Pierre Fraigniaud
email: pierre@lri.fr.

Cyril Gavoille
email: gavoille@labri.fr.

David Ilcinkas
email: ilcinkas@lri.fr.

Andrzej Pelc
email: pelc@uqo.ca

Distributed Computing with Advice: Information Sensitivity of Graph Coloring

Keywords: network algorithm, graph coloring, distributed computing

We study the problem of the amount of information (advice) about a graph that must be given to its nodes in order to achieve fast distributed computations. The required size of the advice enables to measure the information sensitivity of a network problem. A problem is information sensitive if little advice is enough to solve the problem rapidly (i.e., much faster than in the absence of any advice), whereas it is information insensitive if it requires giving a lot of information to the nodes in order to ensure fast computation of the solution.

In this paper, we study the information sensitivity of distributed graph coloring. We use the classical LOCAL model in which arbitrary messages can be exchanged between neighbors in one round. Originally, each node knows only its own ID. All additional information about the graph may be given to nodes as advice from an oracle knowing the entire graph. Linial (1992) proved that the minimum time of 3-coloring (without advice) is Θ(log * n) for n-node cycles and Θ(D) for the class of trees of diameter D. We show that Ω(n/ log (k) n) bits of advice are needed, for any constant k, in order to beat the Θ(log * n) time of 3-coloring a cycle. Hence, 3-coloring a cycle is information insensitive. Similarly, we show that the same number of bits is needed in order to 3-color all n-node trees in time Θ(log * n). We also show that Ω(n) bits of advice are needed for 3-coloring in constant time, both for cycles and trees. Thus fast coloring of cycles and trees requires essentially as much information as if colors were explicitly assigned to nodes. In fact, our lower bounds hold not only for the total number of bits of advice given to nodes but also for the number of nodes that must be informed (i.e., the number of nodes that are given at least one bit of advice).

Introduction

This work is a part of a recent project aiming at studying the quantitative impact of knowledge on the efficiency when computing with distributed entities (nodes of a distributed system, mobile users in ad hoc networks, etc.). Indeed, as observed by Linial [START_REF]Locality in distributed graph algorithms[END_REF], "within the various computational models for parallel computers, the limitations that follow from the local nature of the computation are specific to the distributed context". Two frameworks have been considered for analyzing the limitations incurring because of the local nature of the distributed computation. One aims at identifying which tasks can or cannot be computed locally, i.e., when every node can acquire knowledge only about the nodes that are at constant distance from it. Surprisingly, non trivial tasks can be achieved locally [START_REF] Naor | What can be computed locally?[END_REF]. This is for instance the case of weak-coloring, a basis for a solution to some resource allocation problems. However, many important problems in distributed computing do not have a local solution [START_REF] Kuhn | What cannot be computed Locally! In 23th[END_REF]. This is the case of computing an approximate minimum vertex cover or an approximate minimum dominating set.

The other framework that has been considered is distributed computing with advice. In this framework, the computing entities can be given information about the instance of the considered problem. The traditional approach is actually qualitative in the sense that algorithms are designed or impossibility results are proved under the assumption that the nodes are aware of specific parameters, e.g., the size of the network. It was proved that the impact of knowledge concerning the environment is significant in many areas of distributed computing, as witnessed by [START_REF] Fich | Hundreds of impossibility results for distributed computing[END_REF][START_REF] Lynch | A hundred impossibility proofs for distributed computing[END_REF] where a lot of impossibility results and lower bounds are surveyed, many of them depending on whether or not the nodes are provided with partial knowledge of the topology of the network. A quantitative approach was recently introduced in [START_REF] Fraigniaud | Oracle size: a new measure of difficulty for communication tasks[END_REF], in which limitations of local computation can be estimated by establishing tradeoffs between the efficiency of the computation (number of steps, number of messages, etc.) and the amount of information provided to the nodes about their environment, independently of what kind of information they receive.

More precisely, we consider network computing with advice in the following context. A network is modeled as an undirected graph, where links represent communication channels between nodes. Nodes of n-node networks have distinct IDs from {1, . . . , n}, and communication ports at a node of degree d are labeled by distinct integers from {1, . . . , d}. A priori, every node knows only its own ID, and the labels of its ports. All additional knowledge available to the nodes of the graph (in particular knowledge concerning the topology and the labels of the rest of the graph), is modeled by an oracle providing advice. An oracle is a function O whose arguments are networks, and the value O(G), for a network G = (V, E), called the advice provided by the oracle to this graph, is in turn a function f : V → {0, 1} * assigning a finite binary string to every node v of the graph. Intuitively, the oracle looks at the entire labeled graph with IDs, and assigns to every node some information, coded as a string of bits. A node v is informed by the oracle if the string f (v) is non-empty. The size of the advice given by the oracle to a given graph G is the sum of the lengths of all strings it assigns to nodes. Hence this size is a measure of the amount of information about the graph, available to its nodes. Clearly, the size of advice is not smaller than the number of informed nodes. The objective is to establish tradeoffs between the size of the advice and the computational efficiency of the network.

Specifically, we focus on the distributed graph coloring problem, one of the most challenging problems in network computing for its practical applications, e.g., in radio networks [START_REF] Moscibroda | Coloring unstructured radio networks[END_REF], and for its relation with many other problems such as maximal independent set (MIS) [START_REF] Kuhn | What cannot be computed Locally! In 23th[END_REF][START_REF] Panconesi | Improved distributed algorithms for coloring and network decomposition problems[END_REF] and symmetry breaking [START_REF] Goldberg | Parallel symmetry-breaking in sparse graphs[END_REF]. Initially, each node knows its ID from {1, . . . , n}. The c-coloring problem requires each node to compute a color in {1, . . . , c}, under the constraint that any two adjacent nodes have different colors. Computation proceeds in rounds following Linial's model defined in [START_REF]Locality in distributed graph algorithms[END_REF] (a.k.a., LOCAL model [START_REF] Peleg | Distributed Computing: A Locality-Sensitive Approach[END_REF]). At each round, a node sends a message to each of its neighbors, receives messages from each of its neighbors, and performs some local computations. The LOCAL model does not put any limit on the message size and any restrictions on local computations because it is designed to estimate limitations of local computing. The complexity of c-coloring a graph G is measured by the number of rounds required to compute a proper c-coloring. There is an obvious relation between the complexity of c-coloring and the maximum distance between two nodes that exchange information during the computation.

Coloring graphs using advice provided by oracle O consists in designing an algorithm that is unaware of the graph G at hand but colors it distributively, as long as every node v of the graph G is provided with the string of bits f (v), where f = O(G). Trivially, an advice of size O(n log c) bits that provides the appropriate color to each node yields a coloring algorithm working in 0 rounds. On the other hand, an advice of size 0, i.e., providing no information, yields an algorithm running in t(n, c) rounds where t(n, c) is the complexity of the coloring problem in the usual distributed setting (i.e., with no advice).

The theory of network computing with advice allows us to establish tradeoffs between these two extreme cases. Different forms of tradeoffs are illustrated in Figure 1. This figure plots the execution time as a function of the size of advice (i.e., the amount of information given to the nodes). The execution time decreases as the size of advice increases, for instance such as illustrated by the dashed curve. Depending on how quickly the time decreases enables to roughly classify problems as "sensitive" or "insensitive" to information. A problem is information sensitive if few bits of information given to the nodes enable to decrease drastically the execution time. Conversely, a problem is information insensitive if the oracle must give a lot of information to the nodes for the execution time to decrease significantly. In this paper, we study the information sensitivity of graph coloring.

Our results

To study the information sensitivity of graph coloring, we focus on lower bounds on the size of advice necessary for fast distributed coloring of cycles and trees, two important cases analyzed in depth by Linial in his seminal paper [START_REF]Locality in distributed graph algorithms[END_REF] (cf. also [START_REF] Goldberg | Efficient parallel algorithms for (∆ + 1)-coloring and maximal independent set problems[END_REF]).

We show that coloring a cycle is information insensitive. Precisely, we show that, for any constant k, Ω(n/ log (k) n) bits of advice are needed in order to beat the Θ(log * n) time of 3coloring a cycle, where log (k) n denotes k iterations of log n. This shows a huge gap between 3-coloring in time Θ(log * n) and 3-coloring below this time: while the first can be done without any advice [START_REF] Cole | Deterministic coin tossing and accelerating cascades: micro and macro techniques for designing parallel algorithms[END_REF], the second requires almost as much information as if colors were explicitly assigned to nodes (which would take O(n) bits).

The result for cycles easily extends to oriented trees (i.e., rooted trees in which every node in the tree knows its parent in the tree), proving that, for any constant k, Ω(n/ log (k) n) bits of advice are needed in order to beat the O(log * n) time of 3-coloring an oriented tree [START_REF] Goldberg | Efficient parallel algorithms for (∆ + 1)-coloring and maximal independent set problems[END_REF]. Coloring an oriented tree is thus also information insensitive.

The power of orienting a tree (i.e., giving an orientation of its edges toward a root), from the point of view of distributed coloring, was known since Linial [START_REF]Locality in distributed graph algorithms[END_REF] proved that no algorithm can color the d-regular unoriented tree of radius r in time at most 2 3 r by fewer that 1 2 √ d colors. Hence 3-coloring unoriented trees essentially requires Θ(D) rounds, where D is the diameter of the tree. Therefore, informing every node of the port leading to its parent in the tree results in decreasing the time of 3-coloring from Ω(D) to O(log * n). We revisit this result using our quantitative approach. Precisely, we aim at computing the amount of advice required to reach the O(log * n) time bound. It is known that O(n log log n) bits of advice enable to orient a tree (i.e., to select a root, and to give to every node the port number of the edge leading to its parent) with an algorithm working in 0 rounds [START_REF] Cohen | Labeling Schemes for Tree Representation[END_REF], and O(n) bits of advice enable to orient a tree with an algorithm working in 1 round [START_REF] Cohen | Label-Guided Graph Exploration by a Finite Automaton[END_REF]. However, 3-coloring a tree in time Θ(log * n) does not necessarily require to orient the tree. Nevertheless, we show that, for any constant k, Ω(n/ log (k) n) bits of advice are needed in order to 3-color all n-node unoriented trees in time Θ(log * n). Thus, while for oriented trees 3-coloring in time O(log * n) can be done without any additional information [START_REF] Goldberg | Efficient parallel algorithms for (∆ + 1)-coloring and maximal independent set problems[END_REF], achieving the same efficiency for arbitrary trees requires almost as much information as if colors were explicitly assigned to nodes.

Finally, both for cycles and trees, even if oriented, we also show that Ω(n) bits of advice are needed for 3-coloring in constant time (i.e., for 3-coloring to become a locally solvable problem). Thus constant-time coloring requires essentially as much information as if colors were explicitly assigned to nodes. In fact, our lower bounds hold not only for the total number of bits of advice given to nodes but also for the number of nodes that must be informed (i.e., the number of nodes that are given at least one bit of advice).

Although we formulate our results for the task of 3-coloring, they remain true for coloring with any constant number of colors, by slight technical modification of the proofs.

While our lower bound proofs present different technical challenges in the case of the cycle and that of trees, the underlying idea is similar in both cases. Linial [START_REF]Locality in distributed graph algorithms[END_REF] constructed the neighborhood graph N [G] of a graph G in order to estimate the time of coloring G using the chromatic number of N [G]. Since in our case there is an oracle giving advice to nodes, we have to use a more complex tool in the lower bound argument. We also argue about the chromatic number of a suitably chosen graph H in order to bound coloring time of G. However, in our case, this graph depends on the oracle as well as on the time of coloring, and on the graph G, and hence it is very irregularly structured. We show that, if the number of nodes of G informed by the oracle is not too large, then H has a large chromatic number, and thus forces large coloring time of G. (Equivalently, if G can be colored fast then the advice must be large.) The main difficulty in our argument is to show the existence of a regularly structured subgraph (whose chromatic number can be bounded from below) in the highly irregularly structured graph H.

Related work

Because of the intrinsic difficulty of computing the chromatic number of a graph in the sequential setting [START_REF] Karp | Reducibility Among Combinatorial Problems[END_REF], or even to approximate it [START_REF] Bellare | Free Bits, PCPs, and Nonapproximability -Towards Tight Results[END_REF][START_REF] Feige | Zero Knowledge and the Chromatic Number[END_REF], the distributed computing literature dealing with graph coloring mostly focuses on the (∆ + 1)-coloring problem, where ∆ denotes the maximum degree of the graph. In fact, the interest expressed for the (∆ + 1)-coloring problem is also due to its intriguing relation with the maximal independent set (MIS) problem, already underlined by Linial in [START_REF]Locality in distributed graph algorithms[END_REF]. In particular, combining the best known algorithms for MIS [START_REF] Alon | A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem[END_REF][START_REF] Luby | A Simple Parallel Algorithm for the Maximal Independent Set Problem[END_REF] with the reduction from (∆+1)-coloring to MIS by Linial yields a randomized (∆+1)-coloring algorithm working in expected time O(log n). Using techniques described in [START_REF] Awerbuch | Network Decomposition and Locality in Distributed Computation[END_REF] and [START_REF] Panconesi | On the complexity of distributed network decomposition[END_REF], one can compute a (∆ + 1)-coloring (as well as a MIS) of arbitrary graphs in deterministic time O(n 1/ √ log n). For graphs of maximum degree bounded by ∆, (∆ + 1)-coloring can be achieved in time O(∆ log n) (see [START_REF] Awerbuch | Network Decomposition and Locality in Distributed Computation[END_REF]). [START_REF] Cole | Deterministic coin tossing and accelerating cascades: micro and macro techniques for designing parallel algorithms[END_REF] described a PRAM algorithm that can be easily transformed into an algorithm working in the LOCAL model, computing a 3-coloring of oriented cycles in O(log * n) rounds. This bound is tight as proved by Linial [START_REF]Locality in distributed graph algorithms[END_REF]. Similarly, [START_REF] Goldberg | Efficient parallel algorithms for (∆ + 1)-coloring and maximal independent set problems[END_REF] described a 3-coloring of oriented trees working in O(log * n) rounds. The O(∆ 2)-coloring algorithm in [START_REF]Locality in distributed graph algorithms[END_REF], working in O(log * n) rounds, can be easily converted into a (∆ + 1)-coloring algorithm working in O(∆ 2 + log * n) rounds, reaching the same complexity as the algorithm in [START_REF] Goldberg | Parallel symmetry-breaking in sparse graphs[END_REF]. [START_REF] Kuhn | On the complexity of distributed graph coloring[END_REF] analyses what can be achieved in one round, and proves that no algorithm based on iterations of the application of a 1-round algorithm can achieve O(∆)-coloring in less than Ω(∆/ log 2 ∆ + log * n) rounds. On the other hand, [START_REF] Kuhn | On the complexity of distributed graph coloring[END_REF] presents a (∆ + 1)-coloring algorithm working in O(∆ log ∆ + log * n) rounds, thus improving [START_REF] Awerbuch | Network Decomposition and Locality in Distributed Computation[END_REF][START_REF] Goldberg | Parallel symmetry-breaking in sparse graphs[END_REF][START_REF]Locality in distributed graph algorithms[END_REF]. Recently, the power of orienting the network was also demonstrated in terms of bit complexity in [START_REF] Kothapalli | Distributed coloring in O(√ log n) bit rounds[END_REF].

Coloring cycles with advice

In order to prove the lower bounds listed in Section 1.1 on the size of advice needed for fast 3-coloring of all cycles, we prove the following result.

Theorem 2.1 Suppose that an oracle O informs at most q nodes in any n-node cycle. Then the time of 3-coloring of n-node cycles using oracle O is Ω(log * (n/q)). This result holds even if the cycle is oriented, i.e., even if the nodes have a consistent notion of clockwise and counterclockwise directions.

Proof. Recall the definition of the directed graph B t,n from [START_REF]Locality in distributed graph algorithms[END_REF]. Let s = 2t + 1 < n -1. The nodes of the graph are sequences of length s of distinct integers from {1, . . . , n}. Intuitively, node (x 1 , x 2 , . . . , x s) of the graph B t,n represents the information acquired in time t by node x t+1 of a labeled directed cycle containing a segment (x 1 , x 2 , . . . , x s). Out-neighbors of node (x 1 , x 2 , . . . , x s) are all nodes (x 2 , x 3 , . . . , x s , y), where y = x 1 . Note that the chromatic number χ(B t,n) is a lower bound on the number of colors with which an n-node cycle may be colored distributively in time t. Thus, by restricting attention to 3-coloring algorithms, this yields a lower bound on the time of 3-coloring.

It was proved in [START_REF]Locality in distributed graph algorithms[END_REF] that χ(B t,n) ≥ log (2t) n. For any set X ⊆ {1, . . . , n} of size > s + 1, define B t,n (X) to be the subgraph of B t,n induced by all nodes (x 1 , x 2 , . . . , x s) with x i ∈ X, for all 1 ≤ i ≤ s. It is easy to see that the graph B t,n (X) is isomorphic to B t,|X| .

Fix an oracle O giving advice to all cycles of length n. Let q be the maximum number of nodes informed by oracle O in any of these cycles. Without loss of generality we may assume that the number of bits given to any node is not more than needed to code all directed labeled cycles of length n, i.e., ⌈log(n -1)!⌉. Consider a 3-coloring algorithm for cycles of length n using oracle O and running in time t. If t ≥ n/(2q) -1, we are done. Hence suppose that t < n/(2q) -1 which implies s < n/q. We define the directed graph B t,n,O that will be crucial in our argument. The nodes of the graph are sequences ((x 1 , α 1), (x 2 , α 2), . . . , (x s , α s)), where x i are distinct integers from {1, . . . , n} and α i are binary strings of length at most ⌈log(n -1)!⌉. Intuitively, node ((x 1 , α 1), (x 2 , α 2), . . . , (x s , α s)) represents the total information acquired in time t by node x t+1 of a labeled directed cycle containing a segment (x 1 , x 2 , . . . , x s), including labels of nodes at distance at most t and advice given to them by the oracle. There exists a (directed) edge from node v = ((x 1 , α 1), (x 2 , α 2), . . . , (x s , α s)) to a node w, if w = ((x 2 , α 2), . . . , (x s , α s), (y, β)) and if there exists a labeled directed cycle of length n containing the segment (x 1 , x 2 , . . . , x s , y), such that oracle O applied to this cycle gives advice α 1 , α 2 , . . . , α s , β to nodes x 1 , x 2 , . . . , x s , y, respectively. We will say that the segment (x 1 , x 2 , . . . , x s , y) of such a cycle induces this directed edge. Similarly as above, the chromatic number χ(B t,n,O) is a lower bound on the number of colors with which the cycle may be colored distributively in time t, using oracle O. Note that a coloring algorithm using oracle O does not need to assign a color to all nodes ((x 1 , α 1), (x 2 , α 2), . . . , (x s , α s)) of B t,n,O . Indeed, it is possible that there is no cycle containing the segment (x 1 , x 2 , . . . , x s), such that oracle O applied to this cycle gives advice α 1 , α 2 , . . . , α s to nodes x 1 , x 2 , . . . x s , respectively. However, by definition, such "non-legitimate" nodes are isolated in the graph B t,n,O and hence they do not affect its chromatic number.

We will establish a lower bound on the chromatic number of B t,n,O , and then show how to deduce from it a lower bound on the time of 3-coloring with oracle O. To this end it is sufficient to focus on the subgraph Bt,n,O of B t,n,O induced by the nodes ((x 1 , α 1), (x 2 , α 2), . . . , (x s , α s)), with all α i being empty strings. By definition, the graph Bt,n,O is isomorphic to a subgraph of B t,n and has the same number of nodes as B t,n . By a slight abuse of notation we will identify Bt,n,O with this subgraph of B t,n .

Claim 2.1 For n/q sufficiently large, there exists a set X of size k = n q(s+1)

1/(s+1) such that B t,n (X) is a subgraph of Bt,n,O .
We will establish an upper bound on the number of edges from the graph B t,n missing in Bt,n,O . This upper bound will allow us to prove that Bt,n,O contains a subgraph B t,n (X), for some set X of size k. Fix a directed labeled cycle of length n. When the oracle O informs a node of this cycle, exactly s + 1 of its segments (those containing the node) induce s + 1 edges in B t,n,O that are different than in B t,n,O ′ , where oracle O ′ differs from O by not informing this node. Moreover, these s + 1 edges in B t,n,O are outside Bt,n,O . For a given cycle, at most q(s + 1) of the edges induced by all the n possible segments of the cycle are outside Bt,n,O . There are (n -1)! directed labeled cycles of length n. In order that a given edge of B t,n do not appear in Bt,n,O , the (n -s -1)! cycles that could potentially induce it, should not do it. Let µ be the number of edges in B t,n that do not appear in Bt,n,O . Then

µ ≤ q(s + 1) • (n -1)! (n -s -1)! ≤ q • (s + 1) • n s .
Consider all graphs B t,n (X), for X of size k > s+1. Every edge ((x 1 , x 2 , . . . , x s), (x 2 , . . . , x s , x s+1)) of B t,n belongs to at most n-s-1 k-s-1 such graphs B t,n (X), where all x i are in X. Thus there exist at most q • (s + 1) • n s • n-s-1 k-s-1 graphs B t,n (X), for X of size k, such that at least one of their edges does not appear in Bt,n,O . We will now prove that this number of graphs is strictly smaller than the total number n k of graphs B t,n (X), for X of a suitably chosen size k. Indeed,

n k n-s-1 k-s-1 = n(n -1) • • • (n -s) k(k -1) • • • (k -s) > n k s+1 . Let k = n q(s + 1) 1/(s+1)
.

Note that we have k > s + 1, for n/q sufficiently large. Hence n k s+1 ≥ q • (s + 1) • n s . Hence there exists a graph B t,n (X) all of whose edges appear in Bt,n,O . This proves Claim 2.1.

In view of Claim 2.1, the chromatic number of B t,n,O can be bounded as follows (for n/q sufficiently large):

χ(B t,n,O) ≥ log (s-1) k = log (s-1) n q(s + 1) 1/(s+1)
. Since t is the running time of a 3-coloring algorithm for cycles of length n using oracle O, we have χ(B t,n,O) ≤ 3, which implies log (s-1) n q(s+1) 1/(s+1) ≤ 3. In order to finish the argument, it is enough to prove that s ≥ 1 5 log * (n/q). Suppose not. Thus n/q ≥ 2 2 16 . For such large n/q we have log n q(s + 1)

> log n q -log log * n q ≥ 1 2 log n q . Hence 1 s + 1 log n q(s + 1) > 1 2(s + 1) log n q ≥ 1 2 log * n q log n q ≥ log log n q .
This implies n q(s + 1)

1/(s+1) > log n q ,
and 3 ≥ log (s-1) n q(s + 1)

1/(s+1) > log (s) n q .
Thus s ≥ log * n q -2, which contradicts the assumption s < 1 5 log * (n/q). Theorem 2.1 has several interesting consequences. The following corollary proves that transforming the 3-coloring problem into a locally solvable problem (in the sense of [START_REF] Naor | What can be computed locally?[END_REF]) essentially requires to give the solution to the nodes.

Corollary 2.1 Any distributed algorithm that produces a 3-coloring of all cycles of length n in constant time requires advice for Ω(n) nodes.

The next corollary proves that 3-coloring of cycles is information insensitive. Corollary 2.2 Any distributed algorithm that produces a 3-coloring of all cycles of length n in time o(log * n) requires advice for Ω(n/ log (k) n) nodes, for any constant k.

Coloring trees with advice

Theorem 2.1 concerning cycles has an interesting consequence concerning trees, that proves that 3-coloring is information insensitive in oriented trees. Recall that a tree is oriented if it is rooted, and every node is aware of which of its incident edges leads to its parent in the tree. If there exists an oracle O informing at most q nodes in any n-node oriented tree, and a 3-coloring algorithm A using O and working in t(n) rounds, then there exists an oracle O ′ informing at most q + 2 nodes in any n-node oriented cycle, and a 3-coloring algorithm A ′ using O ′ and working in t(n) + 1 rounds. O ′ picks arbitrarily two neighboring nodes x and y in the cycle. Assume that y is the neighbor of x in the counterclockwise direction. O ′ gives the advice (tail) to x, and the advice (t(n), root) to y. The ith node v in the cycle, counting counterclockwise from x, receives from O ′ the advice f (v i) given by O to the node v i at distance i from the root of the oriented path P rooted at one of its two extremities, where f = O(P). A ′ proceeds in t(n) + 1 rounds. During rounds 1 to t(n), A ′ simply executes A, for which nodes x and y just act as if they would be respectively the tail and the root of a directed path from x to y. At round t(n) + 1 of A ′ , the root node y checks if its color is different from x. If not, it takes a color distinct from the colors if its two neighbors. This simple reduction enables to establish the following corollary of Theorem 2.1 proving that 3-coloring oriented trees is information insensitive.

Corollary 3.1 Suppose that an oracle O informs at most q nodes in any n-node oriented tree. Then the time of 3-coloring of n-node oriented trees using oracle O is Ω(log * (n/q)). Thus in particular any distributed algorithm that produces a 3-coloring of all n-node oriented trees in time o(log * n) requires advice for Ω(n/ log (k) n) nodes, for any constant k.

The main result of this section is a lower bound on the size of advice necessary for fast coloring of all n-node unoriented trees. In fact we will show that this bound holds already for the class of all unoriented complete d-regular trees. These are trees T d,r such that each leaf is at distance r from the root, and each internal node has degree d. It should be stressed that the notion of root and children is brought up only to facilitate the definition. From the point of view of nodes, the tree is not rooted (a node does not have information which neighbor is its parent). Proof. Fix d ≥ 37, t > 0, and r > 2t + 3. Consider any node v of the tree T d,r at distance at least t + 1 from all leaves. The number of nodes at distance at most t from v will be denoted by α(t). We have

α(t) = d • t-1 1=0 (d -1) i ≤ 2(d -1) t -1.
Consider an edge e of the tree T d,r whose both extremities are at distance at least t + 1 from all leaves. The subtree induced by the set of nodes at distance at most t from one of these extremities will be be called the bow-tie of T d,r based on edge e. The number of nodes in this bow-tie will be denoted by β(t). We have

β(t) = α(t) + 1 + (d -1) t ≤ 3(d -1) t .
Consider the tree T d,r with a labeling Φ of nodes and ports. Φ labels all nodes by distinct integers from {1, . . . , n}, where n = 1 + α(r), and labels all ports at internal nodes by integers from {1, . . . , d}. For any such labeled tree, consider its subtrees of the form N (v, t, Φ), where t is a positive integer and v is a node of T d,r at distance at least t + 1 from any leaf of T d,r . N (v, t, Φ) is defined as the labeled subtree of T d,r induced by all nodes at distance at most t from v. Note that if restrictions of labelings Φ and Φ ′ to the subtree of T d,r induced by all nodes at distance at most t from v are identical, then N (v, t, Φ) = N (v, t, Φ ′). Consider the following graph G t (T d,r). The nodes of the graph are all subtrees N (v, t, Φ) of T d,r for all possible nodes v and labelings Φ of nodes and ports of T d,r . Two nodes of G t (T d,r) are adjacent, if and only if, they are of the form N (v, t, Φ) and N (v ′ , t, Φ), for some labeling Φ, with v and v ′ adjacent in T d,r . Note that the graph G t (T d,r) is a subgraph of the t-neighborhood graph of T d,r , defined in [START_REF]Locality in distributed graph algorithms[END_REF]. Moreover, it follows from [START_REF]Locality in distributed graph algorithms[END_REF] that the chromatic number χ(G t (T d,r)) is a lower bound on the number of colors with which the tree T d,r may be colored distributively in time t, and that χ(G t (T d,r)) ≥ 1 2 √ d, if t < 2r/3. Also, for any set X ⊆ {1, . . . , n}, we define the graph G(X) as the subgraph of G t (T d,r) induced by nodes with labels from the set X. Note that, for |X| = 1 + α(s), for some positive integer s ≤ r, the graph G(X) is isomorphic to G t (T d,s).

Fix an oracle O giving advice to all n-node labeled trees T d,r . Let q be the maximum number of nodes informed by oracle O in any of these trees. Without loss of generality we may assume that the number of bits given to any node is not more than needed to code all n-node labeled trees T d,r . There are d α(r-1) port labelings of T d,r , and for each such labeling there are n! ways to label nodes. Hence the number of bits needed to code these trees is at most ⌈log(d α(r-1) n!)⌉. Consider a 3-coloring algorithm for n-node labeled trees T d,r using oracle O and running in time t. We define the following graph G t,O (T d,r). Nodes of this graph are couples of the form (N (v, t, Φ), f), where N (v, t, Φ) is the tree defined above and f is a function from nodes of this tree into the set of binary strings of length at most ⌈log(d α(r-1) n!)⌉. Intuitively, the value f (w) is the advice given to node w of N (v, t, Φ) by the oracle, and the entire couple (N (v, t, Φ), f) represents the total information acquired in time t by node v, including advice given to nodes of N (v, t, Φ) by the oracle. Edges of the graph G t,O (T d,r) are defined as follows. There is an (undirected) edge between two nodes of G t,O (T d,r) if these nodes are of the form (N (v, t, Φ), f) and N (v ′ , t, Φ), f ′), for some labeling Φ, where v and v ′ are adjacent in T d,r and for all nodes w of N (v, t, Φ) and w ′ of N (v ′ , t, Φ), the values f (w) and f ′ (w ′) are advice strings given to nodes w and w ′ , respectively, by oracle O for the tree T d,r labeled by Φ. We will say that this edge of G t,O (T d,r) is induced by the bow-tie based on edge {v, v ′ } of the tree T d,r labeled by Φ.

The chromatic number χ(G t,O (T d,r)) is a lower bound on the number of colors with which the tree T d,r may be colored distributively in time t, using oracle O. Similarly as in the case of the cycle, there may be "non-legitimate" nodes in G t,O (T d,r) but they are isolated and thus do not affect the chromatic number.

In order to establish a lower bound on the chromatic number of G t,O (T d,r), it is sufficient to focus on the subgraph Gt,O (T d,r) induced by the nodes (N (v, t, Φ), f) with f being a function giving the empty string to all nodes. By definition, the graph Gt,O (T d,r) is isomorphic to a subgraph of G t (T d,r) and has the same number of nodes as G t (T d,r). Similarly as before we will identify Gt,O (T d,r) with this subgraph of G t (T d,r). Claim 3.1 Let ν(k) be the number of sets X of size k, such that the graph G(X) is not a subgraph of Gt,O (T d,r). Then

ν(k) ≤ 2 • q • n! • d 4d t n • n -β(t) ! • n -β(t) k -β(t) .
In order to prove Claim 3.1, consider an edge of G t,O (T d,r). Let λ be the number of labeled trees T d,r that contain a bow-tie B inducing this edge. Let b be the node of B closest to the root of T d,r . Consider two cases.

Case 1. b is the root of T d,r .

There are β(t) ways of choosing node b in the bow-tie. For each such choice there are d α(r-1)-(β(t)-1) ways of fixing port numbers in T d,r because for every internal node other than the root the port leading to its parent has to be chosen and this has already been done for these nodes that appear in the bow-tie B. Finally for each such choice there are n -β(t) ! ways of labeling all nodes outside B. Hence in Case 1, there are

β(t) • d α(r-1)-β(t)+1 • n -β(t) ! labeled trees T d,r that contain B. Case 2. b is not the root of T d,r .
In this case b must be a leaf of B. The number of leaves of B is 2(d -1) t . For any choice of b there are d α(r-1)-β(t) ways of fixing the port number leading to the parent, for all internal nodes in T d,r other than the root and outside B. For any such choice there are d • r-(2t+3) i=0 (d -1) i ways of choosing the port numbers on the (unique) path from the root to b (index i corresponds to the distance between the root and node b). Finally, we have to consider again the n -β(t) ! ways of labeling all nodes outside B. Hence in Case 2, there are

2(d -1) t • d • r-(2t+3) i=0 (d -1) i • d α(r-1)-β(t) • n -β(t) ! labeled trees T d,r that contain B. Consequently we have λ =   β(t) • d α(r-1)-β(t)+1 + 2(d -1) t • d • r-(2t+3) i=0 (d -1) i • d α(r-1)-β(t)   • n -β(t) ! =   β(t) + 2(d -1) t • r-(2t+3) i=0 (d -1) i   d α(r-1)-β(t)+1 • n -β(t) ! ≥ 2(d -1) t • (d -1) r-(2t+3) • d α(r-1)-β(t) • n -β(t) ! .
Fix an n-node labeled tree T d,r . When the oracle O informs a node of this tree, exactly α(t+1) bow-ties (those containing the node) induce α(t+1) edges in G t,O (T d,r) that are different than in G t,O ′ (T d,r), where oracle O ′ differs from O by not informing this node. Moreover, these α(t + 1) edges in G t,O (T d,r) are outside Gt,O (T d,r). For a given tree, at most q • (α(t + 1) of the edges induced by all possible bow-ties are outside Gt,O (T d,r). There are d α(r-1) • n! n-node labeled trees. In order that a given edge of G t (T d,r) do not appear in Gt,O (T d,r), the λ trees that could potentially induce it, should not do it. Let µ be the number of edges in G t (T d,r) that do not appear in Gt,O (T d,r). Then

µ ≤ q • α(t + 1) • d α(r-1) • n! 2(d -1) t • (d -1) r-(2t+3) • d α(r-1)-β(t) • n -β(t) ! ≤ q • n! • d β(t) (d -1) r-(2t+3) • n -β(t) ! ≤ 2 • q • n! • d 4d t n • n -β(t) ! .
The last inequality follows from n ≤ (d -1) r and d β(t)+(2t+3) ≤ d 4d t . Consider all graphs G(X), for X of size k = α(⌊ 3 2 t + 1⌋). Every edge of G t (T d,r) belongs to at most n-β(t) k-β(t) such graphs G(X). Thus there exist

ν(k) ≤ 2 • q • n! • d 4d t n • n -β(t) ! • n -β(t) k -β(t)
sets X of size k, such that the graph G(X) is not a subgraph of Gt,O (T d,r). This proves Claim 3.1. Suppose that ν(k) < n k . Then there exists a set X of size k for which G(X) is a subgraph of Gt,O (T d,r). Since k = α(s) for s > 3t/2, it follows from [START_REF]Locality in distributed graph algorithms[END_REF] that the chromatic number of the graph G(X) (and thus also of the graph G t,O (T d,r)) is at least 1 2 √ d, which is larger than 3 for d ≥ 37. This contradicts the fact that we consider a 3-coloring algorithm running in time t. Hence we may assume ν(k) ≥ n k . From Claim 3.1, this implies

2 • q • n! • d 4d t n • n -β(t) ! • n -β(t) k -β(t) ≥ n k
and hence the number q of informed nodes satisfies

q ≥ n • k -β(t) ! 2 • d 4d t • k! ≥ n 2 • d 4d t • k β(t) .
Since k = α(⌊ Remark. By considering trees of a sufficiently large constant degree (instead of just degree d ≥ 37) we can generalize the above result to the case of c-coloring, for any constant c. Theorem 3.1 has several interesting consequences. The following corollary proves that lack of cycles does not help in coloring a network since transforming the 3-coloring problem in trees into a locally solvable problem essentially requires, as for cycles, to give the solution to the nodes.

Corollary 3.2 Any distributed algorithm that produces a 3-coloring of all n-node trees in constant time requires advice for Ω(n) nodes.

The next corollary proves that reaching the O(log * n) bound in unoriented trees requires lot of advice. This should be contrasted with the fact that O(log * n) is the complexity of 3-coloring of oriented trees, without advice. Corollary 3.3 Any distributed algorithm that produces a 3-coloring of all n-node unoriented trees in time O(log * n) requires advice for Ω(n/ log (k) n) nodes, for any constant k.

Conclusion

We presented lower bounds on the amount of advice that has to be given to nodes of cycles and of trees in order to produce distributively a fast 3-coloring of these networks. Although our lower bounds are very close to the obvious upper bound O(n), some interesting detailed questions concerning the trade-offs between the size of advice and the time of coloring remain open, even for cycles and trees. In particular, what is the minimum number of bits of advice to produce a 3-coloring of every n-node cycle or tree in a given time t = o(log * n)? More generally, what is the information sensitivity of coloring arbitrary graphs? For arbitrary graphs, it is natural to consider the maximum degree ∆ as a parameter, and seek distributed (∆ + 1)-coloring. It was proved in [START_REF] Kuhn | On the complexity of distributed graph coloring[END_REF] that a (∆ + 1)-coloring can be produced in time O∆ log ∆ + log * n). What is the minimum number of bits of advice to produce a (∆ + 1)-coloring in time O(log * n)? And in constant time? We conjecture that for the former task O(n) bits of advice are sufficient, and for the latter Ω(n log ∆) bits of advice are needed.

Figure 1 :

 1 Figure 1: Tradeoff between the execution time and the size of advice.

Theorem 3 . 1

 31 Fix d ≥ 37. Any 3-coloring algorithm working in time t for the class of n-node unoriented complete d-regular trees requires advice for at least n d d 2t nodes.

 3 2 t + 1⌋) ≤ d 7 2 t and β(t) ≤ 3(d -1) t , we have

	q ≥	n 2 • d 4d t • d 7 2 t•3(d-1) t ≥	n d d 2t .

Andrzej Pelc was supported in part by NSERC discovery grant and by the Research Chair in Distributed Computing of the Université du Québec en Outaouais. A part of this work was done during the stay of David Ilcinkas at the Research Chair in Distributed Computing of the Université du Québec en Outaouais, as a postdoctoral fellow.