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Abstract. We study the amount of knowledge about the network that
is required in order to efficiently solve a task concerning this network.
The impact of available information on the efficiency of solving network
problems, such as communication or exploration, has been investigated
before but assumptions concerned availability of particular items of in-
formation about the network, such as the size, the diameter, or a map
of the network. In contrast, our approach is quantitative: we investigate
the minimum number of bits of information (minimum oracle size) that
has to be given to an algorithm in order to perform a task with given
efficiency.

We illustrate this quantitative approach to available knowledge by the
task of tree exploration. A mobile entity (robot) has to traverse all edges
of an unknown tree, using as few edge traversals as possible. The quality
of an exploration algorithm A is measured by its competitive ratio, i.e.,
by comparing its cost (number of edge traversals) to the length of the
shortest path containing all edges of the tree. Depth-First-Search has
competitive ratio 2 and, in the absence of any information about the
tree, no algorithm can beat this value.

We determine the minimum number of bits of information that has to be
given to an exploration algorithm in order to achieve competitive ratio
strictly smaller than 2. Our main result establishes an exact threshold
oracle size that turns out to be roughly log log D, where D is the diameter
of the tree. More precisely, for any constant ¢, we construct an exploration
algorithm with competitive ratio smaller than 2, using an oracle of size
at most loglog D — ¢, and we show that every algorithm using an oracle
of size loglog D — g(D), for any function g unbounded from above, has
competitive ratio at least 2.
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1 Introduction

For many network problems (such as leader election, minimum spanning tree,
rendezvous, wakeup, broadcasting, etc.), the quality of the algorithmic solutions
often depends on the amount of knowledge given to nodes of the network, or given
to mobile entities moving in the network, about its topology. Local knowledge
given to every node and/or to every mobile entity is its identity and, for a node,
its degree (or the list of neighbor identities). Any other knowledge (e.g., the total
number of nodes, network diameter, the total number of mobile entities, partial
maps of the network, etc.) is global knowledge. Many results illustrate the impact
of global knowledge on the ability and efficiency of solving network problems.
For instance, it is proved in [4] that, if an upper bound 7 on the number n
of nodes of a graph is known, then a robot can explore this graph in time
polynomial in 7, using one pebble, while without this knowledge, ©(loglogn)
pebbles are necessary and sufficient. Broadcasting in radio networks is another
subject where global information significantly influences efficiency. In [22] it is
shown that if nodes have complete knowledge of the network then deterministic
broadcasting can be done in time O(D + log® n), for n-node radio networks
with diameter D. (This result has been recently improved to O(D + log®n)
in [24]). On the other hand, in [9] a lower bound of (2(nlogD) is proved on
deterministic broadcasting time in radio networks in which nodes know only
their own identity. (An almost matching upper bound of O(nlog® D) is proved
in [10]). In fact, the impact of global knowledge is significant in many areas of
distributed computing, as witnessed by [19, 25] where hundreds of impossibility
results and lower bounds for distributed computing are surveyed, many of them
depending on whether or not the nodes are given exact or approximate values of
global parameters providing partial knowledge of the topology of the network.
Finally, notice that the amount of global knowledge has also a strong impact on
computing in anonymous networks (cf., e.g., [23], where the impact of knowing
the total number of nodes is studied in depth).

We model global knowledge, given to the nodes or to the mobile entities,
by an oracle. Given a problem P with the set of instances Z, an oracle is a
function O : T — {0,1}* that maps any instance I to a binary string O(I).
Solving problem P using oracle O consists in designing an algorithm that, given
the binary string O(I), but unaware of I, returns a P-scheme for I, i.e., a
sequence of instructions executed by the nodes or the mobiles entities, solving
P for I. In this setting, the amount of global knowledge is measured by the
size of the oracle on every instance I, i.e., the length of the binary string O([).
Typical questions of interest are then: ”What is the minimum size of an oracle
for solving problem P?” or ”What is the minimum size of an oracle for solving
‘P within some amount of time?”. The novelty and significance of our modeling
of global knowledge is that it enables asking such gquantitative questions about
the required knowledge, regardless of what kind of knowledge is supplied. This
should be contrasted with the traditional approach that assumes availability of
particular items of global information.



Tree Exploration with an Oracle 3

Modeling knowledge about the network by an oracle has already proved useful
in the context of communication problems. In a recent paper [21], we showed
tight bounds on oracle size required for an efficient execution of two fundamental
communication tasks: broadcast and wakeup. It turns out that the minimum
oracle size required for broadcast with a linear number of messages is strictly
larger than that required for wakeup with a linear number of messages. In this
paper, we address similar quantitative questions about knowledge required for
one of the fundamental problems in mobile computing: the exploration problem.
We prove a tight bound of roughly loglog D on the size of an oracle enabling the
design of an exploration algorithm with competitive ratio strictly less than 2, on
trees of diameter D.

1.1 The background of tree exploration

A robot has to traverse all edges of an undirected connected graph, using as few
edge traversals as possible. Graph exploration is most often performed when the
robot lacks some essential information on the explored graph. In such case, the
quality of an exploration algorithm .4 is measured by comparing its cost (number
of edge traversals) to the length of the shortest covering walk (i.e., the shortest
path containing all edges of the graph). This ratio, maximized over all graphs
and all starting nodes, is called the competitive ratio R(A) of algorithm A. The
situation here is similar to the context of online algorithms, where competitive
ratio first appeared. In both cases, the performance of an algorithm lacking some
essential knowledge about the environment is compared to that of an algorithm
that has this knowledge: in the case of online algorithms, this knowledge concerns
future events, and in the case of exploration, it concerns the topology of the graph
and its labeling. (An algorithm provided with a fully labeled copy of the explored
graph, showing which port at a visited node leads to which neighbor, can find
the shortest covering walk off line.)

Depth-First-Search has competitive ratio 2 and it was shown in [14] that
no exploration algorithm can beat this value for arbitrary graphs, even when
provided with an unlabeled isomorphic copy of the explored graph with the
starting node marked. It turns out that merely the absence of labels of ports
and nodes in the map is sufficient to confuse any algorithm on some graphs,
making it not better than DFS. On the other hand, in the absence of any global
information whatsoever, beating competitive ratio 2 was shown impossible even
for the family of trees. This leads to the question if competitive ratio smaller
than 2 is possible to achieve for tree exploration, if the algorithm is provided
with some partial information concerning the explored environment. In [14] a
positive answer to this question was given in the case of very large additional
information: the robot was provided with an unlabeled map of the tree. However,
this assumption is not very realistic. Indeed, exploration is often used as a tool
to construct a map of an unknown network, and usually a priori information
about the explored network is much more restricted.
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1.2 The problem

We consider the problem of the amount of information needed to achieve tree
exploration with competitive ratio smaller than 2. (Recall that the reason of
restricting attention to trees is the above mentioned negative result for general
graphs, showing that already relatively simple graphs force competitive ratio at
least 2 even with extensive additional information, namely an entire unlabeled
copy of the explored graph.)

The problem is formalized as follows. In the framework of tree exploration,
we define an oracle to be a function O from the class of all trees to the class of
binary strings. Specifically, for every tree T', an exploration algorithm is provided
with the string O(T') and returns an ezploration scheme for T'. Such a scheme,
starting at any node u, traverses all edges of T'. The size of the oracle for tree T is
the length of the string O(T'). We ask what is the minimum size of an oracle for
which there exists an exploration algorithm achieving competitive ratio smaller
than 2, for all trees.

1.3 Our results

We use the notion of oracle to measure the minimum amount of information
required for the design of an efficient exploration algorithm. Our main result
establishes an exact threshold oracle size to achieve competitive ratio smaller
than 2 for tree exploration. This threshold turns out to be roughly loglog D,
where D is the diameter of the tree. More precisely, for any constant ¢ we con-
struct an exploration algorithm with competitive ratio smaller than 2, using an
oracle of size at most loglog D — ¢, and we show that every algorithm using an
oracle of size loglog D — g(D), for any function g unbounded from above, has
competitive ratio at least 2.

It is interesting to note the structure of the oracle in our positive result.
For any tree T, this is a string s of bits depending only on D, and giving an
approximation of it, plus an additional bit b that allows the robot to choose
between two types of exploration. This additional bit b (depending on D and on
the size of the tree) is very important. Indeed, while the string s depends only on
D and has length smaller than loglog D, we show that even the full knowledge
of D, but without b, is not sufficient to beat competitive ratio 2. More precisely,
we show that every exploration algorithm knowing only the diameter of the tree
must have competitive ratio at least 2.

1.4 Related work

Exploration of unknown environments has been extensively studied in the liter-
ature, both in the geometric and in the graph setting. In the first scenario the
environment is modeled, e.g., as a terrain with obstacles that may be convex
[7], polygonal [11] or rectangular [3]. Another way is to represent the unknown
environment as a graph, assuming that the robot may only move along its edges.
The graph model is further specified in two different ways. In [1,4, 5,13,20] the
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robot explores strongly connected directed graphs and it can move only in the
direction from tail to head of an edge, not vice-versa. In [1, 13] the authors study
competitive ratio of algorithms exploring directed graphs. The constructed algo-
rithms have competitive ratio exponential in the deficiency d of the graph [13],
or competitive ratio d°(1°8 D, where m is the number of edges [1]. Recently, the
first exploration algorithm with competitive ratio polynomial in the deficiency
of the graph has been given in [20].

In [2,8,14,18,26,27] the explored graph is undirected and the robot can
traverse edges in both directions. In some papers additional restrictions on the
moves of the robot are imposed. It is assumed that the robot has either a re-
stricted tank [2, 8], forcing it to periodically return to the base for refueling, or
that it is tethered, i.e., attached to the base by a rope or cable of restricted
length [18].

Another direction of research concerns exploration of anonymous graphs (di-
rected or undirected). In this case it is impossible to explore arbitrary graphs
and stop, if no marking of nodes is allowed. Hence the scenario adopted in [4, 5] is
to allow pebbles which the robot can drop on nodes to recognize already visited
ones, and then remove them and drop in other places. The authors concentrate
attention on the minimum number of pebbles allowing efficient exploration of
arbitrary directed graphs. Exploring anonymous trees without the possibility of
marking nodes is investigated in [15]. The authors concentrate attention not on
the cost of exploration but on the minimum amount of memory sufficient to
carry out this task. Exploration of anonymous graphs was also considered in [12,
16,17].

2 Terminology and preliminaries

For any tree T we denote by |T'| the number of nodes of T, and call it the size
of this tree. For a given tree T and starting node u, we denote by opt(T,u)
the length of the shortest covering walk of T starting from wu, i.e., the length of
the shortest path in 7' starting from w and containing all edges of T'. Clearly,
opt(T,u) = 2(n—1)—ecc(u), where n is the size of T and ecc(u) is the eccentricity
of the starting node wu, i.e., the distance from u to the farthest leaf. Depth-First-
Search ending in the leaf farthest from the starting node u uses fewest edge
traversals.

We assume that all ports at a node v are numbered 1,...,deg(v). Hence the
robot can recognize already visited nodes and traversed edges. However, it cannot
tell the difference between yet unexplored edges incident to its current position.
The robot executes a given ezploration scheme that, at every node v, makes
one of the following decisions: take a specific already explored edge, or take an
unexplored edge. If the scheme decides to take an unexplored edge, the actual
choice of the edge belongs to an adversary, as we are interested in worst-case
performance.

We want an oracle to provide information on the topology of the explored
tree, independently of any labeling, hence we define it as a function O from the
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class of all unlabeled trees to the class of binary strings. For any string s, a tree
T such that O(T) = s is called compatible with s. If a tree exploration algorithm
A takes the string O(T") as input for any tree T, we say that A uses O.

Consider an exploration algorithm A using oracle 0. For any string s in the
range of O, algorithm 4 produces an exploration scheme that explores all trees
compatible with s. For any such tree T and starting node u, the cost A(T,u) of
this scheme, run on tree T from the starting node u, is the worst-case number
of edge traversals taken over all of the above mentioned choices of an adversary.
The competitive ratio of A is defined as

AT, u)

R(A) = supg, opt ()

where the supremum is taken over all trees 7" and all starting nodes u of 7.

The fact that an oracle is defined on unlabeled rather than labeled trees is
an important distinction. For example, for the class of lines, we will prove that
an oracle of (asymptotic) size loglogn is needed to achieve competitive ratio
smaller than 2, where n is the length of the line. However, for a given labeling, a
single bit (indicating the port at the starting node leading to the closer endpoint
of the line) is enough to achieve competitive ratio 1: DFS starting toward the
closer endpoint achieves it.

The following remark will be useful for proving lower bounds on the competi-
tive ratio of exploration algorithms. Suppose that the robot, at some point of the
exploration, is at node v, then moves along an already explored edge e incident
to v, and immediately returns to v. For any set of decisions of an adversary, an
algorithm causing such a pair of moves, when run on a tree T from some starting
node u, has cost strictly larger than the algorithm that skips these two moves.
Hence, we restrict attention to exploration algorithms that never perform such
returns. We call them regular.

In [14] the authors introduced the following classification of exploration algo-
rithms for the class of lines (they considered exploration algorithms that know
the length n of the line). Fix n and let type k be the set of algorithms that
always do at most k returns before reaching an endpoint, and that do exactly
this many returns for some combination of starting node and (adversary) choice
of the initial direction. They proved the following result that permits to restrict
attention to relatively simple algorithms exploring lines, when looking for mini-
mum competitive ratio.

Lemma 1. [14] Fiz n > 11. For every exploration algorithm A for the line Ly,

of length n there exists an algorithm A’ for L, such that A’ is of type 1 and
A’ (Ln, A(Ln,

MmaxXyeL, Opt((LnZ)) < MmaxXyeL,, opt((Lnjg)'

In our setting, an algorithm does not know the length of the line but only
the value of the oracle. Hence we change the notion of type in the following way.
Consider an algorithm 4 using oracle O. Fix a string s in the range of O and
consider the exploration scheme produced by A for this string. This scheme is of
type k if it always does at most k returns before reaching an endpoint, for any
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line L, of length n compatible with s, and any starting node u, and if it does
exactly this many returns for some line compatible with s, some starting node
and some adversary choice of the initial direction.

In the proof of Lemma 1, the algorithm A’ is obtained from 4 independently
of n. Hence this lemma implies that in our setting the best competitive ratio for
the class of lines is achieved by an exploration algorithm that, for any string s,
produces a scheme of type 1. This type consists of simple exploration schemes
that go = steps in one direction (unless an endpoint is met), then return and
go to an endpoint, then return and go to the other endpoint. For any scheme of
type 1, this integer z will be called the probing distance of the scheme.

The next lemma describes the performance of schemes of type 1 as a function
of the probing distance. The proof of the lemma will appear in the full version
of the paper.

Lemma 2. For any positive integer n and any o < 1, let S, be the explo-
ration scheme of type 1 for the line L, of length n, with probing distance |an],

and let to,(u) be the cost of this scheme for starting node u. Let F,(a) =

ta,n(u)
opt(Ln,u)

n > Ny, the function F,, is strictly decreasing in the interval (0, \/52_1], and
sup,,~o Fn(a) <2, for any a in this interval.

maxycr, Then, there exists a positive integer N, such that for any

3 The upper bound

In this and the next section, we prove our main result, establishing the exact
threshold on the size of an oracle for which an exploration algorithm can have
competitive ratio smaller than 2. This result is presented in two theorems, one of
which establishes an upper bound on the size of such an oracle, by constructing
an appropriate exploration algorithm, and the other, in section 4, proves a match-
ing lower bound. In this section, we establish the upper bound, by constructing
exploration algorithm SKE(c) (for SMALL-KNOWLEDGE-EXPLORATION(c)), for
an arbitrary positive integer constant c. This algorithm has competitive ratio
smaller than 2, and uses an oracle O, of size at most max(1,loglog D — ¢), for
any tree of diameter D.

We first describe the oracle O.. Fix ¢ > 0. Given a tree T of diameter D,
the oracle O, outputs a bit called choice and, if choice = 1, an integer k using
[log[log D]] — (¢ + 3) bits. The bit choice is used by the algorithm to make
a decision concerning two alternative ways of exploration, and the integer k is
used to obtain an approximation Dy of the diameter.

Let Ny be an integer (whose existence is guaranteed by Lemma 2) such that,
\/571]
2 )

and sup,,» o Fy(a) < 2, for any a in this interval. For a € (0, ¥3-1], let f(a) =

Sup,~o Fn(a). Let T be any tree and let n and D be, respectively, its number of
nodes and its diameter. Take € such that D = (1 —e)n. We will use the following

abbreviations: A = ‘/52’1, and v = 22°7°+1, We now define a threshold €* on the

for all n > Ny, the function F, is strictly decreasing in the interval (0,
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value of € that will serve to define the bit choice. Let ¢; = %, B = Bler),

2—p1
624

€ = and €* = min(eq, €2). The oracle sets choice to 1 if

(€e<e)AD =22 YA (> No)

and sets choice to 0 otherwise. If choice = 1, the oracle computes k = U‘;ﬁ’;’] |

Given choice and k, Algorithm SKE(c) returns an exploration scheme. If
choice = 0, then this scheme is an arbitrary DFS. To fix attention, we take the
DFS that always chooses the smallest yet unused port number at every node.
Note that choice is set to 0 when the diameter of the tree is significantly smaller
than its size, or when the diameter is bounded, or when the tree itself is small.

We now describe the much more subtle scheme X, produced by the algorithm
when choice = 1. The scheme X, uses Procedure DPDFS(v) (for DOUBLING-
PARTIAL-DEPTH-FIRST-SEARCH(v)) that is called at a node v of the explored
tree, outputs the two edges connecting v to the two largest subtrees rooted at
neighbors of v, completely explores all other subtrees, and eventually returns to
v. In the sequel, we will use the notion of a subtree pending from v as an equiv-
alent to the notion of a subtree rooted at a neighbor of v. Procedure DPDFS(v)
is described in Figure 1.

Procedure DPDFS(v)
1 1;
S  set of edges incident to v, connecting v to subtrees
not yet completely explored;
while |S| > 3 do
S« S,
while S’ # 0 do
let e € S’ and let T'(e) be the subtree connected to v by edge e;
explore T'(e) by DFS until min(|T'(e)|,2¢ — 1) nodes are visited;
return to v;
S+ 8"\ {e};
if T'(e) is completely explored then S < S\ {e};
41+ 1;
if |S| = 2 then return S;
if |S| = 1 then let ¢’ be the edge connecting v to the largest
explored subtree and return S U {e'};
if S = 0 then let ¢’ and e” be the edges connecting v to the two largest
explored subtrees and return {e’,e"};

Fig. 1. Procedure DPDFS

The proof of the following lemma will appear in the full version of the paper.

Lemma 3. Let v be any node of degree at least 3. Let T, ...,T, be the enumer-
ation of the subtrees pending from v in decreasing order of their sizes. Procedure
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DPDFS(v) returns two edges corresponding to two largest subtrees (up to size
equality), and completely explores all other subtrees pending from v. Moreover,
the cost of Procedure DPDFS(v) is at most 22 i~ |T;|.

The intuitive idea of the exploration scheme X, (returned by Algorithm
SKE(c) when choice = 1) is the following. Let Dy = 2k2°7*~1, We will prove
that Dy approximates the diameter D as follows: Dy < D < vyDg. The robot
uses Procedure DPDFS(v) to identify the two edges connecting the current node
v to the largest subtrees pending from it. Then the robot moves along one of the
edges and applies the procedure again. These consecutive applications define a
path of length approximately equal to the diameter of the tree. On this path
the robot applies a scheme of type 1 for lines: go at probing distance [ADg/2],
return and go to the endpoint of the path, return and go to the other endpoint
of the path. The approximation Dy of the diameter is tight enough to guarantee
good performance of the scheme on this path. On the other hand, the part of
the tree disjoint from this path is negligible (this is implied by the conditions of
setting choice to 1). These two facts (shown in detail in the proof of Theorem 1)
imply that the competitive ratio of scheme X, is smaller than 2.

The description of the exploration scheme X is provided in Figure 2. In the
description, moves performed during the calls to Procedure DPDFS are called
internal, and all other moves are called external. During the entire exploration,
the robot stores the results of all previous actions, and constructs a map of the
portion of the tree that has been explored so far.

The proof of the following lemma will appear in the full version of the paper.

Lemma 4. Algorithm SKE(c) is correct.

Theorem 1. Let ¢ be an arbitrary positive integer constant. Algorithm SKE(c)
uses an oracle of size at most max(1,loglog D — ¢), for any tree of diameter D,
and has competitive ratio smaller than 2.

Proof. The result is true for n = 1 or n = 2, as any algorithm is optimal in this
case. In the following, we assume that n > 3.

Recall that k = L“;’i?] |. The oracle O, uses at most [logk] + 1 bits, hence
at most max(1,loglog D — ¢) bits. The definition of k implies the inequality
k< (08Dl < k41, hence k- 273 < [log D] < k- 2°73 4+ 2°+3 and finally
k21 < p < k2 L 92° Pyom the definition of Dy and v we get Dy <
D < ’)/D(]

First assume that the oracle sets choice to 0. Since the exploration scheme
in this case is a DFS, the cost of the scheme is at most 2(n — 1) — 1 = 2n — 3.
The cost opt(T, u), where u is the starting node, is 2(n — 1) — ecc(u). We have
ecc(u) < D = (1 — €)n. We obtain

opt(Tyu) >2(n—1)—(1—en=_1+en—2 .

Since D < n — 1, we have € > 1/n, or equivalently en > 1. Hence the ratio in
this case is at most
2n —3 2n—3 2n—3 2

1+en—2 (Q+e€/2ln—2+en/2 = (1+¢€/2)n—1.5 = 1+€/2
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Exploration scheme X,
while the exploration is not completed do
let v be the current node;
{Internal moves:}
if deg(v) > 3 then
unless Procedure DPDFS(v) has already been applied in a previous
step, apply it to get edges e, e’ connecting v to the two largest
subtrees pending from v;
{Ezternal move:}
if there is only one edge connecting v to a subtree not completely
explored then
leave v by this edge;
else
{e, ¢’ are the two edges connecting v to the two subtrees
not yet completely ezplored}
if during the last external move (if any), the robot did not
come to v by e or e’ then
leave v by edge e;
else
assume w.l.0.g. that the robot came to v by edge e;
if the robot is for the first time at distance |[ADo/2] from the
starting node then
leave v by edge e;
else leave v by edge ¢€’;
endwhile

Fig. 2. Exploration scheme X,

If € > €*, then ﬁ < ﬁ < 2. Assume that € < e*. Let D* = 22°°°
Therefore, ch01ce is set to 0 because either D < D* or n < Ny. If D < D*,
then n < =. Let N; = —*. Then we have n < 1D€ < 1D6* = Nj. Hence,
both When D < D* and when n < Ny, we have n < N* = ma.x(NO,Nl) Let

= 1/N*. We have € > 1/n > 1/N* = e3. We obtain m < 1+€3/2 < 2.
Hence the ratio of the cost of DFS (returned by Algorithm SKE(¢) when choice
is set to 0) to opt(T,u), is at most max(—=— 1+€*/2, 1Jr€3/2) <2

From now on, we assume that the oracle sets choice to 1, hence Algorithm
SKE(¢) returns exploration scheme X.

In the analysis of the cost of exploration scheme X, we use the following
terminology. Assume that the robot enters some node of degree at least 3 by
edge e and applies Procedure DPDFS(v). If the procedure outputs two edges
different from e, then we say that the current node v is a fork. Now consider
edges traversed during external moves. These edges form a subtree T” of T'. For
any node v, there exist at most two incident edges such that any external move
of the robot leaving v takes one of them. Hence, all nodes are of maximal degree
3 in this subtree. Nodes of degree exactly 3 in T" are forks. Let v1,...,v, be the
forks of T", if any, in order of their first visit by the robot. Let e; be the edge
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connecting v; to the subtree pending from it and containing the starting node
u. In view of the definition of a fork, the robot never makes an external move on
edge e; from node v;. Let u' be the last fork vg, if any, or v’ = u, if T" does not
contain any fork. Finally, let P be a path of length D in the tree and let P’ be
the set of nodes in T visited by an external move after u'. P' is a path because
it does not contain any fork other than possibly «'. Finally, let C be the length
of a shortest covering walk in path P’ starting at node u'.

In our analysis, the cost of the scheme X, is split into the cost of internal
moves, and the cost of external moves. The proofs of the following claims will
appear in the full version of the paper.

Claim 1. The total number of internal moves is at most 154en.
Claim 2. The total number of external moves is at most 81C + 2en.

Claim 1 and Claim 2 imply that the total cost of the scheme X, is at most
B1-C + (154 4+ 2)en = B - C + 156¢n.

It remains to bound the ratio p of this cost to opt(T,u). The shortest covering
walk starting at w visits u’ before any other node of P’. It has then to visit the
path P’ starting from w'. Therefore, the length of the shortest covering walk
starting at u cannot be less than C (the optimal number of moves on P’ starting
from «'). This gives p < W%. We have € < e; = 2251 Together with

624
C > |P'| > n/2 (for the latter inequality, see the proof of Claim 2), this implies
156€en 156€n 2—p 2-p Jej
< — < 2156 = =14+—=<2.
Pr+——<fi+ 2 <B+ o1 =~ Pt +5 <

It follows from the above obtained estimates that the competitive ratio of
Algorithm SKE(c) is at most
2 2 B1

1
14+€4/2"1+4€3/2’ + 2

max( ) <2,

which completes the proof of the theorem. O

4 The lower bound

This section is devoted to establishing a lower bound on the size of an oracle
for which there exists an algorithm with competitive ratio smaller than 2. This
lower bound exactly matches the upper bound shown previously, and it holds
even for the class of lines. Indeed, we show that for oracles whose size for all
lines Ly, of diameter (i.e., length) k < n, is smaller than loglogn, and differs
from it by an unbounded number of bits, every algorithm has competitive ratio
at least 2.

Theorem 2. Let O be an oracle and let f(n) denote the mazimum of sizes of
O(Lg), for k <n. Let g : IN — IR be defined by the formula f(n) = loglogn —
g(n). If g is a function unbounded from above, then every exploration algorithm
using oracle O has competitive ratio at least 2.
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Proof. We will use the following claim.

Claim 3. For every positive integers M and -y, there exist integers ny > ns > M,
such that O(Ly,) = O(Ly,) and ny/ne > 7.

Suppose that the claim does not hold. Take M and + that refute it. Let 1) :
{n: n> M} IR be the sequence defined by the formula ¢ (n) = %.
The sequence 1) converges to log~y, hence it is bounded. Let A be such that
1(n) < A for all n. Since g is an unbounded function, there exists ng > M for

which g(ng) > log A. Let x be the size of the set {O(Lyg) : k¥ < ng}. We have

log v logn
r < 2f(n0) — 210g10gnofg(no) < zloglognoflogA < 2103108 no—log 710;;"?]_1‘;59\4

and therefore z < %. All integers k with O(Ly) = O(L i) must be

smaller than M~**1, for i > 0. Hence all oracle values for lines Ly are distinct,
and there are x such values. We have ng < M~® because O(Lyp,) = O(Lprqi),
for some i < x, and hence nyg < M~**+! < M~®. Consequently, logng < log M +
zlogy < log M + logng — log M. This contradiction proves Claim 3.

We will now show that any algorithm using oracle O must have competitive
ratio at least 2. In view of Lemma 1 it is enough to restrict attention to algo-
rithms producing exploration schemes of type 1 for the class of lines. The probing
distance of such a scheme for line L,, depends only on O(L,). Consider an algo-
rithm A producing a scheme of type 1 with probing distance ¢(O(L,)). Fix any
constant 3/2 < 3 < 2. Choose 7 such that % > 8 and M such that 2/Z=4 > 3.
Hence v > 6. Let n1 > ne > M be integers for which O(L,,) = O(L,,) and
ny > ynz. Their existence is guaranteed by Claim 3. Let y = ¢(O(Ly,)). Hence
the scheme makes the first change of direction after y steps, both in L,, and in
L,,, unless an endpoint is encountered earlier. Consider two cases.

If y < ny then consider the behavior of A on L,,, with the starting node u
at distance y + 1 from the endpoint toward which the robot starts. Since v > 6,
this is the endpoint closer to u. Then

A(Lnlau) _y+2n1—1>n2+2n1—1
Opt(Lnlau) y+ni+1 = na+mng+1
2y+np -1 (y+) -1 _ 2

= >0 .
T (y+Dne+1 T (y+1)+1 v +2 P

If y > no then consider the behavior of A4 on L,, with the starting node u
at distance ny — 1 from the endpoint toward which the robot starts. Then

A(Lpy,u) =2n2—122M—1>ﬂ-
opt(Ly,,u) mo+1 M+1

This proves that the competitive ratio of algorithm A is at least 2. O
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5 Exploration knowing the diameter

We have shown in Section 3 that very little information (less than loglog D
bits) is needed to beat competitive ratio 2, and in fact, most of this information
(all bits except one) concerns the value of the diameter D itself, and is used to
establish a lower bound on it. This extra bit, however, cannot be deduced from
D alone, and turns out to be crucial. In this section we prove a surprising result
that even an algorithm that knows D ezactly (i.e., is provided with all [log D]
bits of it), but does not have any additional knowledge, cannot beat competitive
ratio 2. Notice that a similar argument proves that the exact knowledge of the
number n of nodes, with no extra information, is not enough for this purpose
either. The proof of the following theorem will appear in the full version of the

paper.

Theorem 3. Let A be any tree exploration algorithm that, for every tree T, is
giwen the diameter of T as input. Then A has competitive ratio at least 2.
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