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Rotating points for the conformal NLS scattering operator

Rémi Carles

Abstract. We consider the nonlinear Schrödinger equation, with mass-critical
nonlinearity, focusing or defocusing. For any given angle, we establish the ex-
istence of infinitely many functions on which the scattering operator acts as
a rotation of this angle. Using a lens transform, we reduce the problem to
the existence of a solution to a nonlinear Schrödinger equation with harmonic
potential, satisfying suitable periodicity properties. The existence of infinitely
many such solutions is proved thanks to a constrained minimization problem.

1. Introduction

We consider the pseudo-conformally invariant nonlinear Schrödinger equation

(1.1) i∂tu+
1

2
∆u = |u|4/du, (t, x) ∈ R×Rd, d > 1.

Two types of initial data are of special interest:

Asymptotic state: U0(−t)u(t)
∣∣
t=±∞

= u±, where U0(t) = ei
t
2∆.(1.2)

Cauchy data at t = 0 : u|t=0 = u0.(1.3)

It is well known that for data u± ∈ Σ = H1 ∩ F(H1), where

(1.4) Ff(ξ) = f̂(ξ) =
1

(2π)d/2

∫

Rd

f(x)e−ix·ξdx,

(1.1)–(1.2) has a unique, global, solution u ∈ C(R; Σ) ([17], see also [10]). Its
initial value u|t=0 is the image of the asymptotic state under the action of the wave
operator:

u|t=0 = W±u±.

Similarly, if u0 ∈ Σ, (1.1)–(1.3) possesses asymptotic states:

∃u± ∈ Σ, ‖U0(−t)u(t)− u±‖Σ −→
t→±∞

0 : u± = W−1
± u0.

The scattering operator associated to (1.1) is classically defined as

S = W−1
+ ◦W− : u− 7→ u+.

It maps Σ to Σ, and is unitary on L2, and on Ḣ1:

‖S(u−)‖L2(Rd) = ‖u−‖L2(Rd) ; ‖∇S(u−)‖L2(Rd) = ‖∇u−‖L2(Rd).

This follows from [17, 38, 18].

Besides the existence of the wave and scattering operators, it seems that very
few of their properties are known. By construction, these operators are continuous
on Σ. When d 6 2 (the nonlinearity is smooth), these operators are real analytic
on Σ; see [7].

This work was supported by the French ANR project R.A.S. (ANR-08-JCJC-0124-01).
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2 R. CARLES

It is rather reassuring to check that the operators W± and S are not trivial,
showing that averaged in time nonlinear effects may not be negligible. Following
[15] for the case of the wave equation, we can prove for instance that in L2(Rd),
and as ε→ 0,

(1.5) S (εu−) = εu− − iε1+4/dP (u−) +O
(
ε1+8/d

)
,

where

P (u−) =

∫ +∞

−∞

U0(−t)
(
|U0(t)u−|4/dU0(t)u−

)
dt.

We refer to [9] for a proof (in the present small data case, it suffices to assume that
u− ∈ L2(Rd)). Explicit computations show that P (u−) 6= 0 when u− is Gaussian,
therefore S is not the identity.

A few algebraic properties are available. Let C denote the conjugation f 7→ f .
The invariances of the equation show that

(1.6) W± = C ◦W∓ ◦ C,
an identity which was noticed in [12] (see also [10]). Due to the invariance of (1.1)
under translation and gauge transforms,

(1.7)
S (u−(·+ a)) = S (u−) (·+ a), ∀a ∈ Rd,

S
(
eiηu−

)
= eiηS(u−), ∀η ∈ R.

Another algebraic relation was established in [9], which seems to be bound to the
conformal case, contrary to (1.6) and (1.7):

F ◦W−1
± = W∓ ◦ F .

In [1], a remarkable property was proved for the scattering operator associated to
the energy-critical wave equation

(1.8) ∂2
t u−∆u + |u|4u = 0 ; x ∈ R3.

Using the notion of profile decomposition, as introduced in [16, 29], the authors
prove in [1] that the scattering operator associated to (1.8), and defined on the
energy space, enjoys a surprising nonlinear superposition principle. It follows from
[21, 14] that a similar result holds for the Schrödinger analogue of (1.8),

i∂tu+
1

2
∆u = |u|4u ; x ∈ R3.

We give more precise statements in an appendix, where we also discuss the case of
(1.1). In this paper, we show the existence of infinitely many fixed points for S,
and more generally:

Theorem 1.1. Let d > 1 and S : Σ → Σ be the scattering operator associated
to (1.1). For any θ ∈ [0, 2π[, there are infinitely many functions u− ∈ Σ such that
S(u−) = eiθu−.

Remark 1.2. For θ ∈]0, 2π[, this result yields another evidence that S is not
trivial.

Remark 1.3. For θ = 0, this shows the existence of infinitely many fixed
points. Similarly, for θ = 2πp/q, p, q ∈ N∗, this shows the existence of infinitely
many periodic (or cyclic) points, for any given period.

Remark 1.4. We construct solutions of the form

u(t, x) =
1

(1 + t2)
d/4

e
i t
1+t2

|x|2

2 −i( d
2 +2j− θ

π ) arctan t
φj

(
x√

1 + t2

)
,
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where j ∈ N \ {0} and φj ∈ Σ. The profile φj is given by the nonlinear eigenvalue
equation (3.1) with ν = d/2 + 2j + θ/π.

Remark 1.5. In semi-classical analysis, the scattering operator appears in some
cases to describe solutions which pass through a focal point. In the presence of an
isotropic (but not necessarily) harmonic potential, focusing at one point occurs
periodically in time, and the scattering operator is iterated each time a focal point
is traversed; see [6] and references therein. The existence of fixed points, and more
generally, of periodic points, shows that the nonlinear dynamics may reveal some
periodicity in time, at leading order in the semi-classical limit.

Remark 1.6. Not all the functions in Σ are such that S(u−)(x) = eih(x)u−(x)
for some real-valued function h (not necessarily constant). Arguing by contradiction
and using (1.5), one can show that there exist two functions u− and ũ− in Σ such
that

|u−(x)| ≡ |ũ−(x)|, and |S(u−)(x)| 6≡ |S(ũ−)(x)|.
See [6, §7.4.3].

Remark 1.7. For the linear Schrödinger equation, one can construct transpar-
ent potentials V (x). This means that one can choose a potential V such that any
function u(t, x) = eiEtψ(x), E ∈ R, solution to

i∂tu+
1

2
∆u = V u

has a trivial scattering matrix; see [23] and references therein.

In the focusing case

(1.9) i∂tu+
1

2
∆u = −|u|4/du, (t, x) ∈ R×Rd,

no general scattering theory is available, since finite time blow-up may occur (see
e.g. [10, 36]). We know however that for (initial or asymptotic) data with a
sufficiently small L2 norm, the solution is global, and there is scattering [11]. Recall
that the ground state given as the unique positive, radially symmetric solution to

(1.10) − 1

2
∆Q+Q = Q1+4/d,

yields the best constant for the following Gagliardo–Nirenberg inequality [41]:

(1.11) ‖f‖2+4/d

L2+4/d 6
d+ 2

2d‖Q‖4/dL2

‖f‖4/dL2 ‖∇f‖2L2, ∀f ∈ H1
(
Rd
)
.

If ‖u‖L2 < ‖Q‖L2, then all H1-solutions to (1.9) are global in time [41]. It is
conjectured that the same holds true for L2-solutions; see [27, 22, 19, 39, 40, 24,

37, 25], and references therein.

Theorem 1.8. Let d > 1. For any θ ∈ [0, 2π[, there are infinitely many func-
tions u− ∈ Σ such that the scattering operator associated to the focusing equation
(1.9) is well defined on u−, and such that S(u−) = eiθu−. In addition,

• These functions satisfy ‖u−‖L2 >

(
d

d+ 2

)d/4
‖Q‖L2.

• They are arbitrarily large in H1(Rd) (resp. in Ḣ1(Rd) if d > 2).
• For all such u− ∈ Σ, there exists ε > 0 such that if ũ− ∈ Σ satisfies
‖u− − ũ−‖L2 < ε, then S(ũ−) is well-defined in Σ (in particular, there is
no blow-up).

Remark 1.9. We construct solutions of the same form as in Remark 1.4, but
with different profiles φ, and in the phase, −j ∈ N, with −2j > d/2.
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Remark 1.10. In the defocusing case, the last property stated above is straight-
forward, since S is defined on Σ. In the above focusing case, this stability property
is more surprising.

Theorems 1.1 and 1.8 rely on two steps. As shown in §2, a lens transform
reduces the proof to the existence of time periodic solutions for the equation

i∂tv +
1

2
∆v =

|x|2
2
v ± |v|4/dv.

Since the nonlinearity is autonomous, it is reasonable to expect solutions to the
above equation which are standing waves, v(t, x) = e−iνtψ(x). The point is that
infinitely many values for ν lead to periodic solutions with a suitable period, that
is, such that by inverting the lens transform, we get Theorem 1.1 and the exis-
tence part of Theorem 1.8. This step is achieved in §3. The rest of the proof of
Theorem 1.8 is given in §4. Finally, in the appendix, we discuss the nonlinear su-
perposition principle associated to the scattering operator for (1.1), modulo some
global existence issues which are still open so far.

2. Reduction of the problem

2.1. Lens transform. Let u ∈ C(R; Σ) solve the more general equation

(2.1) i∂tu+
1

2
∆u = |u|2σu, (t, x) ∈ R×Rd.

If

(2.2)

σ0(d) < σ <
2

d− 2
(with only σ > σ0(d) if d 6 2) ,

where σ0(d) :=
2− d+

√
d2 + 12d+ 4

4d
,

then the scattering operator associated to (2.1) is well defined, from Σ to Σ; [17,

38, 18] (see also [12, 30] where the case σ = σ0(d) is allowed). Introduce

(2.3) v(t, x) =
1

(cos t)
d/2

u
(
tan t,

x

cos t

)
e−i

|x|2

2 tan t,

which is well defined for |t| < π/2, and has the same value as u at time t = 0. As
noticed in [20, 34] (see also [4, 35]), v solves, at least formally:

(2.4) i∂tv +
1

2
∆v =

|x|2
2
v + |cos t|dσ−2|v|2σv.

Note an important feature of the lens transform (2.3): it maps the line Rt for u,
to the bounded interval ] − π

2 ,
π
2 [ for v. Therefore, long time properties for u are

equivalent to local in time properties for v.

2.2. The harmonic oscillator. Let

H = −1

2
∆ +

|x|2
2
, and UH(t) = e−itH

denote the harmonic oscillator and its propagator. Recall some well-known prop-
erties (see e.g. [26]):

Lemma 2.1. We have

σp(H) =

{
d

2
+ k =: lk ; k ∈ N

}
,

and the associated eigenfunctions are given by (tensor products of) Hermite func-
tions, which form a basis of L2(Rd). For ℓ ∈ N, the eigenfunctions associated to
l2ℓ (resp. l2ℓ+1) are even (resp. odd).
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In space dimension d = 1, these eigenvalues are simple, and the eigenvectors
are given by Hermite functions (ψk)k∈N. For even indices, ψ2ℓ is even, and for odd
indices, ψ2ℓ+1 is odd. Up to normalizing constants, we have for instance

ψ0(x) = e−x
2/2 ; ψ1(x) = xe−x

2/2.

In higher dimensions, one considers tensor products of one-dimensional eigenfunc-
tions; the eigenvalues lk > d/2 are no longer simple. We note the identity

(2.5) UH (t+ π)ψ(x) = e−idπ/2UH(t)ψ(−x), ∀t ∈ R.

Finally, as a direct consequence of Mehler’s formula, local in time Strichartz
estimates are available for UH (see e.g. [5, 10]). Notice that since H possesses
eigenvalues, global in time Strichartz estimates fails for UH .

Lemma 2.2. Let d > 1. A pair (p, q) is admissible provided that

2

p
+
d

q
=
d

2
, p > 2, (p, q, d) 6= (2,∞, 2).

Consider a finite time interval I.
1. For all admissible pair (p, q), there exists C = C(p, |I|) such that

‖UH(·)φ‖Lp(I;Lq(Rd)) 6 C‖φ‖L2 , ∀φ ∈ L2(Rd).

2. Define the retarded operator in defined by

R(F )(t, x) =

∫

I∩{s6t}

UH(t− s)F (s, x)ds.

For all admissible pairs (p1, q1), (p2, q2), there exists C = C(p1, p2, |I|) with

‖R(F )‖Lp1(I;Lq1(Rd)) 6 C‖F‖
Lp′

2(I;Lq′2 (Rd))
, ∀F ∈ Lp′2(I;Lq′2(Rd)).

2.3. A rotating point for S. The following lemma is standard (see [38] or
[32]):

Lemma 2.3. Let f ∈ L2(Rd), and recall that U0(t) = ei
t
2∆.

‖U0(t)f −A(t)f‖L2(Rd) −→t→±∞
0, where A(t)f(x) =

1

(it)d/2
f̂
(x
t

)
ei

|x|2

2t ,

and the Fourier transform is normalized in (1.4).

Proof. From the explicit formula

U0(t)f(x) =
1

(2iπt)d/2

∫

Rd

ei
|x−y|2

2t f(y)dy,

we have the following factorization:

U0(t) = MtDtFMt,

where Mt stands for the multiplication by the function ei
|x|2

2t , F is the Fourier
transform defined in (1.4), and Dt is the dilation operator

(Dtf) (x) =
1

(it)d/2
f
(x
t

)
.

The lemma thus reads: U0(t) −MtDtF → 0 strongly in L2, as t → ±∞. Since
MtDtF is unitary on L2, the lemma follows from the strong limit in L2, Mt−Id→ 0,
which stems from the Dominated Convergence Theorem. �

Lemma 2.4. Let σ satisfy (2.2), and u, v ∈ C(R; Σ) solve (2.1) and (2.4),
respectively, with u|t=0 = v|t=0 = φ. Then

v
(
−π

2
, x
)

= eidπ/4F
(
W−1

− φ
)
(−x) ; v

(π
2
, x
)

= e−idπ/4F
(
W−1

+ φ
)
(x).
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Remark 2.5. In the linear case, the same result holds when W± are replaced
by Id: see (2.5). The −dπ/2 phase shift between the two instants ±π/2 corresponds
to the Maslov index, and the symmetry with respect to the origin accounts for the
fact that the harmonic oscillator rotates the phase space with angular velocity equal
to one.

Remark 2.6. It would suffice to consider v ∈ C([−π/2, π/2];L2(Rd)), and
u ∈ C(R;L2(Rd)) which has asymptotic states in L2(Rd). This is guaranteed if
we assume further spatial regularity as above. In the case σ = 2/d, we might also
consider either data with small L2 norm [11], or radially symmetric L2 functions
when d > 2 [24, 37]. However, for the construction of periodic solutions to (2.4),
we take advantage of properties such as the compactness of the embedding Σ →֒
L2 ∩ L2σ+2.

Proof. We show:∥∥∥v(t) − e−idπ/4F
(
W−1

+ φ
)∥∥∥
L2(Rd)

→ 0 as t−→
<

π

2
.

By (2.3) and asymptotic completeness for (1.1), we have, in L2(Rd):

v(t, x) =
1

(cos t)d/2
e−i

|x|2

2 tan tu
(
tan t,

x

cos t

)

∼
t→π

2
−

1

(cos t)
d/2

e−i
|x|2

2 tan t (U0(tan t)u+)
( x

cos t

)
,

where u+ = W−1
+ φ. By Lemma 2.3, we infer

v(t, x) ∼
t→ π

2
−

1

(cos t)
d/2

e−i
|x|2

2 tan tei| x
cos t |2 1

2 tan t
1

(i tan t)d/2
û+

( x

tan t cos t

)
.

The last quantity is equal to

e−idπ/4

(sin t)d/2
û+

( x

sin t

)
ei

|x|2

2 ( 1
cos t sin t−

sin t
cos t),

which converges to e−idπ/4û+(·) in L2(Rd) as t→ π/2.
The case t → −π/2 is similar, up to a symmetry with respect to the origin,

since sin(−π/2) = −1. �

Denote u− = W−1
− φ. We have therefore

v
(
−π

2
, x
)

= e+idπ/4F (u−) (−x) ; v
(π

2
, x
)

= e−idπ/4F (Su−) (x).

Conclusion. If the solution v to (2.4) with v|t=0 = φ satisfies

(2.6) v
(π

2
, x
)

= e−idπ/2+iθv
(
−π

2
,−x

)
,

then u− = W−1
− φ verifies S(u−) = eiθu−.

2.4. More rotating points? In the case σ = 2/d, the nonlinearity in (2.4)
is autonomous: we may apply the lens transform back and forth, and change the
time origin. The following result is then straightforward:

Proposition 2.7. Let d > 1 and σ = 2/d. Let v ∈ C(R; Σ) solve (2.4), and
such that

v(t+ π, x) = e−idπ/2+iθv(t,−x), ∀(t, x) ∈ R×Rd.

Then for all t ∈ R, v(t, ·) ∈ Σ is such that ut− = W−1
− v(t) satisfies

S
(
ut−
)

= eiθut−.



ROTATING POINTS FOR NLS SCATTERING 7

Remark 2.8. Due to the gauge invariance of (1.1), S is also gauge invariant
– see (1.7) – and the above result may be relevant only on time intervals of length
(at most) π.

2.5. The focusing case. Consider the equation:

(2.7) i∂tv +
1

2
∆v =

|x|2
2
v − |v|4/dv.

For initial data in Σ, the existence of a unique solution locally in time is well-known
(see e.g. [10]). Rather than the possibility of finite time blow-up, our interest is:

Lemma 2.9. Suppose that (2.7) has a solution v ∈ C([−π/2, π/2]; Σ). Then u,
defined by

(2.8) u(t, x) =
1

(1 + t2)d/4
e
i t
1+t2

|x|2

2 v

(
arctan t,

x√
1 + t2

)

solves (1.9). It satisfies u ∈ C(R; Σ), and has asymptotic states in Σ, given by:

u±(x) = e±idπ/4F−1v
(
±π

2

)
(±x).

Proof. We have immediately u ∈ C(R; Σ), and the fact that it solves (1.9).
To see that u has asymptotic states, given by the above formula, write, for large
|t|:

U0(−t)u(t, x) =
1

(−2iπt)d/2

∫
e−i

|x−y|2

2t u(t, y)dy

=
1

(−2iπt)d/2

∫
1

(1 + t2)
d/4

e
i t
1+t2

|y|2

2 e−i
|x−y|2

2t v

(
arctan t,

y√
1 + t2

)
dy

≈ 1

(−2iπt)d/2
1

|t|d/2 e
−i |x|2

2t

∫
ei

x·y
t e

i
“

− 1
t + t

1+t2

”

|y|2

2 v

(
arctan t,

y√
1 + t2

)
dy

≈ e±idπ/4

(2π)d/2
1

|t|d e
−i |x|2

2t

∫
ei

x·y
t e

− i
t(1+t2)

|y|2

2 v

(
arctan t,

y

|t|

)
dy

≈ e±idπ/4e−i
|x|2

2t F−1v (arctan t,±x) ≈ e±idπ/4F−1v
(
±π

2
,±x

)
.

We have presented the computations in a formal way. We leave their easy justifi-
cation to the reader. �

3. Construction of periodic solutions

We construct a solution of the form

v(t, x) = e−iνtψ(x).

In the defocusing case, ψ must solve

(3.1) νψ = Hψ + |ψ|4/dψ.
In the focusing case, it must solve

(3.2) (H − ν)ψ = |ψ|4/dψ.
We have:

Proposition 3.1. Let d > 1.
1. If ν > d/2, then there exists an even function ψ ∈ Σ \ {0} solving (3.1).
2. If ν < d/2, then there exists an even function ψ ∈ Σ \ {0} solving (3.2).
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Theorem 1.1 follows from the first point, by considering the family (for θ ∈
[0, 2π[)

(νj)j>1 =
{d

2
+ 2j − θ

π
, j ∈ N \ {0}

}
.

The form of the corresponding solution u given in Remark 1.4 is straightforward,
by inverting the lens transform (2.3) (see (2.8)).

To infer the existence part of Theorem 1.8, we can consider the family (for
θ ∈ [0, 2π[)

(νj)j>1 =

{
d

2
− 2j − θ

π
, j ∈ N \ {0}

}
.

Remark 3.2. For such solutions, Proposition 2.7 is irrelevant. Consider e−iνjtψ(x)
at two different times: this amounts to a multiplication by eiη for some η ∈ R. As
we have seen, the gauge invariance of (1.1) implies that S is also gauge invariant,
and Proposition 2.7 holds trivially for such solutions.

Remark 3.3. Proposition 3.1 remains valid if |ψ|4/dψ is replaced with |ψ|2σψ,
where the nonlinearity isH1-subcritical, that is, σ < 2/(d−2) when d > 3. However,
since the nonlinearity in (2.4) is autonomous if and only if σ = 2/d, this is the only
case where it is reasonable to seek a solution to (2.4) of the form v(t, x) = e−iνtψ(x).

At least two proofs of Proposition 3.1 are available in the literature:

• In [33], the case of (3.2) is considered, by using bifurcation theory. As
indicated there, the arguments presented in [31] make it possible to infer
Proposition 3.1.
• In [20], Proposition 3.1 is established up to the symmetry property (which

could easily be incorporated): see [20, Theorem 1.4] for the first point,
and [20, Theorem 1.3] for the second one. The proof there is based on
the mountain pass lemma.

Even though this result has been established elsewhere, we present a another short,
self-contained proof, for the sake of completeness.

Proof of Proposition 3.1. We proceed in the same spirit as in [3, 13]: let

I(ψ) =
1

2
〈Hψ,ψ〉 − ν

2
〈ψ, ψ〉 ,

M =

{
ψ ∈ Σ, ψ(x) = ψ(|x|) ;

1

1 + 2/d

∫

Rd

|ψ(x)|2+4/ddx = 1

}
.

We consider radially symmetric functions for simplicity; in particular, these are
even functions. The following lines essentially show that the negative part of I can
be controlled. Denote

δ = inf
ψ∈M

I(ψ).

First case: ν > d/2.

We show that 0 > δ > −∞. To see that δ < 0, consider ψ(x) = ce−|x|2/2, where
c is such that ψ ∈ M , and recall that ψ is the unique eigenfunction associated to
l0 = d/2: Hψ = d/2ψ.

Suppose that we could find sequences in M along which I goes to −∞. Let
(ψn)n∈N be such a sequence; necessarily, it is unbounded in L2(Rd). We remark
that (xψn)n∈N and (∇ψn)n∈N are also unbounded in L2(Rd), with norms of the
same order as ‖ψn‖L2. To be more precise, we introduce a notation: let (αn)n∈N

and (βn)n∈N be two families of positive real numbers.

• We write αn ≪ βn if lim sup
n→+∞

αn/βn = 0.

• We write αn . βn if lim sup
n→+∞

αn/βn <∞.
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• We write αn ≈ βn if αn . βn and βn . αn.

Let φn ∈ Σ, with ‖φn‖L2 → +∞. In general, up to extracting a subsequence, two
possibilities can be distinguished:

• ‖∇φn‖L2 ≫ ‖φn‖L2 and/or ‖xφn‖L2 ≫ ‖φn‖L2,
• Or ‖∇φn‖L2 ≈ ‖xφn‖L2 ≈ ‖φn‖L2 .

This stems from the uncertainty principle

‖φ‖2L2 6
2

d
‖∇φ‖L2‖xφ‖L2 .

In our case, it is easy to see that the first possibility leads to a contradiction, since
I(ψn) would be positive for n sufficiently large. Consider the last possible case:
‖∇ψn‖L2 ≈ ‖xψn‖L2 ≈ ‖ψn‖L2. Introduce

ψ̃n =
1

‖ψn‖L2

ψn.

This is a bounded sequence in Σ, whose L2 norm is equal to one. Up to extracting

a subsequence, ψ̃n converges weakly in Σ. Since Σ →֒ L2(Rd) is compact, (a subse-

quence of) ψ̃n converges strongly in L2(Rd), to some ψ̃ ∈ Σ such that ‖ψ̃‖L2 = 1.

Since the embedding Σ →֒ L2+4/d(Rd) is compact, ψ̃n → ψ̃ strongly in L2+4/d(Rd).
We infer

‖ψn‖L2+4/d = ‖ψn‖L2‖ψ̃n‖L2+4/d ≈ ‖ψn‖L2 → +∞.
Therefore, ψn cannot remain in M , hence the finiteness of δ.

Since the embedding Σ →֒ Lp(Rd) is compact for 2 6 p < 2d/(d−2) (2 6 p 6∞
if d = 1 and 2 6 p <∞ if d = 2), we infer that this infimum is actually a minimum,
attained by a non-trivial function ψ ∈ Σ. Indeed, from what we have seen above,
any minimizing sequence is bounded in L2(Rd), and therefore in Σ since δ < 0.
The Lagrange multiplier µ associated to this problem is such that

Hψ − νψ = µ|ψ|4/dψ.
The scalar product with ψ yields µ < 0, since δ < 0:

νψ = Hψ + |µ||ψ|4/dψ.
The function |µ|d/4ψ(6= 0) solves (3.1).

Second case: ν < d/2.
We show that 0 < δ < ∞. The finiteness of δ is obvious, and we recall that the
uncertainty principle yields

(3.3) I(ψ) >
1

2

(
d

2
− ν
)
‖ψ‖2L2 > 0.

Assume that δ = 0: we can find a minimizing sequence ψn ∈M such that ψn → 0
in L2. Therefore,

0← I(ψn) =
1

2
〈Hψn, ψn〉+ o(1),

and ψn → 0 in Σ. This implies ψn → 0 in L2+4/d: this contradicts ψn ∈ M , and
so, δ > 0. We see from (3.3) that any minimizing sequence is bounded in L2, and
thereby in Σ. Up to a subsequence, such a sequence converges weakly in Σ, and
strongly in L2 ∩ L2+4/d, to a function ψ ∈M which verifies

(H − ν)ψ = µ|ψ|4/dψ.
Since δ > 0, taking the scalar product with ψ in the above equation shows that the
Lagrange multiplier µ is positive. The function µd/4ψ then solves (3.2), hence the
proposition. �
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4. End of the proof of Theorem 1.8

Recall that for the existence part of Theorem 1.8, we apply the second point
of Proposition 3.1 with the family (for θ ∈ [0, 2π[)

(νj)j>1 =

{
d

2
− 2j − θ

π
, j ∈ N \ {0}

}
.

Denote by (φj)j>1 a corresponding family of even, nontrivial solutions to (3.2). The
fact that this family is unbounded in H1(Rd) follows by taking the scalar product
of (3.2) with φj , and invoking the Gagliardo–Nirenberg inequality (1.11):

〈(H − νj)φj , φj〉 =

∫

Rd

|φj(x)|2+4/ddx 6
d+ 2

2d‖Q‖4/dL2

‖φj‖4/dL2 ‖∇φj‖2L2 .

This reads:

d+ 2

2d‖Q‖4/dL2

‖φj‖4/dL2 ‖∇φj‖2L2 >
1

2
‖∇φj‖2L2 +

1

2
‖xφj‖2L2 +

(
2j − d

2
+
θ

π

)
‖φj‖2L2 .

We have directly, for 2j > d/2− θ/π,

‖φj‖4/dL2 >
d

d+ 2
‖Q‖4/dL2 .

Therefore,

‖φj‖4/dL2 ‖∇φj‖2L2 >
2d

d+ 2
‖Q‖4/dL2

(
2j − d

2
+
θ

π

)
‖φj‖2L2 > C

(
2j − d

2
+
θ

π

)
.

The last inequality shows that (φj)j>1 is unbounded inH1(Rd). The first inequality
shows that if d > 2, then

‖∇φj‖2L2 & j.

In view of Lemma 2.9, the following result completes the proof of Theorem 1.8.

Proposition 4.1. Let ν < d/2, and v(t, x) = e−iνtψ(x), where ψ solves (3.2).
There exists ε > 0 such that if φ ∈ Σ satisfies ‖v(−π/2, ·) − φ‖L2 < ε, then the
solution ṽ to the initial value problem

(4.1) i∂tṽ +
1

2
∆ṽ =

|x|2
2
ṽ − |ṽ|4/dṽ ; ṽ|t=−π/2 = φ

is such that ṽ ∈ C([−π/2, π/2]; Σ).

Proof. For φ ∈ Σ, the local existence of a solution ṽ in Σ is standard; see
e.g. [5, 10]. We prove that if ε is sufficiently small, then this solution cannot
blow-up on the time interval [−π/2, π/2]. The analysis in [5] yields, since v ∈
C([−π/2, π/2]; Σ):

v, xv,∇v ∈ Lp
(
[−π/2, π/2];Lq(Rd)

)
, ∀(p, q) admissible.

Consider the function w = v − ṽ. It solves

(4.2) i∂tw = Hw + g(v + w) − g(v) ; w|t=−π/2 = v − ṽ|t=−π/2,

where we have denoted g(z) = |z|4/dz. To prove the proposition, it suffices to show
that w ∈ C([−π/2, π/2]; Σ). Let t ∈ [−π/2, π/2], and denote Dt = [−π/2, t]×Rd.
Strichartz estimates with the admissible pair (2 + 4/d, 2 + 4/d) yield, along with
Hölder inequality:

‖w‖L2+4/d(Dt) 6 C‖v − ṽ|t=−π/2‖L2

+ C
(
‖w‖4/d

L2+4/d(Dt)
+ ‖v‖4/d

L2+4/d(Dt)

)
‖w‖L2+4/d(Dt).
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Note that the constant C can be chosen independent of t ∈ [−π/2, π/2], by consid-
ering I = [−π/2, π/2] in Lemma 2.2. By splitting I into a finite number of intervals
Ij such that

C‖v‖4/d
L2+4/d(Ij×Rd)

6
1

2
,

and repeating the same arguments finitely many times, we see that there exists C0

such that

‖w‖L2+4/d(Dt) 6 C0‖v − ṽ|t=−π/2‖L2 + C0‖w‖4/d+1

L2+4/d(Dt)
,

for all t ∈ I (this is essentially Gronwall lemma on a finite time interval). Therefore,
choosing ‖v− ṽ|t=−π/2‖L2 sufficiently small, a bootstrap argument shows that w ∈
L2+4/d(I ×Rd).

Since the operators x and ∇ do not commute with UH , we may introduce the
operators

J(t) = x sin t− i cos t∇ ; K(t) = x cos t+ i sin t∇.
These operators commute with UH , act on gauge invariant nonlinearities like deriva-
tives, and satisfy the pointwise property

(4.3) |J(t)f |2 + |K(t)f |2 = |xf |2 + |∇f |2.
We refer to [5] for more details. Applying the operators J andK to (4.2), Strichartz
and Hölder inequalities yield

‖Jw‖L2+4/d(Dt) + ‖Kw‖L2+4/d(Dt) 6 C‖v − ṽ|t=−π/2‖Σ
+C

(
‖w‖4/d

L2+4/d(Dt)
+ ‖v‖4/d

L2+4/d(Dt)

) (
‖Jv‖L2+4/d(Dt) + ‖Kv‖L2+4/d(Dt)

)

+C
(
‖r‖4/d

L2+4/d(Dt)
+ ‖v‖4/d

L2+4/d(Dt)

) (
‖Jw‖L2+4/d(Dt) + ‖Kw‖L2+4/d(Dt)

)
.

Splitting I into intervals where

C
(
‖w‖4/d

L2+4/d(Ij×Rd)
+ ‖v‖4/d

L2+4/d(Ij×Rd)

)
6

1

2
,

we infer that Jw,Kw ∈ L2+4/d(I × Rd). Applying Strichartz inequality with
now (p1, q1) = (∞, 2) and (p2, q2) = (2 + 4/d, 2 + 4/d), we see that w, Jw,Kw ∈
L∞(I;L2(Rd)), hence w, xw,∇w ∈ L∞(I;L2(Rd)) from (4.3). The results in [5]
imply that w ∈ C([−π/2, π/2]; Σ). �

Appendix A. Profile decomposition and nonlinear superposition

Consider first the energy-critical nonlinear Schrödinger equation in space di-
mension d = 3:

(A.1) i∂tu+
1

2
∆u = |u|4u ; x ∈ R3.

Before stating the results we want to recall from [21], introduce a definition:

Definition A.1. If (hεj , t
ε
j , x

ε
j)j∈N is a family of sequences in R+\{0}×R×R3,

then we say that (hεj , t
ε
j , x

ε
j)j∈N is an orthogonal family if

lim sup
ε→0

(
hεj
hεk

+
hεk
hεj

+
|tεj − tεk|
(hεj)

2
+

∣∣∣∣∣
xεj − xεk
hεj

∣∣∣∣∣

)
=∞ , ∀j 6= k.

The main two results in [21], which we recall below, are the Schrödinger ana-
logues to the results in [1] for the wave equation (1.8).



12 R. CARLES

Theorem A.2 (Theorem 1.6 in [21]). Let (φε)0<ε61 be a bounded family in

Ḣ1(R3). Let uεlin = ei
t
2∆φε. Then, up to a subsequence (still denoted by uεlin), there

exist a family (hεj)j>1 of positive numbers, a family (tεj , x
ε
j)j>1 of vectors in R×R3,

and a family (Vj)j>1 of solutions to

i∂tV +
1

2
∆V = 0,

such that:

• (hεj , t
ε
j , x

ε
j)j∈N is an orthogonal family.

• For every ℓ > 1,

uεlin(t, x) =
ℓ∑

j=1

1√
hεj
Vj

(
t− tεj
(hεj)

2
,
x− xεj
hεj

)
+ wεℓ (t, x),

with
lim sup
ε→0

‖wεℓ‖Lq(R;Lr(R3)) −→
ℓ→∞

0,

for every pair (q, r) with 6 6 r <∞ and 2/q + 3/r = 1/2.

In [21], we find, since every Ḣ1 solution to (A.1) is global in time [14]:

Theorem A.3 (From [21] and [14]). Under the same assumptions as in The-
orem A.2, consider the solutions to

i∂tu
ε +

1

2
∆uε = |uε|4uε ; uε(0, x) = φε(x),

associated with the subsequence of Theorem A.2. Then

uε(t, x) =
ℓ∑

j=1

1√
hεj
Uj

(
t− tεj
(hεj)

2
,
x− xεj
hεj

)
+ wεℓ (t, x) + rεℓ (t, x),

with

lim sup
ε→0

(
‖∇rεℓ‖L∞(R;L2(R3)) + ‖rεℓ‖L10(R4) + ‖∇rεℓ‖L10/3(R4)

)
−→
ℓ→∞

0,

where hεj , t
ε
j , x

ε
j , w

ε
ℓ are as in Theorem A.2, and the nonlinear profiles Uj are given

by:

i∂tUj +
1

2
∆Uj = |Uj |4Uj ;

∥∥∥∥∥∇ (Uj − Vj)
(
−

tεj
(hεj)

2

)∥∥∥∥∥
L2(R3)

−→
ε→0

0.

Note that according to the limit of tεj/(h
ε
j)

2 in [−∞,+∞], the profile Uj is
defined either by a Cauchy data, or by an asymptotic state. Roughly speaking, the
contribution of wεℓ is linear, since this function is the same as in the linear profile
decomposition of Theorem A.2, while rεℓ is asymptotically small (thus linear) as
ℓ → ∞. All in all, (leading order) nonlinear effects are measured through the
nonlinear profiles Uj . The orthogonality property shows that the interactions of
the scaled profiles are negligible in the limit ε → 0. The large time behavior of uε

is given, asymptotically as ε → 0, by the superposition of the large time behavior
of the scaled nonlinear profiles. Since every profile Uj possesses asymptotic states,
we see that S acts on each profile separately (as ε→ 0).

In the L2-critical case (1.1), the profile decomposition at the L2 level is not

merely a recasting of its Ḣ1 counterpart, because Galilean invariance must be taken
into account. A profile decomposition was introduced in [28] in the case d = 2,
then generalized to the case d 6 2 in [8], in such a way that the improved Strichartz
estimates in [2] yield a profile decomposition in L2(Rd) associated to solutions of
(1.1) for all d > 1. Due the existence of an extra invariance, we modify the notion
of orthogonal scales and cores:
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Definition A.4. If (hεj , t
ε
j , x

ε
j , ξ

ε
j )j∈N is a family of sequences in R+ \ {0} ×

R×Rd ×Rd, then we say that (hεj , t
ε
j , x

ε
j , ξ

ε
j )j∈N is an orthogonal family if

lim sup
ε→0

(
hεj
hεk

+
hεk
hεj

+
|tεj − tεk|
(hεj)

2
+

∣∣∣∣∣
xεj − xεk
hεj

+
tεjξ

ε
j − tεkξεk
hεj

∣∣∣∣∣

)
=∞ , ∀j 6= k.

Theorem A.5 (From [28, 8, 2]). Let d > 1 and (φε)0<ε61 be a bounded family
in L2(Rd). Up to extracting a subsequence, we have:
i) There exist an orthogonal family (hεj , t

ε
j , x

ε
j , ξ

ε
j )j∈N in R+ \ {0} ×R×Rd ×Rd,

and a family (φj)j∈N bounded in L2(Rd), such that for every ℓ > 1,

ei
t
2 ∆φε =

ℓ∑

j=1

P εj (φj)(t, x) + rεℓ (t, x) ,

where P εj (φj)(t, x) = eix·ξ
ε
j−i

t
2 |ξ

ε
j |

2 1

(hεj)
d/2

Vj

(
t− tεj
(hεj)

2
,
x− xεj − tξεj

hεj

)
,

with Vj(t) = ei
t
2 ∆φj , and lim sup

ε→0
‖rεℓ‖L2+4/d(R×Rd) −→

ℓ→+∞
0.

Furthermore, for every ℓ > 1, we have

(A.2) ‖φε‖2L2(Rd) =

ℓ∑

j=1

‖φj‖2L2(Rd) + ‖rεℓ‖2L2(Rd) + o(1) as ε→ 0 .

ii) If in addition the family (φε)0<ε61 is bounded in H1(Rd), or more generally if

(A.3) lim sup
ε→0

∫

|ξ|>R

∣∣∣φ̂ε(ξ)
∣∣∣
2

dξ → 0 as R→ +∞ ,

then for every j > 1, hεj > 1, and (ξεj )ε is bounded, |ξεj | 6 Cj.

Contrary to the case of (A.1), the global existence of solutions to (1.1) in the
critical space (L2) is not known so far, hence a slightly intricate statement (as in

[21] for the Ḣ1 case, written at a time where the global existence for (A.1) was not
known):

Theorem A.6 (From [28, 8, 2]). Under the same assumptions as in Theo-
rem A.5, consider the solutions to

i∂tu
ε +

1

2
∆uε = |uε|4/duε ; uε(0, x) = φε(x),

associated with the subsequence of Theorem A.5. Consider the solution Uj to (1.1)
such that ∥∥∥∥(Uj − Vj)

( −tε
(hε)2

)∥∥∥∥
L2(Rn)

−→
ε→0

0.

Let Iε ⊂ R be a family of open intervals containing the origin. The following
statements are equivalent:

(i) For every j > 1, we have

lim sup
ε→0

‖Uj‖L2+4/d(Iε
j ×Rd) < +∞, where Iεj := (hεj)

−2
(
Iε − tεj

)
.

(ii) lim sup
ε→0

‖uε‖L2+4/d(Iε×Rd) < +∞.
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Moreover, if (i) or (ii) holds, then uε =

ℓ∑

j=1

Nε
j (φj) + rεℓ + ρεℓ , where rεℓ is given by

Theorem A.5, and:

lim sup
ε→0

(
‖ρεℓ‖L2+4/d(Iε×Rd) + ‖ρεℓ‖L∞(Iε;L2(Rd))

)
−→
ℓ→+∞

0,

Nε
j (φj)(t, x) = eix·ξ

ε
j−i

t
2 |ξ

ε
j |

2 1

(hεj)
d/2

Uj

(
t− tεj
(hεj)

2
,
x− xεj − tξεj

hεj

)
.

If, as expected, one has Iεj = Iε = R for all j, then this result is the exact
analogue of Theorem A.3.
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