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ROTATING POINTS FOR THE CONFORMAL NLS
SCATTERING OPERATOR

REMI CARLES

ABSTRACT. We consider the nonlinear Schrodinger equation, with mass-
critical nonlinearity, focusing or defocusing. For any given angle, we
establish the existence of infinitely many functions on which the scat-
tering operator acts as a rotation of this angle. Using a lens transform,
we reduce the problem to the existence of a solution to a nonlinear
Schrodinger equation with harmonic potential, satisfying suitable peri-
odicity properties. The existence of infinitely many such solutions is
proved thanks to a constrained minimization problem.

1. INTRODUCTION

We consider the pseudo-conformally invariant nonlinear Schrédinger equa-

tion
1

(1.1) i0pu + §Au = ju[Yu, (t,z) eRxRY d>1.
Two types of initial data are of special interest:
(1.2)  Asymptotic state: Uo(—t)u(t){t:ioo =uyg, where Uy(t) = eish,
(1.3)  Cauchy data at t = 0: wuj—g = uo.

It is well known that for data uy € ¥ = H' N F(H'), where
1
1.4 F = = ——7=
( ) f(g) (5) (27T)d/2 Rd

(1.1)=(1.2) has a unique, global, solution v € C(R;X) ([17], see also [10]).
Its initial value uj;—¢ is the image of the asymptotic state under the action
of the wave operator:

(z)e” ™ da,

Ujp=0 = Wiug.

Similarly, if ug € 3, (1.1)—(1.3) possesses asymptotic states:

Jugy €3, || Uo(—t)u(t) — ungt—i> 0: uy=Wilu.

— 00
The scattering operator associated to (1.1) is classically defined as
S:WJ:loW_ PU— Uy
It maps ¥ to 3, and is unitary on L?, and on H:
1S(u)lp2way = llu-llr2gay 5 [IVS(u-)llp2gay = IVu-||L2@e)-

This follows from [17, 38, 18].

Support by the ANR project R.A.S. is acknowledged.
1


http://hal.archives-ouvertes.fr/hal-00339952/fr/
http://hal.archives-ouvertes.fr

hal-00339952, version 1 - 19 Nov 2008

2 R. CARLES

Besides the existence of the wave and scattering operators, it seems that
very few of their properties are known. By construction, these operators are
continuous on . When d < 2 (the nonlinearity is smooth), these operators
are real analytic on X; see [7].

It is rather reassuring to check that the operators W, and S are not
trivial, showing that averaged in time nonlinear effects may not be negligible.
Following [15] for the case of the wave equation, we can prove for instance
that in L?(R?), and as ¢ — 0,

(1.5) S(eu_) =eu_ — i ™IPu_) + 0O <61+8/d) ,

where

Pty = [ v (Wt (0 ) d.

— 00
We refer to [9] for a proof (in the present small data case, it suffices to
assume that u_ € L*(R%)). Explicit computations show that P(u_) # 0
when u_ is Gaussian, therefore S is not the identity.

A few algebraic properties are available. Let C denote the conjugation
f +— f. The invariances of the equation show that

(1.6) Wi =CoWxoC,

an identity which was noticed in [12] (see also [10]). Due to the invariance
of (1.1) under translation and gauge transforms,

S(u-(-+a)) =S (u_) (- +a), Ya € RY,
S (e"u_) =e"S(u_), Vn e R.

Another algebraic relation was established in [9], which seems to be bound
to the conformal case, contrary to (1.6) and (1.7):

FoWil=WzxoF,

(1.7)

In [1], a remarkable property was proved for the scattering operator associ-
ated to the energy-critical wave equation
(1.8) O*u—Au+|ulu=0 ; zeR3

Using the notion of profile decomposition, as introduced in [16, 28], the au-
thors prove in [1] that the scattering operator associated to (1.8), and defined
on the energy space, enjoys a surprising nonlinear superposition principle. It
follows from [21, 14] that a similar result holds for the Schrédinger analogue

of (1.8),
1
i0u + §Au =ul*u ; zeR3
We give more precise statements in an appendix, where we also discuss the

case of (1.1). In this paper, we show the existence of infinitely many fixed
points for S, and more generally:

Theorem 1.1. Let d > 1 and S : ¥ — X be the scattering operator as-
sociated to (1.1). For any 6 € [0,2x[, there are infinitely many functions
u_ € % such that S(u_) = e®u_.

Remark 1.2. For 6 €]0, 27|, this result yields another evidence that S is
not trivial.
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Remark 1.3. For 8 = 0, this shows the existence of infinitely many fixed
points. Similarly, for § = 27p/q, p,q € N*, this shows the existence of
infinitely many periodic (or cyclic) points, for any given period.

Remark 1.4. We construct solutions of the form

1 i4ﬂ—z( +2]—7)arctant ( x >
u(t,r) = —————e 1+* 2 i\ A2/
() (1 4 2)%/* & V1+12

where j € N\ {0} and ¢; € ¥. The profile ¢; is given by the (almost) elliptic
equation (3.1) with v =d/2 + 25 4+ 0/m.

Remark 1.5. In semi-classical analysis, the scattering operator appears in
some cases to describe solutions which pass through a focal point. In the
presence of an isotropic (but not necessarily) harmonic potential, focusing at
one point occurs periodically in time, and the scattering operator is iterated
each time a focal point is traversed; see [6] and references therein. The
existence of fixed points, and more generally, of periodic points, shows that
the nonlinear dynamics may reveal some periodicity in time, at leading order
in the semi-classical limit.

Remark 1.6. Not all the functions in ¥ are such that S(u_)(z) = e @u_(z)
for some real-valued function h (not necessarily constant). Arguing by con-

tradiction and using (1.5), one can show that there exist two functions u_

and u_ in ¥ such that

lu—(2)] = [u—(2)], and [S(u_)(@)| £ [S(u-) ().
See [0, §7.4.3].

Remark 1.7. For the linear Schrodinger equation, one can construct trans-
parent potentials V (z). This means that one can choose a potential V' such
that any function u(t,z) = e'®%)(z), F € R, solution to

1
10pu + §Au =Vu
has a trivial scattering matrix; see [23] and references therein.

In the focusing case
1
(1.9) i0ru + §Au = —|u*?u, (t,z) e R x RY,

no general scattering theory is available, since finite time blow-up may oc-
cur (see e.g. [10, 36]). We know however that for (initial or asymptotic)
data with a sufficiently small L? norm, the solution is global, and there is
scattering [11]. Recall that the ground state given as the unique positive,
radially symmetric solution to

(110 ~5AQ+ Q=@

yields the best constant for the following Gagliardo—Nirenberg inequality
[41]:

24+4/d 4/d
(1.11) 11175, < 210 H4/dHfH IS F12., Ve HY(RY).
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If ||ul|z2 < ||Q||z2, then all H!'-solutions to (1.9) are global in time [41]. It is
conjectured that the same holds true for L2-solutions; see [26, 22, 19, 39, 40],
and references therein.

Theorem 1.8. Let d > 1. For any 0 € [0,2x], there are infinitely many
functions u_ € X such that the scattering operator associated to the focusing
equation (1.9) is well defined on u_, and such that S(u_) = e¢®u_. In
addition,
e These functions satisfy ||u_||r2 > ||Q| 2-
o They are arbitrarily large in H'(R?).
e For all such u_ € 3, there exists € > 0 such that if u_ € ¥ satisfies
lu— —u_||z2 < €, then S(u_) is well-defined in ¥ (in particular,
there is no blow-up).

Remark 1.9. We construct solutions of the same form as in Remark 1.4,
but with different profiles ¢, and in the phase, —j € N, with —25 > d/2.

Remark 1.10. In the defocusing case, the last property stated above is
straightforward, since S is defined on Y. In the above focusing case, this
stability property is more surprising.

Theorems 1.1 and 1.8 rely on two steps. As shown in §2, a lens transform

reduces the proof to the existence of time periodic solutions for the equation
2
O + %Av — %v + |o|* 0.

Since the nonlinearity is autonomous, it is reasonable to expect solutions
to the above equation which are standing waves, v(t,z) = e~ #)(z). The
point is that infinitely many values for v lead to periodic solutions with a
suitable period, that is, such that by inverting the lens transform, we get
Theorem 1.1 and the existence part of Theorem 1.8. This step is achieved
in §3. The rest of the proof of Theorem 1.8 is given in §4. Finally, in the
appendix, we discuss the nonlinear superposition principle associated to the
scattering operator for (1.1), modulo some global existence issues which are
still open so far.

2. REDUCTION OF THE PROBLEM

2.1. Lens transform. Let u € C'(R; ) solve the more general equation

1
(2.1) i0pu + §Au = u|*u, (t,z) € R xR%
If
2
oo(d) <o < ) (with only o > o¢(d) if d < 2),
(2.2) -
2-d+ VP y12d+4

where oq(d) : " ,

then the scattering operator associated to (2.1) is well defined, from ¥ to ¥;
[17, 38, 18] (see also [12, 29] where the case 0 = 0¢(d) is allowed). Introduce

(2.3) v(t,x) = ;u (tant L) e_i# tant
. 9 (COS t)d/2 Y t Y
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which is well defined for |t| < 7/2, and has the same value as u at time ¢ = 0.
As noticed in [30] for the linear equation, and [20, 34] for the nonlinear
Schrodinger equation (see also [4, 35]), v solves, at least formally:

. l _ @ L 4|do—2, |20
(2.4) 10y + 2Av =5 + |cos t] [v|“Tv.

Note an important feature of the lens transform (2.3): it maps the line Ry
for u, to the bounded interval | — 7, §[ for v. Therefore, long time properties
for u are equivalent to local in time properties for v.

2.2. The harmonic oscillator. Let
1 2 ,
H=-SA+ % and Uy (t) = e
denote the harmonic oscillator and its propagator. Recall some well-known
properties (see e.g. [25]):
Lemma 2.1. We have
d

ap(H):{§+k::)\k; kEN},
and the associated eigenfunctions are given by (tensor products of) Hermite
functions, which form a basis of L*>(R%). For ¢ € N, the eigenfunctions
associated to Noy (resp. Agpy1) are even (resp. odd).

In space dimension d = 1, these eigenvalues are simple, and the eigenvec-
tors are given by Hermite functions (¢ )ren. For even indices, 19 is even,
and for odd indices, 19011 is odd. Up to normalizing constants, we have for
instance

Yo(x) = e /2 ;o i(z) = ze /2,
In higher dimensions, one considers tensor products of one-dimensional eigen-
functions; the eigenvalues A\; > d/2 are no longer simple. We note the
identity
(2.5) U (t 4 7)h(z) = e 72Uy (t)(—x), VteR.
Finally, as a direct consequence of Mehler’s formula, local in time Strichartz

estimates are available for Uy (see e.g. [5, 10]). Notice that since H pos-
sesses eigenvalues, global in time Strichartz estimates fails for Uyy.

Lemma 2.2. Letd > 1. A pair (p,q) is admissible provided that
2 d d
_+_:_7 p>27 p7q7d 7é 270072'
24 (p.0.d) # (2.00.2)
Consider a finite time interval I.
1. For all admissible pair (p,q), there ezists C = C(p, |I|) such that

UL () Lo, Laay) < Clldllzz, Vo € L2(RY).
2. Define the retarded operator in defined by
R(F)(t,z) = / Ug(t — s)F(s,x)ds.
INn{s<t}

For all admissible pairs (p1,q1), (p2,q2), there exists C = C(p1, po, |I|) with

IR s 1 ey < CUFN oty gty uayy VF € LI L% (RY).
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2.3. A rotating point for S. The following lemma is standard (see [38]
or [32]):

Lemma 2.3. Let f € L*(RY), and recall that Uy(t) = 28,

I000) = A I2gsy =, 0 where AW (@) = o F () €5

and the Fourier transform is normalized in (1.4).

Proof. From the explicit formula

0o(0)f(w) = G [, €5 T,

we have the following factorization:

Uo(t) = MyDF My,

where M, stands for the multiplication by the function €' 2t , F is the Fourier
transform defined in (1.4), and D is the dilation operator

(D) @) = ot (5)-

The lemma thus reads: Up(t) — MyD;F — 0 strongly in L2 as t — 4oc.
Since M D, F is unitary on L?, the lemma follows from the strong limit in L?,
M,; — Id — 0, which stems from the Dominated Convergence Theorem. [J

Lemma 2.4. Let o satisfy (2.2), and u,v € C(R;X) solve (2.1) and (2.4),
respectively, with ujj—q = vj—g = ¢. Then

v(=5ex) = FE W) (za) 5 v (F) =T IE (WD) ().

Remark 2.5. In the linear case, the same result holds when W_. are replaced
by Id: see (2.5). The —dm/2 phase shift between the two instants +7/2
corresponds to the Maslov index, and the symmetry with respect to the
origin accounts for the fact that the harmonic oscillator rotates the phase
space with angular velocity equal to one.

Remark 2.6. It would suffice to consider v € C([—7/2,7/2]; L?(R%)), and
u € C(R; L?(R%)) which has asymptotic states in L?(R%). This is guaranteed
if we assume further spatial regularity as above. In the case ¢ = 2/d,
we might also consider either data with small L? norm [11], or radially
symmetric L? functions when d > 2 [24, 37]. However, for the construction
of periodic solutions to (2.4), we take advantage of properties such as the
compactness of the embedding ¥ < L? N L2712,

Proof. We show:
o) = e (wito),

T
—Qast— —.
L2(Rd)

By (2.3) and asymptotic completeness for (1.1), we have, in L?(R%):

- 2
%eii% tant,, (tan t, i)
(cost) /2 cost
1 fiﬁ tant T
N T apt (Uo(tan t)uy.) < ) )
t—%~ (cost) c

u(t,z) =
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where uy = W;lqﬁ By Lemma 2.3, we infer

ota) v el LG ()
"oz (cost)Y? (itant)¥/2" " \tantcost/
The last quantity is equal to
—idm /4 w2 ain
O () o b 2),
(sint)d/2 sint

which converges to e~“™/45, (-) in L>(R%) as t — 7/2.

The case t — —7/2 is similar, up to a symmetry with respect to the
origin, since sin(—n/2) = —1. O

Denote u_ = W=1¢. We have therefore

v <—g,x> =TI AE () (—x) 5w (g,x) = e A E (Su_) ().
Conclusion. If the solution v to (2.4) with v,—g = ¢ satisfies
(2.6) v <E,x> = ¢ tdm/2+i0,, (—E, —x) ,

2 2

then u_ = W='¢ verifies S(u_) = e®u_.
2.4. More rotating points? In the case o = 2/d, the nonlinearity in (2.4)

is autonomous: we may apply the lens transform back and forth, and change
the time origin. The following result is then straightforward:

Proposition 2.7. Letd > 1 and o = 2/d. Let v € C(R;X) solve (2.4), and
such that
vt +m,x) = e 20yt —),  Y(t,x) € R x RY
Then for all t € R, v(t,-) € ¥ is such that u* = W~tu(t) satisfies
S (ut,) = eyl

Remark 2.8. Due to the gauge invariance of (1.1), S is also gauge invariant
—see (1.7) — and the above result may be relevant only on time intervals of
length (at most) .

2.5. The focusing case. Consider the equation:

R I | Sy
(2.7) 10V + 2Av =5 [v|*%v.
For initial data in X, the existence of a unique solution locally in time is
well-known (see e.g. [10]). Rather than the possibility of finite time blow-up,

our interest is:

Lemma 2.9. Suppose that (2.7) has a solutionv € C([—n/2,7/2];%). Then
u, defined by

1 Z#%\Q T
We + v <arctan t, \/ﬁ)
solves (1.9). It satisfies u € C(R;X), and has asymptotic states in 3, given
by:

(2.8) u(t,x) =

us(z) = A FTLy (ig) (+x).
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Proof. We have immediately v € C(R;X), and the fact that it solves (1.9).
To see that u has asymptotic states, given by the above formula, write, for
large [t|:

‘2

Up(—t)u(t,x) = ,;/e_i%u(t,y)dy

1 / 1 ilth# ilazul? ( ot y )d
- € e t v | arctant,
2 ) ey e
1 1 Jz|2 . 1, M
~ (_227Tt)d/2 ’t’d/Q e ‘2t /elTyel( t+1+t2> 2 g (arctan t,
6:|:zd7r/4 1

~ en#2 i

Y
—— | d
V1+t2> ’
|32 gy 4 yl

TP [ et e ) 2y (arctant,%) dy

‘ |2 ‘
~ eizdﬂ/46717fflv (arctan t, ix) ~ eizdﬂ/4fflv (igy im) .

We have presented the computations in a formal way. We leave their easy
justification to the reader. O

3. CONSTRUCTION OF PERIODIC SOLUTIONS
We construct a solution of the form
o(t, ) = e Hap(x).

In the defocusing case, 1) must solve

(3.1) vip = Hy + 9|/ %,
In the defocusing case, it must solve

(3:2) (H —v)y = [p[Y4.
We have:

Proposition 3.1. Let d > 1.
1. If v > d/2, then there exists an even function b € ¥\ {0} solving (3.1).
2. If v < d/2, then there exists an even function ¢ € ¥\ {0} solving (3.2).

Theorem 1.1 follows from the first point, by considering the family (for
0 € [0,2n])
d .0 .
(j)iz1 = {5 +2j——, jeN) {0}}-
The form of the corresponding solution u given in Remark 1.4 is straight-

forward, by inverting the lens transform (2.3) (see (2.8)).
To infer the existence part of Theorem 1.8, we can consider the family
(for 0 € [0, 2)

d 0
i)is1=9=—27——, je N\ {0} ;.
i ={5-2-2 jemy o}
Remark 3.2. For such solutions, Proposition 2.7 is irrelevant. Consider
e~ Wit(z) at two different times: this amounts to a multiplication by e for
some 1 € R. As we have seen, the gauge invariance of (1.1) implies that S is
also gauge invariant, and Proposition 2.7 holds trivially for such solutions.
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Remark 3.3. Proposition 3.1 remains valid if ||} is replaced with
|4|274), where the nonlinearity is H'-subcritical, that is, o < 2/(d — 2)
when d > 3. However, since the nonlinearity in (2.4) is autonomous if and

only if o = 2/d, this is the only case where it is reasonable to seek a solution
to (2.4) of the form v(t,z) = e~ “tp(x).

At least two proofs of Proposition 3.1 are available in the literature:

e In [33], the case of (3.2) is considered, by using bifurcation theory.
As indicated there, the arguments presented in [31] make it possible
to infer Proposition 3.1.

e In [20], Proposition 3.1 is established up to the symmetry property
(which could easily be incorporated): see [20, Theorem 1.4] for the
first point, and [20, Theorem 1.3] for the second one. The proof
there is based on the mountain pass lemma.

Even though this result has been established elsewhere, we present a another
short, self-contained proof, for the sake of completeness.

Proof of Proposition 3.1. We proceed in the same spirit as in [3, 13]: let

1) = 7 (Hb, ) — % {0, 0),

M- {w €2, w(w) = ulel) s g7y [ WP - 1} |

We consider radially symmetric functions for simplicity; in particular, these
are even functions. The following lines essentially show that the negative
part of I can be controlled. Denote

d= wlél]& I1(v).
First case: v > d/2.
We show that 0 > § > —oco. To see that § < 0, consider 1h(z) = ce~1#*/2,
where c is such that ¢» € M, and recall that ¢ is the unique eigenfunction
associated to A\g = d/2: Hy = d /2.

Suppose that we could find sequences in M along which I goes to —oo.
Let (¢, )nen be such a sequence; necessarily, it is unbounded in L?(R?). We
remark that (29, )neny and (Vb )nen are also unbounded in L?(R%), with
norms of the same order as |[¢,||z2. To be more precise, we introduce a
notation: let (ay,)nen and (G, )nen be two families of positive real numbers.

e We write o,, < (3, if limsup o, /3, = 0.

n—-4o0o

e We write a,, < 3, if limsup o, /3, < 00.

n—-4o0o

e We write a,, = ), if oo, < 6, and 5, S .
Let ¢, € X, with ||¢n||r2 — +00. In general, up to extracting a subsequence,
two possibilities can be distinguished:

o [Vonllr2 > [lénll L2 and/or [xgnll2 > [l¢nllL2,
* Or [[Von| L2 = [[z¢nll L2 ~ [¢n L2-

This stems from the uncertainty principle

2
[EIFPES 71Vollzzllzgllz.
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In our case, it is easy to see that the first possibility leads to a contradiction,
since I(1,) would be positive for n sufficiently large. Consider the last
possible case: ||V, 12 = ||z, 2 = H¢nHL2 Introduce

wn 1/}77/

H%Hw
This is a bounded sequence in %, whose L? norm is equal to one. Up to
extracting a subsequence, ¢n converges weakly in 3. Since ¥ — LQ(]Rd) is
compact, (a subsequence of) wn converges strongly in L?(R?), to some w ex
such that [|¢];2 = 1. Since the embedding ¥ < L2#/4(R?) is compact,
¢n — ¢ strongly in L**4/4(R?%). We infer

[nll Lorasa = [19nll2ll¥nll p2+asa = [l L2 — +o0.

Therefore, 1),, cannot remain in M, hence the finiteness of 9.

Since the embedding ¥ — LP(R?) is compact for 2 < p < 2d/(d — 2)
2<p<xifd=1and 2 <p < oo if d=2), we infer that this infimum is
actually a minimum, attained by a non-trivial function ¢ € 3. Indeed, from
what we have seen above, any minimizing sequence is bounded in L?(R%),
and therefore in ¥ since § < 0. The Lagrange multiplier u associated to this
problem is such that

Hy — vip = plg)| 4.
The scalar product with 1 yields p < 0, since ¢ < 0:

vip = Hyp + |l [ /49,
The function |u|%* (£ 0) solves (3.1).

Second case: v < d/2.
We show that 0 < § < oco. The finiteness of § is obvious, and we recall that
the uncertainty principle yields

(33 1) > 5 (5= v) WlRs >0

Assume that 6 = 0: we can find a minimizing sequence v,, € M such that
¥, — 0 in L2, Therefore,

0 I(thn) = % (Hipn 1) + 0(1),

and 1, — 0 in ¥. This implies v, — 0 in L2T%¢: this contradicts ¥, € M,
and so, § > 0. We see from (3.3) that any minimizing sequence is bounded
in L?, and thereby in 3. Up to a subsequence, such a sequence converges
weakly in 3, and strongly in L2NL2T%/¢, to a function ¢ € M which verifies

(H —v) ¢ = plgp| /"

Since § > 0, taking the scalar product with ¢ in the above equation shows
that the Lagrange multiplier 4 is positive. The function u% %t then solves
(3.2), hence the proposition. O
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4. END OF THE PROOF OF THEOREM 1.8

Recall that for the existence part of Theorem 1.8, we apply the second
point of Proposition 3.1 with the family (for 6 € [0, 27[)

d

s ={§-2- 2 sem o},

Denote by (¢;)j>1 a corresponding family of even, nontrivial solutions to
(3.2). The fact that this family is unbounded in H'(R?) follows by taking
the scalar product of (3.2) with ¢;, and invoking the Gagliardo-Nirenberg
inequality (1.11):

(1= 13)6,,05) = [ 10;(@)* /e < 4/d||¢J||4/duv¢]uLz

This reads:

4/d 1 1 d
ol s > 5 e+ e+ (2= 5+ 7) 10412,

21QI
We have directly, for 25 > d/2 — 0/,

4/d 4/d
I3ll7" > 11QIIES"
Therefore,
4/d . d 0
\Y > 2] — =+ —].
65100l > € (2 - 5+ 2)
This shows that (¢;);>1 is unbounded in H*(R?). In view of Lemma 2.9,
the following result completes the proof of Theorem 1.8.

Proposition 4.1. Let v < d/2, and v(t,x) = e *')(x), where ¢ solves
(3.2). There exists € > 0 such that if ¢ € X satisfies ||v(—7/2,-) — ¢|lr2 < e,
then the solution v to the initial value problem

1 z? _ aae -
(4.1) 1040 + §AU = 7’7} - |U|4/dv v Ut=—m/2 = o

is such that v € C([—7/2,7/2];¥).

Proof. For ¢ € X, the local existence of a solution v in ¥ is standard; see
e.g. [5, 10]. We prove that if ¢ is sufficiently small, then this solution cannot
blow-up on the time interval [—7/2,7/2]. The analysis in [5] yields, since

veC(-n/2,7/2];2):

v,zv,Vo € LP <[—7T/2,7r/2];Lq(Rd)) ,  V(p,q) admissible.
Consider the function r» = v — v. It solves
(4.2) i0r = Hr +g(v+71) —g(v) ; Tj=—r/2 =V — Vjt—_n/2,

where we have denoted g(z) = |z|*?z. To prove the proposition, it suffices
to show that r € C([-7/2,7/2];¥). Let t € [-n /2,7 /2], and denote D; =
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[—7/2,1] xRY. Strichartz estimates with the admissible pair (2+4/d, 2+4/d)
yield, along with Hoélder inequality:

H7’”L2+4/d(Dt) < Cljv - 17|t:f7r/2HL2
4/d 4/d
+ C (I7 sy + 10135t a0y ) 1Pl 2/
Note that the constant C' can be chosen independent of ¢ € [—m/2,7/2],
by considering I = [-n/2,7/2] in Lemma 2.2. By splitting I into a finite
number of intervals I; such that
1
2’
and repeating the same arguments finitely many times, we see that there
exists Cp such that

CH”HL2+4/d(IJ- xRd) S

~ 4/d+1
7l 2447,y < Collo = Fm—spallzz + Collr 52

for all t € I (this is essentially Gronwall lemma on a finite time interval).
Therefore, choosing ||v—),—_r /(|12 sufficiently small, a bootstrap argument

shows that r € L2+4/(T x R%).

Since the operators x and V do not commute with Uz, we may introduce
the operators

J(t) =xsint —icostV ; K(t)=wxcost+isintV.

These operators commute with Uy, act on gauge invariant nonlinearities
like derivatives, and satisfy the pointwise property

(4.3) TP+ E@OFF = af* + [V f2.

We refer to [5] for more details. Applying the operators J and K to (4.2),
Strichartz and Holder inequalities yield

1770 avasapyy + BT 2asaqpy < Cllv = Bmmnpalls
4/d 4/d
O (I3 0y 100350y ) (10 270y + Il 2tasan )

4/d 4/d
+C (I3 ag oy W01 ra ) (17 ztssagyy + NP avara oy ) -

Splitting [ into mtervals where

4/d 4/d 1
C (H7°|’L/2+4/d(1ijd) + HUHL/Q“““/"Z I XRd)) S S

we infer that Jr, Kr € L2t/ 4(I x R%). Applying Strichartz inequality with
now (p1,q1) = (00,2) and (p2, q2) = (2+4/d,2+4/d), we see that r, Jr, Kr €
L>®(I; L2(RY)), hence r,zr, Vr € L®(I; L2(R?)) from (4.3). The results in
[5] imply that r € C([-7/2,7/2];X). O
APPENDIX A. PROFILE DECOMPOSITION AND NONLINEAR SUPERPOSITION

Consider first the energy-critical nonlinear Schrodinger equation in space
dimension d = 3:

1
(A1) i0pu + §Au =Jul*u ; xeR3

Before stating the results we want to recall from [21], introduce a definition:
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Definition A.1. If (h5, 5, 25)jen is a family of sequences in R\ {0} xRxR3,

then we say that (h5,15,25) en is an orthogonal family if

o 56l
li kg
it <h€+h§+ e

13 3
3
h3

):oo, Vj # k.

The main two results in [21], which we recall below, are the Schrédinger
analogues to the results in [1] for the wave equation (1.8).

Theorem A.2 (Theorem 1.6 in [21]). Let (¢°)o<e<1 be a bounded family

in H'(R®). Let Uup, =€ 2Aq§€ Then, up to a subsequence (still denoted by
ufy, ), there exist a family (h5);>1 of positive numbers, a family (t5,5);>1 of

vectors in R x R3, and a family (V; )]>1 of solutions to

such that:
(hE t],xj)JeN is an orthogonal family.
° For every £ > 1,
l
t—t5 v —aj
uhn t .%' Z \/7 < hs)Z? he j) +w2(t,x),
j=1 J

with
lir?jup il Lo e3)) 2 0,
for every pair (q,r) with 6 <r < oo and 2/q + 3/r =1/2.
In [21], we find, since every H' solution to (A.1) is global in time [14]:

Theorem A.3 (From [21] and [14]). Under the same assumptions as in
Theorem A.2, consider the solutions to

1
i0pu® + §Au€ = |[uf*uf w0, x) = ¢°(x),
associated with the subsequence of Theorem A.2. Then

¢ t—te T —

Z\/» <h5)2’ e >+wg(tx)+rg(tx)

with

timsup (Vo oo wzeoy + Irillbome + IVl ) 20

E—>

where hE t;, xj,wj are as in Theorem A.2, and the nonlinear profiles U; are
given by

—0.
e—0
L2(R3)

1
i0:U; + 5AU; = \U;|*u;

V(U - V) (—(,fé’)Q>
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Note that according to the limit of t?/(h;)Q in [—o00,400], the profile
Uj is defined either by a Cauchy data, or by an asymptotic state. Roughly
speaking, the contribution of wyj is linear, since this function is the same as in
the linear profile decomposition of Theorem A.2, while rj is asymptotically
small (thus linear) as ¢ — oo. All in all, (leading order) nonlinear effects
are measured through the nonlinear profiles U;. The orthogonality property
shows that the interactions of the scaled profiles are negligible in the limit
€ — 0. The large time behavior of u® is given, asymptotically as € — 0, by
the superposition of the large time behavior of the scaled nonlinear profiles.
Since every profile U; possesses asymptotic states, we see that S acts on
each profile separately (as ¢ — 0).

In the L?-critical case (1.1), the profile decomposition at the L? level is
not merely a recasting of its H' counterpart, because Galilean invariance
must be taken into account. A profile decomposition was introduced in [27]
in the case d = 2, then generalized to the case d < 2 in [8], in such a way
that the improved Strichartz estimates in [2] yield a profile decomposition
in L?(R?) associated to solutions of (1.1) for all d > 1. Due the existence of
an extra invariance, we modify the notion of orthogonal scales and cores:

Definition A.4. If (h5,t5,25,§5)jen is a family of sequences in R\ {0} x
R x R% x R%, then we say that (h5,t5,25,&5)jen is an orthogonal family if

T A R ok N S
h*f ne ()2 ne h

lim sup
e—0

)zoo, Vj # k.

Theorem A.5 (From [27, 8, 2]). Let d > 1 and (¢°)o<c<1 be a bounded
family in L*(RY). Up to extracting a subsequence, we have:

i) There exist an orthogonal family (h5,t5,25,&5)jen in R, \{0}xRxRIxRY,
and a family (¢;);jen bounded in L*(RY), such that for every £ > 1

l
% :Z ¢] th)—{—T’g(t iE)

A A t—t5 o — a5 — &8
' B za:~§5v—lz|§5'\2 1 : J J J
where P;(QS])(t,x) = ST 205y (h?)d/Q Vj ( (h§)2 ) h; ) )

with  V;(t) = ¢'z%¢;, and limsup ||rg | L2+a/a@uray , — 0.
0 l——+o0

Furthermore, for every £ > 1, we have
¢
2 2 2
(A.2) 1621172 ay = Y 51172 (gay + 1761 72ma) + 0(1)  ase—0.
j=1

ii) If in addition the family (¢°)o<e<1 is bounded in HY(R®), or more gen-
erally if

(A.3) lim sup /

=0 J|gI>R
then for every j > 1, hs > 1, and (&) is bounded, |5 < C;

56(5)‘2d§—>0 as R — +oo,
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Contrary to the case of (A.1l), the global existence of solutions to (1.1)
in the critical space (L?) is not known so far, hence a slightly intricate
statement (as in [21] for the H! case, written at a time where the global
existence for (A.1) was not known):

Theorem A.6 (From [27, 8, 2]). Under the same assumptions as in Theo-
rem A.H, consider the solutions to

1
10pu° + §Au€ = |u€|4/du‘E ;o ut(0,7) = ¢°(z),

associated with the subsequence of Theorem A.5. Consider the solution U;

to (1.1) such that
|- ()

Let If C R be a family of open intervals containing the origin. The following
statements are equivalent:

— 0.
L2(Rn) €0

(i) For every j > 1, we have

lim sup ‘|UjHL2+4/d(I;XRd) < +oo, where I5 = (h;)*2 (¢ - tj) .
0

E—

(ii) limsgp || p2+ara(re xray < +00.

E—
l
Moreover, if (i) or (ii) holds, then u® = ZN;(@) + i + pg, where r§ is
j=1
giwen by Theorem A.5, and:

i sup (1171 2y + 198 gy 0
E—

{— 400
e tiee 1 t—15 v — a8 —t&s
N5 (65)(t,x) = =516 U; ., J_J
J\PIINT d J 2
(hj) /2 (hj) hj

If, as expected, one has I ;=I°=R for all j, then this result is the exact
analogue of Theorem A.3.
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