabilities: To study the reliability of this

system, we first consider precise failure rates λ1 = λ2 = λ5 =
10−3h−1;λ3 = λ4 = 2.10−3h−1 and mission time Ti = 200h.

The probabilities that each component is in state {U p} are

PCI|I∈{1,2,5}
({U p}) = 0.81873 and PCJ|J∈{3,4}

({U p}) = 0.67032.

By using 7, 8 and 13, the following a priori belief mass

distributions are obtained:

MCi
= [0.81873 0.18127 0] and MC j

= [0.67032 0.32968 0]

The propagation of a priori belief masses in the network

gives system reliability R = 0.850134 at Ti = 200h as con-

firmed on figure 11. More details can be obtained in [22]

2) Imprecise Probabilities: Now, let us consider the same

problem with imprecise failure rates expressed as intervals:
[

λ i,λ i

]

=
[

0.9e−3,1.1e−3
]

and
[

λ j,λ j

]

=
[

1.9e−3,2.1e−3
]

.

The a priori belief mass distribution defining the uncertain
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Fig. 11. Precise reliability of the bridge system

state of each component at mission time Ti = 200h is obtained

from 7, 8 and 13:

MCi∈{1,2,5}
= [0.80252 0.16473 0.03275]

MCi∈{3,4}
= [0.65705 0.31614 0.02681]

Figure 12 shows the result obtained by the evidential

network.

The system reliability is the probability that the system is in

operating condition at time Ti. It is between
[

R(Ti) ,R(Ti)
]

=
[0.8339 0.8658]. While comparing with the result of the pre-

vious section, we note that the bounding property (cf. 9) is

verified. We can also note that the precise reliability obtained

in section V-C1 is not the center of the obtained p-box. It

depends on the structure function modeled by the evidential

network.

D. Multistate bridge system

In this section, we study the performance of the bridge

system in the same way as proposed by [79] for the k-out-of-

n:G system studied in the previous section. We consider each

component with 3 ordered levels of performance {u0,u1,u2}
according to their operating mode. The structure function is

a combination of ’AND’ and ’OR’ structure subfunctions of

2 components which are given by conditional belief mass

table XIV and table XV).

TABLE XIV
’AND’ STRUCTURE FUNCTION

C1 C2 φ(x)

0 0 s0

0 1 s0

0 2 s0

1 0 s0

1 1 s1

1 2 s1

2 0 s1

2 1 s1

2 2 s2

The structure function of a ’AND’ gate between two

components with 3 states each (cf. table XIV) is converted

into a conditional belief mass table (cf. table XVI). The

same translation can be carried out for a ’OR’ gate. These

conditional belief mass tables can thus be used within the



14

Fig. 12. Imprecise reliability of the bridge system

TABLE XV
’OR’ STRUCTURE FUNCTION

C1 C2 φ(x)

0 0 s0

0 1 s1

0 2 s2

1 0 s1

1 1 s1

1 2 s2

2 0 s2

2 1 s2

2 2 s2

evidential network if the combination of the operating modes

of the components induces the operating mode of the system

according to the suggested structure functions. It should be

noted that other structure functions could be modeled.

1) Precise probabilities: Let us consider that the

system components show probability set PCi|i∈{1,2,5}
=

[ 0.1 0.3 0.6 ] and PCi|i∈{3,4}
= [ 0.3 0.5 0.2 ] for per-

formance levels {u2,u1,u0}. As in section V-B1, we can

compute the system utility from the belief mass distribu-

tions resulting from this set of probabilities and 7, 8 and

13. Thus, MCI|I∈{1,2,5}
= [0.1 0.3 0.6 0 0 0 0] and MCI|I∈{3,4}

=
[0.3 0.5 0.2 0 0 0 0] are obtained.

The utility tables for US and US are given by tables XII

and XIII. The provided distributions are precise and the the

system performance is also precise as shown on figure 13 with

an utility US = US = US = 0.631.

2) Imprecise probabilities: Now, let us consider an impre-

cise set of probabilities concerning the distribution over the

operating conditions of the components. Each probability is

now imprecise with an inaccuracy of ±0.05. The a priori

belief mass distributions of the components are computed

again by 7, 8 and 13:

MCi|i∈{1,2,5}
= [0.05 0.25 0.55 0.05 0.05 0.05 0]

MCi|i∈{3,4}
= [0.25 0.45 0.15 0.05 0.05 0.05 0]

All the a priori mass distributions, the measures of belief

and plausibility of the system at level of performance u2 and

u1 and utilities US, US are indicated on figure 14.

As in the previous example, the upper and lower bounds of

the system utility surrounds the precise utility. Equation 9 is

verified in the case of an utility computation. We notice that

the system complexity is not an influence factor on the result
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obtained.

VI. CONCLUSION

In this article, we address the problem of imprecision

in the reliability and performance assessment of multi-state

systems. For this purpose, we have proposed the use of the

Dempster-Shafer theory to model the structure function of

studied systems by a network approach.

As a first step, we remembered the basics of the Demspter-

Shafer theory for the evaluation of reliability and performance.

We have thus laid the groundwork for a model of evidential

networks using junction trees and Bayesian inference extended

to belief masses. We have also introduced the computation of

utilities associated with these networks.

In a second step, we showed how to study the probist

reliability of systems, regardless of their complexity, using evi-

dential networks and in particular how to take into account the

uncertainty about the failure rates. We showed that Bayesian

evidences provide a precise reliability value even if they are

coded in an evidential network, which allows a conventional

predictive assessment of the reliability by fault trees or system

performance by Markov chains.

When the input data is imprecise, we have a problem of im-

precise probabilities and we identified that evidential networks

were able to propagate this imprecision from the root nodes

to the target nodes. This capability allows us to determine the

uncertainty of the reliability or the system performance. In

particular, we have shown that bounding precise input data

by intervals of probabilities led to the bounding of the sought

reliability or performance. This bounding allows us to compute

optimistic and pessimistic values of the studied parameter.

Finally, we have shown how to model precise and imprecise

reliability of a simple k-out-of-n:G system, then the precise

and imprecise performance assessment of any system. Thus,

we are able to show the equivalence with other models. Then,

we have dealt with the reliability analysis of the bridge system,

which is a small complex problem in the reliability sense. We

have evaluated its precise and imprecise performance, which

allowed us to conclude that evidential networks and associated

utility functions allow an easy and powerful modeling for the

study of predictive parameters of complex systems.

This modeling capability pointed out taht precise or impre-

cise reliability or performance assessments of systems can be

extended to other parameters, and that evidential networks can

address more general problems of imprecise knowledge.
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TABLE VII
CONDITIONAL BELIEF MASS TABLE OF A ’2-OUT-OF-3:G’ GATE

EZ

EV EX EY {Up} {Down} {Up,Down}

{Up} {Up} {Up} 1 0 0
{Down} {Up} {Up} 1 0 0

{Up,Down} {Up} {Up} 1 0 0
{Up} {Down} {Up} 1 0 0

{Down} {Down} {Up} 0 1 0
{Up,Down} {Down} {Up} 0 0 1

{Up} {Up,Down} {Up} 1 0 0
{Down} {Up,Down} {Up} 0 0 1

{Up,Down} {Up,Down} {Up} 0 0 1
{Up} {Up} {Down} 1 0 0

{Down} {Up} {Down} 0 1 0
{Up,Down} {Up} {Down} 0 0 1

{Up} {Down} {Down} 0 1 0
{Down} {Down} {Down} 0 1 0

{Up,Down} {Down} {Down} 0 1 0
{Up} {Up,Down} {Down} 1 0 0

{Down} {Up,Down} {Down} 0 0 1
{Up,Down} {Up,Down} {Down} 0 0 1

{Up} {Up} {Up,Down} 1 0 0
{Down} {Up} {Up,Down} 0 0 1

{Up,Down} {Up} {Up,Down} 0 0 1
{Up} {Down} {Up,Down} 0 0 1

{Down} {Down} {Up,Down} 0 1 0
{Up,Down} {Down} {Up,Down} 0 0 1

{Up} {Up,Down} {Up,Down} 1 0 0
{Down} {Up,Down} {Up,Down} 0 0 1

{Up,Down} {Up,Down} {Up,Down} 0 0 1

Fig. 13. Evidential network to evaluate the bridge system performance
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TABLE XVI
CONDITIONAL BELIEF MASS TABLE OF A ’AND’ GATE WITH 3 STATES

EZ

EX EY {SZ
2} {SZ

1 } {SZ
0} {sZ

2 ,sZ
1} {sZ

2 ,sZ
0} {sZ

1 ,sZ
0} {sZ

2 ,s1,s
Z
0}

{sX
2 } {sY

2 } 1 0 0 0 0 0 0

{sX
2 } {sY

1 } 0 1 0 0 0 0 0

{sX
2 } {sY

0 } 0 0 1 0 0 0 0

{sX
2 } {sY

2 ,sY
1 } 0 0 0 1 0 0 0

{sX
2 } {sY

2 ,sY
0 } 0 0 0 0 1 0 0

{sX
2 } {sY

1 ,sY
0 } 0 0 0 0 0 1 0

{sX
2 } {sY

2 ,sY
1 ,sY

0 } 0 0 0 0 0 0 1

{sX
1 } {sY

2 } 0 1 0 0 0 0 0

{sX
1 } {sY

1 } 0 1 0 0 0 0 0

{sX
1 } {sY

0 } 0 0 1 0 0 0 0

{sX
1 } {sY

2 ,sY
1 } 0 1 0 1 0 0 0

{sX
1 } {sY

2 ,sY
0 } 0 0 0 0 0 1 0

{sX
1 } {sY

1 ,sY
0 } 0 0 0 0 0 1 0

{sX
1 } {sY

2 ,sY
1 ,sY

0 } 0 0 0 0 0 1 0

{sX
0 } {sY

2 } 0 0 1 0 0 0 0

{sX
0 } {sY

1 } 0 1 1 0 0 0 0

{sX
0 } {sY

0 } 0 0 1 0 0 0 0

{sX
0 } {sY

2 ,sY
1 } 0 0 1 0 0 0 0

{sX
0 } {sY

2 ,sY
0 } 0 0 1 0 0 0 0

{sX
0 } {sY

1 ,sY
0 } 0 0 1 0 0 0 0

{sX
0 } {sY

2 ,sY
1 ,sY

0 } 0 0 1 0 0 0 0

{sX
2 ,sX

1 } {sY
2 } 0 0 0 1 0 0 0

{sX
2 ,sX

1 } {sY
1 } 0 1 0 0 0 0 0

{sX
2 ,sX

1 } {sY
0 } 0 0 1 0 0 0 0

{sX
2 ,sX

1 } {sY
2 ,sY

1 } 0 0 0 1 0 0 0

{sX
2 ,sX

1 } {sY
2 ,sY
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Fig. 14. Imprecise performance evaluation of the bridge system


