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Abstract. We consider the problem of exploring an anonymous unori-
ented ring by a team of k identical, oblivious, asynchronous mobile robots
that can view the environment but cannot communicate. This weak sce-
nario is standard when the spatial universe in which the robots operate is
the two-dimentional plane, but (with one exception) has not been investi-
gated before. We indeed show that, although the lack of these capabilities
renders the problems considerably more difficult, ring exploration is still
possible.
We show that the minimum number ρ(n) of robots that can explore a ring
of size n is O(log n) and that ρ(n) = Ω(log n) for arbitrarily large n. On
one hand we give an algorithm that explores the ring starting from any
initial configuration, provided that n and k are co-prime, and we show
that there always exist such k in O(log n). On the other hand we show
that Ω(log n) agents are necessary for arbitrarily large n. Notice that,
when k and n are not co-prime, the problem is sometimes unsolvable
(i.e., there are initial configurations for which the exploration cannot be
done). This is the case, e.g., when k divides n.

1 Introduction

1.1 Framework

Recently a lot of attention has been devoted to the computational and complex-
ity issues arising in systems of autonomous mobile entities located in a spatial
universe U . The entities have storage and processing capabilities, exhibit the
same behavior (i.e., execute the same protocol), can move in U (their movement
is constrained by the nature of U), and are asynchronous in their actions. De-
pending on the context, the entities are sometimes called agents, other times
robots; in the following, we use the latter. The research concern is on determin-
ing what tasks can be performed by such entities, under what conditions, and
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2 P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro

at what cost. In particular, a central question is to determine what minimal
hypotheses allow a given problem to be solved.

Depending on the nature of U , there are two basic settings in which au-
tonomous mobile entities are being investigated. The first setting, called some-
times continuous universe, is when U is the two-dimensional plane (e.g., [1, 9,
10, 19, 27, 29, 30]). The second setting, sometimes called graph world or discrete
universe, is when U is a simple graph (e.g., [3, 4, 7, 12, 20, 21]). In both settings,
each robot is viewed as operating in a Look - Compute - Move cycle. The robot
observes the environment (Look), then, based on this observation, it decides to
stay idle or to move (Compute), and in the latter case it moves towards its
destination (Move).

Interestingly, in spite of the common features of the two settings, the re-
searchers investigating them usually operate under two radically different as-
sumptions on the robots’ capabilities.
(1) Communication vs Vision - In the investigations in a graph world, the robots
are assumed to communicate with each other directly; e.g., by means of tokens
[6, 7], or whiteboards [12, 20], or when they meet [20]. Instead, in the studies on
a continuous universe, the robots do not communicate in any explicit way; they
however see the position of the other robots and can acquire knowledge from
this information (e.g., see [1, 9, 10, 19, 26, 27, 29, 30]).
(2) Persistency vs Obliviousness - In addition to its program, each robot has a
local memory (sometimes called notebook or workspace), used for computations
and to store different amount of information obtained during the cycles. In all
the investigations in a graph world, the local memory is possibly limited (e.g.,
each robot is a finite-state automaton) but almost always persistent: unless ex-
plicitly erased by the robot, all the information contained in the workspace will
persist thoughout the robot’s cycles. Instead, in the majority of the studies on
a continuous universe, the robots are oblivious: all the information contained in
the workspace is cleared at the end of each cycle. In other words, the robots have
no memory of past actions and computations, and the computation is based
solely on what has been determined in the current cycle. The importance of
obliviousness comes from its link to self-stabilization and fault-tolerance.

Let us point out that there is nothing inherent in the nature of U that forces
these differences in the assumptions. In other words, there is no reason why
robots in a graph should not be oblivious; on the contrary, an oblivious solu-
tion would be highly desirable ensuring fault-tolerance and self stabilization.
Similarly, there is nothing in the continuous domain that forbids robots from
communicating explicitly; indeed, in the recent investigations on mobile sensor
networks, the robots do communicate wirelessly [24].

Surprisingly, nobody has investigated how to solve problems in the discrete
universe if the robots have the capabilities and limitations standard in the con-
tinuous one. In fact, with one exception, there are no studies on how a collection
of asynchronous oblivious robots endowed with vision can perform a non-trivial
task without any communication. The only exception is the recent investigation
of the gathering problem in the ring [23].

ha
l-0

03
39

88
4,

 v
er

si
on

 1
 - 

19
 N

ov
 2

00
8



Ring Exploration by Asynchronous Oblivious Robots 3

In this paper, we continue this investigation and focus on a basic primitive
problem in a graph world: Exploration, that is the process by which every node
of the graph is visited by at least one robot, and we study this problem in a ring.

1.2 Our results

We consider the problem of exploring an anonymous ring of size n by k oblivious
anonymous asynchronous robots scattered in the ring. The robots are endowed
with vision but they are unable to communicate. Within finite time and regard-
less of the initial placement of the robots, each node must be visited by a robot
and the robots must be in a configuration in which they all remain idle.

We first show that this problem is unsolvable if k|n. We then prove that,
whenever gcd(n, k) = 1, for k ≥ 17, the robots can explore the ring terminating
within finite time. The proof is constructive: we present a terminating protocol
that explores the ring starting from an arbitrary initial configuration, and prove
its correctness.

Finally, we consider the minimum number ρ(n) of robots that can explore
a ring of size n. As a consequence of our positive result we show that ρ(n)
is O(log n). We also prove that ρ(n) = Ω(log n) for arbitrarily large n. More
precisely, there exists a constant c such that, for arbitrarily large n, we have
ρ(n) ≥ c log n.

1.3 Related Work

Algorithms for graph exploration by mobile entities (robots) have been intensly
studied in recent literature. Several scenarios have been considered. Most of the
research is concerned with the case of a single robot exploring the graph. In [2, 6,
7, 14, 18] the robot explores strongly connected directed graphs and it can move
only in the direction from head to tail of an edge, not vice-versa. In particular,
[14] investigates the minimum time of exploration of directed graphs, and [2, 18]
give improved algorithms for this problem in terms of the deficiency of the graph
(i.e., the minimum number of edges to be added to make the graph Eulerian).
Many papers, e.g., [15–17, 22, 25] study the scenario where the explored graph
is undirected and the robot can traverse edges in both directions. In [15] the
authors investigate the problem of how the availability of a map influences the
efficiency of exploration. In [25] it is shown that a graph with n nodes and e
edges can be explored in time e + O(n). In some papers, additional restrictions
on the moves of the robot are imposed. It is assumed that the robot has either
a restricted tank [5, 8], forcing it to periodically return to the base for refueling,
or that it is tethered, i.e., attached to the base by a rope or cable of restricted
length [17].

Exploration of anonymous graphs presents different difficulties. In this case
it is impossible to explore arbitrary graphs by a single robot if no marking of
nodes is allowed. Hence the scenario adopted in [6, 7] allows the use of pebbles
which the robot can drop on nodes to recognize already visited ones, and then
remove them and drop in other places. The authors concentrate attention on
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4 P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro

the minimum number of pebbles allowing efficient exploration and mapping of
arbitrary directed n-node graphs. (In the case of undirected graphs, one pebble
suffices for efficient exploration.) In [7] the authors compare exploration power of
one robot with a constant number of pebbles to that of two cooperating robots,
and give an efficient exploration algorithm for the latter scenario. In [6] it is
shown that one pebble is enough if the robot knows an upper bound on the size
of the graph, and Θ(log log n) pebbles are necessary and sufficient otherwise.

In all the above papers, except [7], exploration is performed by a single robot.
Exploration by many robots has been investigated mostly in the context when
moves of the robots are centrally coordinated. In [21], approximation algorithms
are given for the collective exploration problem in arbitrary graphs. In [3, 4] the
authors construct approximation algorithms for the collective exploration prob-
lem in weighted trees. On the other hand, in [20] the authors study the problem
of distributed collective exploration of trees of unknown topology. However, the
robots performing exploration have memory and can directly communicate with
each other.

To the best of our knowledge, the very weak assumption of asynchronous
identical robots that cannot send any messages and communicate with the en-
vironment only by observing it, has not been previously used in the context of
graph exploration. It has been used, however in the case of robots moving freely
in the plane (e.g., see [1, 9–11, 19, 26, 30]), where the robots were oblivious, i.e.,
it was assumed that they do not have any memory of past observations. Obliv-
ious robots operate in Look-Compute-Move cycles, similar to those described
in our scenario. The differences are in the amount of synchrony assumed in the
execution of the cycles. In [13, 30] cycles were executed synchronously in rounds
by all active robots, and the adversary could only decide which robots are active
in a given cycle. In [9–11, 19, 26] they were executed asynchronously: the adver-
sary could interleave operations arbitrarily, stop robots during the move, and
schedule Look operations of some robots while others were moving.

Our scenario has been recently introduced in [23] to study the gathering
problem in the ring. This scenario is very similar to the asynchronous model used
in [19, 26]. The only difference with respect to [19, 26] is in the execution of Move
operations. All possibilities of the adversary concerning interleaving operations
performed by various robots as well as the characteristics of the robots are the
same as in the model from [19, 26].

2 Preliminaries

2.1 Terminology and definitions

The network we consider is a ring of n nodes, u0, u1, . . . , un−1; i.e., ui is con-
nected5 to both ui−1 and ui+1. The indices are used for notation purposes; in
fact, the nodes are anonymous (i.e., identical) and the ring is unoriented. Oper-
ating in the ring are k identical robots; initially, at time t = 0, there is at most
5 Here and in the following, all operations on the indices are modulo n.
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Ring Exploration by Asynchronous Oblivious Robots 5

one robot in each node. During the exploration, robots move, and at any time
they occupy some nodes of the ring.

We shall indicate by di(t) the multiplicity of robots present at node ui at
time t; more precisely di(t) = 0 indicates that there are no robots, di(t) = 1
indicates that there is exactly one robot, and di(t) = 2 indicates that there is
more than one robot at ui at time t. If di(t) = 2, we will say that there is a
tower in ui at time t.

Let δ+j(t) denote the sequence δ+j(t) =< dj(t) dj+1(t) . . . dj+n−1(t) >, and
let δ−j(t) denote the sequence δ−j(t) =< dj(t) dj−1(t) . . . dj−(n−1)(t) >. The
unordered pair6 of sequences δ+j(t) and δ−j(t) describes the configuration of the
system at time t viewed from node uj . Let ∆+(t) = {δ+j(t) : 0 ≤ j < n} and
∆−(t) = {δ−j(t) : 0 ≤ j < n}.

We will denote by δmax(t) the lexicographically maximum sequence in ∆+(t)∪
∆−(t). It is immediate to verify that there is at most one maximal sequence in
each of ∆+(t) and ∆−(t). A configuration is said to be symmetric if the maximal
sequences in ∆+(t) and ∆−(t) are equal, and asymmetric otherwise.

Each robot operates in Look-Compute-Move cycles described in section 1.1.
Cycles are performed asynchronously for each robot: the time between Look,
Compute, and Move operations is finite but unbounded, and is decided by the
adversary for each action of each robot. The only constraint is that moves are
instantaneous, as in [23], and hence any robot performing a Look operation
sees all other robots at nodes of the ring and not on edges. However, a robot
R may perform a Look operation at some time t, perceiving robots at some
nodes, then Compute a target neighbor at some time t′ > t, and Move to this
neighbor at some later time t′′ > t′ in which some robots are in different nodes
from those previously perceived by R because in the meantime they performed
their Move operations. Hence robots may move based on significantly outdated
perceptions. We assume that the robots can perceive, during the Look operation,
if there is one or more robots in a given location; this ability, called multiplicity
detection is a standard assumption in the continuous model [9, 23, 26]. We now
describe formally what a robot perceives when performing a Look operation.
Consider a robot R that, at time t is at node uj and performs a Look; the
result of this operation, called the view of R at time t, is precisely the unordered
pair of sequences {δ+j(t), δ−j(t)}, that is, the configuration of the system at
time t viewed from node uj . We order all views as follows: order each pair
{δ+j(t), δ−j(t)} lexicographically and then use the lexicographic order on these
pairs. From its view, the robot can determine δmax(t), decide whether or not it
is unique, and compute views of all other robots.

Let robot R perform in the same cycle a Look operation at time t′ and a
Move operation at time t′′ > t′. We will say that R is engaged to move (or,
simply engaged) in the open interval (t′, t′′); that is, R is engaged at any time t,
where t′ < t < t′′.

6 Since the ring is not oriented, agreement on only one of the two sequences might be
impossible, and the pair cannot be ordered.
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6 P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro

One final precision has to be added, concerning the decisions of robots made
during the Compute action. Every such decision is based on the snapshot ob-
tained during the last Look action. However it may happen that both edges
incident to a node v currently occupied by the deciding robot look identical in
this snapshot, i.e., v lies on a symmetry axis of the configuration. In this case
if the robot decides to take one of these edges, it may take any of the two. We
assume the worst-case decision in such cases, i.e., that the actual edge among
the identically looking ones is chosen by an adversary.

We say that exploration of a n-node ring is possible with k robots, if there
exists an algorithm which, starting from any initial configuration of the k robots
without towers, allows the robots to explore the entire ring and brings all robots
to a configuration in which they all remain idle. Obviously, if n = k, the explo-
ration is already accomplished, hence we always assume that k < n.

2.2 Basic restriction

Lemma 1. Let k < n. If k|n then the exploration of a n-node ring with k robots
is not possible.

Proof. By contradiction, let P be a solution protocol. Choose as the initial con-
figuration an equidistant placement of the k robots in the ring (it exists since
k|n). Thus, initially the states of all robots are identical, say σ(0). Clearly this
state is not a terminal state. Otherwise, since k < n, P would terminate with-
out exploring the ring, thus contradicting the correctness of P . Consider now
an adversary that uses a synchronous scheduler and a consistent orientation of
the ring. Then, at each time step t, the states of all robots continue to be iden-
tical, say σ(t), and furthermore they are the same as those of previous steps;
i.e., σ(t) = σ(0) for all t. Hence the robots will never enter a terminal state,
contradicting the fact that P leads within finite time to a configuration in which
all robots remain idle. ut

In the following we will consider the case when gcd(n, k) = 1, and design
an algorithm that allows k ≥ 17 robots to explore a n-node ring whenever
gcd(n, k) = 1. Observe that if gcd(n, k) = 1, the configuration is either asym-
metric or it is symmetric with respect to a single axis of symmetry. Therefore at
most two robots can have the same view. In the symmetric case, the adjective
symmetric will be used with respect to this unique axis of symmetry. Note that
symmetric robots have the same view.

3 Exploration of a ring

3.1 Overview of the algorithm

The overall structure of the algorithm can be seen as a sequence of three distinct
phases: Set-Up, Tower-Creation, and Exploration.
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Ring Exploration by Asynchronous Oblivious Robots 7

The purpose of the Set-Up phase is to transform the (arbitrary) initial con-
figuration into one from a predetermined set of configurations (called no-towers-
final) with special properties. More precisely, in the Set-Up phase, the robots
create a configuration where there is a single set of consecutive nodes occupied
by robots, or two such sets of the same size (called blocks). When the configu-
ration is no-towers-final, the next phase begins.

The purpose of the Tower-Creation phase is to transform the no-towers-final
configuration created in the previous phase, into one from a predetermined set
of configurations (called towers-completed) in which everything is prepared for
exploration to begin. More precisely, in the Tower-Creation phase, one or two
towers are created inside each block (the number depending on the parity of the
size of the block); furthermore a number of robots become uniquely identified
as explorers. As soon as the configuration is towers-completed, the next phase
begins.

During the Exploration phase, the ring is actually being explored. The con-
figuration reached upon exploration depends solely on the configuration at the
beginning of this phase. The set of these special exploration-completed configu-
rations is uniquely identified, and once in a configuration of this type, no robots
will make any further move.

The Set-Up phase is by far the most complicated part of the algorithm, hence
we describe it in a detailed way. To simplify the presentation, the next two phases
are described in detail only in the case when k is odd. The case of k even can
be described and analyzed using similar techniques and is omitted.

Since the robots are oblivious (i.e., they have no recollection of actions and
computations made in previous cycles), there is no explicit way for them to
record which phase is the current one. This information is derived by a robot
solely based on the configuration currently observed (i.e., the one obtained as a
result of the Look operation). Since the determination of the phase should be
non-ambiguous, each reachable configuration should be assigned to exactly one
phase.

For any possible configuration we will identify a set of players, which are the
robots deciding to move if they perform a Look operation in this configuration,
and corresponding destinations, i.e., target neighbors. The exploration algo-
rithm (which contains the rules describing the Compute actions in the robot’s
cycle) can be succinctly formulated as follows.

Algorithm Ring Exploration

If I am a player
move to my destination

3.2 Set-Up Phase

The first phase of the protocol is the Set-Up. The fact of being in this phase
is easily recognizable by the robots since, unlike those of the other phases, the
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8 P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro

configurations of this phase contain no towers. Precisely because they contain
no towers, any configuration of this phase can be an initial configuration.

We define the interdistance of a configuration as the minimum distance taken
over all pairs of distinct robots in the configuration. Given an arbitrary config-
uration of interdistance d, a block is a maximal set of robots, of size at least 2,
forming a line with a robot every d nodes. The size of a block is the number of
robots it contains. The border of a block are the two nodes occupied by the two
extremal robots of the block. A robot not in a block is said to be isolated. A
robot is said to be a neighbor of a block/robot if in at least one direction there
is no robot between itself and the block/robot. A leader of a configuration is a
robot from which the view is the maximal in the configuration, with respect to
the order defined in Section 2.1. A block containing a leader is called a leading
block. Otherwise it is called a non-leading block.

The Set-Up phase is described by identifying four types of configurations that
form a disjoint partition of all possible configurations without towers. For each
type we indicate the players and their destinations.

Type A. A configuration of type A is a configuration of interdistance d ≥ 1 with
at least one isolated robot. Consider an arbitrary configuration of type A and
let S be the maximum among the sizes of the blocks that are neighbors of at
least one isolated robot. Let I be the set of isolated robots that are neighbors of
a block of size S such that no other isolated robot is closer to a block of size S.
The players in a configuration of type A are all the robots in I. The destination
of a player is its adjacent node in the direction of the closest neighboring block
of size S.

Type B. A configuration of type B is a configuration of interdistance d ≥ 1,
without isolated robots, and containing at least one non-leading block. More
precisely, if all blocks have the same size then the configuration is of type B1.
Otherwise, it is of type B2.

Consider an arbitrary configuration of type B1. If there is only one leader,
then the player is the leader and its destination is its adjacent node outside the
block it belongs to. From now on, we assume that there are two leaders. This
implies that the configuration is symmetric. There are two cases. The first case
is when the blocks are of size 2. Since k ≥ 17, there are at least 9 blocks and
hence there exist two symmetric blocks separated by at least three blocks on
each side. (Observe that this property does not hold for k = 16.) The players in
such a configuration are the robots of such two blocks, having the smallest view.
The destination of a player is its adjacent node outside the block it belongs to.
We consider now the second case, that is when the blocks are of size larger than
2. The players in such a configuration are the pair of symmetric robots that are
the closest to each other among the robots at the border of a block and such that
these two robots are not neighbor. The destination of a player is the adjacent
node outside the block it belongs to.

Consider an arbitrary configuration of type B2 and let s be the minimum size
of a block in the configuration. Let S be the maximum among the sizes of the
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Ring Exploration by Asynchronous Oblivious Robots 9

blocks that are neighbors of a block of size s and let d be the minimal distance
between a block of size s and a block of size S. We define T as the set of robots
belonging to a block of size s, neighbors of a block of size S, and at distance d
from it. The players in a configuration of type B2 are the robots in T with the
largest view. The destination of a player is its adjacent node in the direction of
its neighboring block of size S.

Type C. A configuration of type C is a configuration of interdistance d ≥ 2,
without isolated robots, and such that each of its blocks is a leading block. Note
that this implies that either all robots are in the same block or the robots are
divided in two blocks of the same size. Moreover, there are exactly two leaders
because the configuration is symmetric. The players in a configuration of type
C are the two leaders. The destination of a player is its adjacent node in the
direction of the block it belongs to. (This is not ambiguous because leaders are
always located at the border of a block.)

Type D. A configuration of type D is a configuration of interdistance d = 1,
without isolated robots, and such that each of its blocks is a leading block.
Type D is the set of configurations no-towers-final. When such a configuration
is reached, the Set-Up phase ends and the Tower-Creation phase begins.

Note that types A,B, C and D form a partition of all possible initial config-
urations (when gcd(n, k) = 1).

The general idea of the Set-Up phase is to create few compact blocks (inter-
distance 1). Each decrease of interdistance is accomplished by first decreasing
the number of blocks. The following lemmas show how this progress is achieved.
The proofs of most of them are ommitted due to lack of space. Theorem 1 shows
that a no-towers-final configuration is always reached at the end.

Lemma 2. Assume that at some time t the configuration is of type A and that
the only engaged robots are isolated robots engaged to move toward a neighboring
block. Then after finite time, the configuration is of type B, C or D, of the same
interdistance as in time t, and no robots are engaged.

Lemma 3. Assume that at some time t the configuration is asymmetric, of type
B1, and that no robots are engaged. Then after finite time, the configuration is
of type B2, of the same interdistance as in time t, no robots are engaged, and
there is one block less than at time t.

Lemma 4. Assume that at some time t the configuration is symmetric, of type
B1, with blocks of size 2, and that no robots are engaged. Then after finite time,
the configuration is of type C or D, of the same interdistance as in time t, and
no robots are engaged.

Lemma 5. Assume that at some time t the configuration is symmetric, of type
B1, with blocks of size s ≥ 3, and that no robots are engaged. Then after finite
time, the configuration is of type B2, C or D, of the same interdistance as in
time t, no robots are engaged, and there are fewer blocks than at time t.
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10 P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro

Lemma 6. Assume that at some time t the configuration is of type B2 and that
no robots are engaged. Then after finite time, the configuration is of type B, C
or D, of the same interdistance as in time t, no robots are engaged, and there
are fewer blocks than at time t.

Lemma 7. Assume that at some time t the configuration is of type C, of inter-
distance d ≥ 2, and that no robots are engaged. Then at some time t′ > t one of
the two following situations occurs:

– The configuration is of type A, of interdistance d− 1, and the only engaged
robots are isolated robots engaged to move toward a block.

– The configuration is of type B, of interdistance d − 1, and no robots are
engaged.

Proof. Assume that at some time t the configuration is of type C, of interdistance
d ≥ 2, and no robots are engaged. The players are the two leaders. After finite
time, at least one will move. Consider the moment t1 where the first moves. At
this moment the configuration changes to type A. If the other player moved at
the same time or is not engaged, we are done because the configuration is of
type A, of interdistance d− 1, and no robots are engaged.

Thus we assume that the other player R is engaged at time t1. By the defi-
nition of type C configurations and the fact that k ≥ 17, it is engaged to move
toward an isolated robot R′ that is at distance exactly d. Note that until R
moves, there is only one block (of interdistance d − 1) and R is a neighbor of
it (its other neighbor is R′). Moreover, R is isolated and no robots will move
toward it to make a block because no other robot is engaged at the moment and
because a player in a configuration of type A never moves toward an isolated
robot. Therefore, the configuration will remain of type A while R does not move.

Consider now the time t2 whereRmakes its move. If this move does not make
it belong to a block, then the configuration is of type A, of interdistance d− 1,
and the only engaged robots are isolated robots engaged to move toward a block.
Assume now that the move of R makes it belong to a block. Then necessarily
it is a new block, of size two, and formed with robot R′. If R′ is not engaged
then we are at a time t′ satisfying the lemma. Indeed if there are isolated robots
then the first situation occurs, and if there are not then the other block is larger,
of size k − 2, and thus the second situation occurs. If R′ is engaged at time t2,
then there are no isolated robots because there is none between R and the other
block (in the segment excluding R′) and there is none between R′ and the other
block (in the segment excluding R) since R′ got engaged as an isolated robot
and thus was engaged to move toward a block. Therefore, we are in the following
situation: there are two blocks of sizes k−2 and 2, at distances at least d+1 (on
both sides); exactly one robot of the smaller block is engaged to move toward
the other block, and no other robots are engaged. Thus the configuration is of
type B2 and after some finite time, one of the two robots of the smaller block
will move. At this moment, the first situation occurs, which concludes the proof
of the lemma. ut
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Ring Exploration by Asynchronous Oblivious Robots 11

Theorem 1. Any initial configuration is transformed after finite time into a
configuration of type D (i.e. no-towers-final) without engaged robots.

Proof. Let Φ be the property that the only engaged robots (if any) in a given con-
figuration are isolated ones and they are engaged to move toward a neighboring
block. For any configuration c of type A, B or C define the triple T (c) = (d, t, x),
where d is the interdistance of c, t is the type of c, i.e., t is A, B or C, and x
is the number of blocks in c. Order all triples lexicographically, assuming that
C < B < A. Lemmas 2 – 7 imply that any configuration c of type A, B or C
satisfying property Φ is transformed after finite time either in a configuration
c′ of type A, B or C satisfying property Φ, such that T (c′) < T (c), or in a
configuration of type D with no robots engaged. Since any initial configuration
satisfies property Φ, this concludes the proof.

A

B C

D

Fig. 1. Progress toward type D. Dashed arrows correspond to transitions where the
interdistance decreases. The loop corresponds to a transition where the number of
blocks decreases.

Figure 1 ilustrates the progress of configurations toward type D. ut

3.3 Tower-Creation Phase

The second phase of the protocol is Tower-Creation. This phase begins with a
configuration of type D, i.e., one of the configurations no-towers-final. The goal
of this phase is to create one or two towers in each block (depending on the
parity of the number of robots per block). More precisely, in a block of odd size
there will be one tower, and in a block of even size there will be two towers. In a
block of odd size the tower is formed by the central robot moving to its adjacent
node containing the robot with the larger view. In a block of even size the two
towers are formed by the two central robots moving to their other neighbors. The
obtained configuration is called towers-completed. This is easily recognizable as
each block of a no-towers-final configuration is transformed as follows. A block of
odd size 2a+1 is transformed into a segment of a consecutive robots followed by
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12 P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro

an empty node, followed by a tower, followed by a segment of a− 1 consecutive
robots. A block of even size 2a is transformed into a segment of a−2 consecutive
robots followed by a tower, followed by two empty nodes followed by a tower,
followed by a segment of a− 2 consecutive robots (see Figure 2).

empty node

node occupied by a single robot

node occupied by a tower

(a)

(b)

Fig. 2. Transformed blocks (a) of odd size (b) of even size

Since we limit our detailed description to the case of k odd, the only possibil-
ity is that the no-towers-final configuration starting the Tower-Creation phase
consists of one block of odd size. In this case the phase consists of one move of
the central robot. This robot moves to the neighbor decided by the adversary,
as the configuration is symmetric.

3.4 Exploration Phase

Exploration starts when towers in the preceding phase are created. Note that the
empty nodes adjacent to towers have already been explored, so the segments of
empty nodes between the transformed blocks are the only ones possibly not yet
explored. Each of these segments is explored in the current phase using one or
two robots closest to the segment. If k is even, such a segment must lie between
two segments of consecutive robots of equal size, and it is explored by the two
border robots that meet in the middle of the segment (either at the extremities
of the central edge, or in the central node). The obtained configuration is called
exploration-completed.

We describe exploration in detail for k odd. In this case the configuration
starting Exploration phase is a single transformed block of odd size, with a =
(k − 1)/2 (hence in particular a ≥ 3), see Figure 2 (a). The unique player is
the robot in the segment of a − 1 consecutive robots, farthest from the tower.
This robot moves to its empty neighbor node. In a resulting configuration with a
single isolated robot, the player is this robot and it moves toward the segment of
a consecutive robots. When the configuration contains a + 1 consecutive robots
followed by an empty node, followed by a tower, followed by a segment of a− 2
consecutive robots, all robots remain idle. At this point exploration is completed.

From Theorem 1 describing the conclusion of the Set-Up phase and from the
properties of Tower-Creation and Exploration phases we get the following result.

Theorem 2. Let 17 ≤ k < n. Algorithm Ring Exploration allows a team of
k robots to explore a n-node ring and enter a terminal state within finite time,
provided gcd(n, k) = 1.
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Ring Exploration by Asynchronous Oblivious Robots 13

4 Size of the minimum team

In this section we show that the minimum number of robots that can explore a
n-node ring regardless of their initial position, is logarithmic in n. More precisely,
we have the following result.

Theorem 3. The minimum number ρ(n) of robots that can explore a n-node
ring has the following properties:

1. ρ(n) ∈ O(log n);
2. there exists a constant c such that, for infinitely many n, we have ρ(n) ≥

c log n.

Proof. Let pj denote the j-th prime, and let pj# denote the pj-primorial, that
is

pj# = Πj
i=1 pi (1)

An important property of the primorial is the following [28]:

lim
j→∞

(pj#)
1

pj = e . (2)

We will now prove each part of the theorem separately.

Part 1.
Let f(n) be the smallest integer coprime with n and larger than 16. Thus,

by Theorem 2, exploration is possible with f(n) agents. Hence, ρ(n) ≤ f(n).
Take j such that pj#

13# ≤ n <
pj+1#
13# . We have f(n) ≤ pj+1. (Otherwise,

all primes in {17, . . . , pj+1} divide n and hence n ≥ pj+1#
13# , contradiction.) By

property (2) we have 2 ≤ (pj#)
1

pj , for sufficiently large j. Hence 2pj ≤ pj#,
and thus pj ≤ log(pj#). Hence pj+1 ≤ log(pj+1#) ≤ log(pj#) + log pj . Since
pj+1 ≤ pj#+1 ≤ 2·13#·n, we have ρ(n) ≤ f(n) ≤ pj+1 ≤ log(2·13#·n)+log n,
which is at most 3 log n, for sufficiently large n.

Part 2.
Let n be the least common multiple of integers 1, 2, . . . , m. Let g(n) be the

smallest integer not dividing n. By Lemma 1 we have ρ(n) ≥ g(n). We have
g(n) ≥ m + 1. The Prime Number Theorem implies ln n

m → 1. Hence ln n ≤ 2m,
for sufficiently large m. This implies the existence of a constant c such that
ρ(n) ≥ g(n) ≥ m + 1 > m ≥ ln n

2 ≥ c log n. ut

It should be noted that for some specific values of n, the number ρ(n) is
constant. For example, if n > 17 is prime, then Theorem 2 shows that 17 robots
can explore the n-node ring, hence ρ(n) ≤ 17.
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14 P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro

5 Conclusions

In this paper we have analyzed the exploration problem in rings by asynchronous
robots when they are oblivious and can see the environment but cannot com-
municate. This is a further step in the understanding of how these robots’ capa-
bilities, standard in continuous universes, can be exploited in the discrete ones.
These results open several interesting problems and pose intriguing questions.
First, the complete characterization of couples (n, k) for which exploration of the
ring is solvable remains open. Next, the problem of exploring other topologies
and arbitrary graphs is a natural extension of this work. Moreover, since the
robots cannot communicate, they have to be able to observe the environment;
an immediate question is what happens if the robots can only see within a fixed
distance. Accuracy of vision as well as fault-tolerance are issues that should be
addressed by future research.
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Outaouais and at the University of Ottawa, as a postdoctoral fellow. Andrzej
Pelc was partially supported by the Research Chair in Distributed Computing at
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