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ABSTRACT
We study the problem of the amount of knowledge about a
communication network that must be given to its nodes in
order to efficiently disseminate information. While previous
results about communication in networks used particular
partial information available to nodes, such as the knowl-
edge of the neighborhood or the knowledge of the network
topology within some radius, our approach is quantitative:
we investigate the minimum total number of bits of informa-
tion (minimum oracle size) that has to be available to nodes
in order to perform efficient communication.

It turns out that the minimum oracle size for which a dis-
tributed task can be accomplished efficiently, can serve as a
measure of the difficulty of this task. We use this measure
to make a quantitative distinction between the difficulty of
two apparently similar fundamental communication primi-
tives: the broadcast and the wakeup. In both of them a
distinguished node, called the source, has a message, which
has to be transmitted to all other nodes of the network. In
the wakeup, only nodes that already got the source message
(i.e., are awake) can send messages to their neighbors, thus
waking them up. In the broadcast, all nodes can send control
messages even before getting the source message, thus po-
tentially facilitating its future dissemination. In both cases
we are interested in accomplishing the communication task
with optimal message complexity, i.e., using a number of
messages linear in the number of nodes.

We show that the minimum oracle size permitting the
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wakeup with a linear number of messages in a n-node net-
work, is Θ(n log n), while the broadcast with a linear number
of messages can be achieved with an oracle of size O(n). We
also show that the latter oracle size is almost optimal: no
oracle of size o(n) can permit to broadcast with a linear num-
ber of messages. Thus an efficient wakeup requires strictly
more information about the network than an efficient broad-
cast.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications; G.2.2
[Discrete Mathematics]: Graph Theory—Network prob-
lems

General Terms
Algorithms, Theory

Keywords
Broadcast, Wakeup, Oracle

1. INTRODUCTION

1.1 Background and related work
For many network problems (such as leader election, con-

structing a minimum spanning tree, exploration, wakeup,
broadcast, etc.), the quality of the algorithmic solutions of-
ten depends on the amount of knowledge given to nodes of
the network. For example, if every node knows the topol-
ogy of the network within radius ρ of it, it is shown in [2]

that Θ(min{m, n1+Θ(1)/ρ}) is the minimum number of mes-
sages of bounded length permitting the wakeup of a network
with n nodes and m edges. (In [2] the authors talk about the
broadcast but their model does not permit transmissions be-
fore receiving the source message, hence it is called wakeup
in our terminology). Broadcasting time in radio networks is
another subject where information available to nodes signif-
icantly influences efficiency. In [10] it is shown that if nodes
have complete knowledge of the network then deterministic
broadcast can be done in time O(D + log3 n), for n-node
radio networks with diameter D. (This result has been re-
cently improved to O(D + log2 n) in [17]). On the other



hand, in [4] a lower bound of Ω(n log D) is proved on de-
terministic broadcast time in radio networks in which nodes
know only their own identity. (An almost matching upper
bound of O(n log2 D) is proved in [7]). Another problem,
in which partial information about the network significantly
influences the efficiency of solutions, is network exploration
by a mobile agent. For instance, it is proved in [3] that, if
an upper bound n̂ on the number n of nodes of an anony-
mous digraph is known, then a mobile agent can explore this
digraph in time polynomial in n̂, using one pebble, while
without this knowledge, Θ(log log n) pebbles are necessary
and sufficient. On the other hand, in [8] the authors inves-
tigate the exploration of various types of graphs when the
exploring agent is provided with an unlabeled map of the
graph, and show how the cost of exploration changes when
no map is available.

In fact, the impact of knowledge concerning the environ-
ment is significant in many areas of distributed computing,
as witnessed by [9, 19] where hundreds of impossibility re-
sults and lower bounds for distributed computing are sur-
veyed, many of them depending on whether or not the nodes
are provided with partial knowledge of the topology of the
network. Finally, notice that the amount of knowledge has
also a strong impact on computing in anonymous networks
(cf., e.g., [12], where the impact of knowing the total number
of nodes is studied in depth).

1.2 The oracle
A network is modeled as an undirected connected graph

whose nodes have distinct labels, and ports at any node v
of degree deg(v) are labeled 0,1,...,deg(v) − 1. One distin-
guished node of the network is called the source. A priori,
every node has only information concerning itself: it knows
its own label (if any), and it knows whether it is the source or
not. All additional knowledge available to the nodes of the
network (in particular knowledge concerning the rest of the
network), is modeled by an oracle. An oracle is a function O
whose arguments are networks, and the value O(G), for a
network G = (V, E), is in turn a function f : V → {0, 1}∗
assigning a binary string to every node v of the network. In-
tuitively, the oracle looks at the entire labeled network and
assigns to every node some information, coded as a string of
bits. The size of the oracle on a given network G is the sum
of the lengths of all the strings it assigns to nodes. Hence
this size is a measure of the amount of information about
the network, available to its nodes.

Solving a network problem P using oracle O consists in
designing an algorithm that is unaware of the network G at
hand but solves the problem P for it, as long as every node v
of the network G is provided with the string of bits f(v),
where f = O(G). Typical distributed network problems
that may be solved using an oracle are various communica-
tion tasks, such as broadcast, wakeup or gossip (information
exchange among nodes), as well as, e.g., the construction of
a BFS tree or a minimum spanning tree. The formulation of
the problem P may include a demand on the efficiency of the
solution, thus we may be interested in communicating within
a prescribed time, or constructing a minimum spanning tree
using at most a prescribed number of messages. Given the
problem P, we ask what is the minimum size of an oracle for
solving it. This minimum oracle size can be considered as a
measure of the difficulty of the problem P. The novelty and
significance of the use of an oracle to model knowledge about

the network is that it enables asking quantitative questions
about the required knowledge, regardless of what kind of
knowledge is supplied. This should be contrasted with the
traditional approach that assumes availability of particular
items of information, such as the neighborhood of a node.

It turns out that the minimum oracle size, for which a
distributed task can be accomplished efficiently, can be used
to make a quantitative distinction between the difficulty of
apparently similar problems. We show this for two fun-
damental communication primitives performing information
dissemination: the broadcast and the wakeup from a sin-
gle source. In both of them a distinguished node, called
the source, has a message which has to be transmitted to
all other nodes of the network. Nodes send messages along
edges of the network. In the wakeup, only nodes that already
got the source message (i.e., are awake) can send messages
to their neighbors, thus waking them up. In the broadcast,
all nodes can send control messages even before getting the
source message, thus potentially facilitating its future dis-
semination. In both cases we are interested in accomplishing
the communication task with optimal message complexity,
i.e., using a number of messages linear in the number of
nodes. We ask what is the minimum size of an oracle per-
mitting to do that.

An approach similar to ours has been developed in the
context of informative labelings. Informative labeling sche-
mes are ways to label the nodes of a network with short
labels in such a way that queries such as inter-node dis-
tance [11], ancestor [1], connectivity [13], etc., can be an-
swered based solely on the labels of the nodes involved in
the query. The main objective in this context is to design
schemes using short labels, and guaranteeing that queries
can be rapidly answered. The oracle terminology is some-
times also used in the context of informative labeling (e.g.,
when the query can be answered in constant time [20]). Con-
versely, the informative labeling terminology is sometimes
also used for problems involving global properties [16].

Our point of view is to use the informative labeling termi-
nology in the context of distributed data-structures enabling
quick answers to queries, and to use the oracle terminology
in the context of distributed computing when nodes have
to collaborate to achieve complex tasks (e.g., broadcasting,
coloring, wake-up, leader election, etc.). One reason moti-
vating this view is, for instance, that giving the knowledge
of the network size n to the nodes can hardly be seen as
labeling every node by n. Also, the notion of oracle eas-
ily extends to the case when the information is not given a
priori, but on line, during the execution of the protocol.

1.3 Our results
We show that the minimum oracle size permitting the

wakeup with a linear number of messages in a network with
at most n nodes, is Θ(n log n), while the broadcast with a
linear number of messages can be achieved with an oracle of
size O(n). We also show that the latter oracle size is almost
optimal: no oracle of size o(n) can permit to broadcast with
a linear number of messages. Thus an efficient wakeup re-
quires strictly more information about the network than an
efficient broadcast.

Our upper bounds are constructive: we show specific ora-
cles of appropriate size and design wakeup and broadcast al-
gorithms using them and accomplishing information dissem-
ination with a linear number of messages. Apart from their



tightness, our results have the following additional strength.
Both upper bounds hold even for totally asynchronous com-
munication, for anonymous nodes (no distinct labels), and
using only bounded-size messages. On the other hand, both
lower bounds hold even for synchronous communication, for
labels of nodes 1,...,n, and for arbitrarily long messages.

We consider wakeup from a single source, where only one
node, the source, is awake in the beginning. We choose this
communication primitive due to its similarity with broad-
casting, since we want to compare the amount of informa-
tion needed to efficiently accomplish similar tasks. How-
ever, both the upper and the lower bound on oracle size
for wakeup still hold for a more traditional formulation of
the wakeup problem, where the adversary wakes up an ar-
bitrary subset of nodes which in turn have to wake up all
other nodes.

1.4 Terminology and preliminaries
We now describe broadcast algorithms using oracles, in a

more detailed manner. Wakeup algorithms will be a partic-
ular type of broadcast algorithms, subject to an additional
constraint. Consider a network, i.e., a connected graph
G = (V, E) with a distinguished source s. Every node v of
degree deg(v) has a distinct label id(v), and ports at v are
labeled 0, 1, ..., deg(v)−1. The port at node v, corresponding
to edge e, is denoted by portv(e). Every node v has also a
bit s(v) called the status bit, which is set to 1 if the node v is
the source, and to 0 otherwise. Fix an oracle O and let f =
O(G) be a function f : V → {0, 1}∗, assigning binary strings
to nodes of G. A broadcast algorithm A using oracle O is
a function A : {0, 1}∗ × {0, 1} × IN × IN → Σ, where IN de-
notes the set of non-negative integers and Σ denotes the set
of broadcast schemes (to be defined below). For a given node
v, algorithm A takes the quadruple (f(v), s(v), id(v), deg(v))
and returns a broadcast scheme Sv = A(f(v), s(v), id(v),
deg(v)) for the node v. It remains to define what such a
scheme is. Intuitively, this is a prescription whether and on
which ports the node should send messages, and what mes-
sages, given a particular history of communication to date.
Such a history (at node v) is a sequence H = (f(v), s(v),
id(v), deg(v), (m1, p1), (m2, p2), . . . , (mk, pk)), where the
prefix (f(v), s(v), id(v), deg(v)) is the knowledge of the node
before the broadcast starts, and (m1, m2, . . . , mk) are mes-
sages already received by v, where mi came to node v on
port pi. Intuitively, the history describes the total knowl-
edge of the node at a given point of the broadcast pro-
cess. Given a history H at node v, a broadcast scheme
Sv returns a set of couples {(m′

1, p
′
1), . . . (m

′
r, p

′
r)}, where

0 ≤ p′
i < deg(v). This means that v should send message

m′
i on port p′

i, for i ≤ r. At each point of the scheme execu-
tion some nodes are informed. Intuitively, these are nodes
that already got the source message. In the beginning only
the source is informed. A node becomes informed after re-
ceiving a message from an informed node (indeed, the source
message can be appended to any such message). Broadcast
is completed when all nodes of the network are informed.
Wakeup algorithms using oracles produce wakeup schemes
in a similar manner as above: a wakeup scheme for v is a
broadcast scheme that does not send any messages (returns
the empty set) on all histories with no messages, unless v
is the source. Intuitively, nodes other than the source can
spontaneously transmit in the broadcast but they cannot
in the wakeup. The message complexity of a broadcast or

a wakeup scheme is the total number of messages that it
produces.

2. ORACLE SIZE FOR THE WAKEUP
In this section we show that the minimum oracle size per-

mitting the wakeup with a linear number of messages is
Θ(n log n). Establishing the upper bound is easy. Fix a
network G, and let T be any spanning tree of G. The value
f of oracle O on the network G is defined as follows. For any
node v, f(v) is a binary string coding those port numbers
at v that lead to its neighbors in T . Since port numbers are
integers smaller than n, there exists such a string of length
at most n(v)dlog ne+O(log log n), where n(v) is the number
of neighbors of v in T . (One way of constructing such an
encoding string is this. Concatenate all binary representa-
tions of the n(v) port numbers that lead to the neighbors
of v in T , using exactly dlog ne bits for each of them. Let the
obtained sequence α have length x = n(v)dlog ne. Construct
another binary sequence β as follows. Let b1 . . . br be the bi-
nary representation of dlog ne. Let β = b1b1b2b2 . . . brbr10.
Finally, concatenate α to β. The obtained sequence has
length x + O(log log n), and the original representations of
the n(v) port numbers are easy to obtain from it.) Hence
the size of the oracle is n log n+o(n log n). Given this oracle,
the wakeup scheme at v tells the node to send messages on
all ports coded by f(v). This scheme uses exactly 2(n − 1)
messages. Thus we have:

Theorem 1. There exists an oracle of size O(n log n)
permitting the wakeup with a linear number of messages of
networks with at most n nodes.

The main result of this section establishes a matching
lower bound on oracle size for this task.

Theorem 2. The minimum oracle size permitting the
wakeup with a linear number of messages of networks with
at most n nodes must have size Ω(n log n).

To prove this theorem, we use an auxiliary problem, called
edge discovery, defined as follows. We denote by K∗

n the n-
node complete graph Kn whose vertices are labeled from 1 to
n, and the port number at node i of the edge leading to node
j is labeled (i−j) mod (n − 1). The instances of the problem
edge discovery are triples (n, X, Y ) where n is a positive
integer, and X and Y are two disjoint subsets of edges of K∗

n.
In fact, the edges in X are given distinct labels between 1
and |X|. So formally, X = {(e1, `1), . . . , (e|X|, `|X|)}, where
`i is the label of ei. The problem consists in designing a
communication scheme that, given n, |X|, and Y , eventually
discovers X. Whenever an edge e is traversed by a message
of the communication scheme, the following information is
obtained: if (e, `) ∈ X then (e, `) is revealed; otherwise it is
revealed that (e, `) 6∈ X for any label `.

We prove the following lemma that will be used later as
a key tool for proving our lower bounds. In the absence of
any information about the instances, this lemma could be
proved using techniques similar to those in, e.g., [14] and
[15]. However, the presence of an oracle changes the setting
radically.

Lemma 1. Let I be a subset of instances of edge disco-

very, all yielding the same input for the problem (i.e., these
instances differ only in the sets X, and all these sets X



have the same size). The worst-case message complexity of

edge discovery restricted to I is at least log |I|
|X|! .

Proof. For any given instance (n, X, Y ) of edge dis-

covery, the edges in X are called special. Let us consider
any communication scheme S solving edge discovery for all
instances in I. Messages traverse edges during the execution
of S. At the beginning of the execution of the scheme, all
instances in I are called active. When an edge is traversed,
the scheme learns whether this edge is special or not. This
knowledge enables to discard instances from the set of active
instances. For example, if the traversed edge e is not special,
then all currently active instances in which e is special can
be discarded. Conversely, if the traversed edge e is special,
then all currently active instances in which e is not special
can be discarded.

We describe an adversary that aims at slowing down the
discovery of the special edges by S. We consider the syn-
chronous execution of S. A set J ⊆ I of active instances,
after t messages have been sent by S and r special edges
have been discovered by S, for some t ≥ 0 and r ≥ 0, is
said to be uniform if (1) the t first messages are sent by S
through the same edges in all instances in J , and (2) the set
of revealed couples (e, `), for special edges e, is the same in
all instances of J . If J is uniform, then the scheme S will
proceed identically at the next step of its execution in all in-
stances of J . That is, a message is sent through edge e and
this edge is the same for all instances in J . The adversary
considers uniform sets of active instances, and proceeds as
follows. Let Jspecial (resp., Jregular) be the set of instances
in a uniform set J , for which e is special (resp., not special).
If |Jspecial| ≥ |Jregular| then the adversary decides that e
is special, else it decides that e is not special. Note that
|Jspecial| ≥ 1

2
|J | in the former case, and |Jregular| ≥ 1

2
|J | in

the latter case. In case e is set to be special by the adversary,
the label `(e) remains to be set. The adversary proceeds as
follows. Since r special edges have been already discovered,
the label of e can take |X|−r values. The adversary chooses

the label l0 such that the set J
(l0)
special of active instances in

Jspecial for which `(e) = l0, has the largest size. Note that

then |J(l0)
special| ≥

|J|
2(|X|−r)

. We say that Jregular is the regular

subset of J , and J
(l0)
special is the special subset of J .

By construction, Jregular, as well as all J
(l)
special for 1 ≤

l ≤ |X|, are uniform. Hence, we can define recursively the
following sequence of sets: I0,0 = I and���� ��� It+1,r = the regular subset of It,r,

if the (t + 1)th edge is set as not special;
It+1,r+1 = the special subset of It,r,

if the (t + 1)th edge is set as special.

By construction, depending on which of the cases holds, we
have |It+1,r| ≥ |It,r|/2 or |It+1,r+1| ≥ |It,r|/(2(|X|−r)). For
the above defined adversary, let xt,r denote the number of
active instances after t messages have been sent in S, and r
special edges have been discovered. Thus, x0,0 = |I| and

xt+1,r ≥ xt,r

2
and xt+1,r+1 ≥ xt,r

2(|X| − r)
.

Therefore, by simple induction on r and t, we get

xt,r ≥ x0,0 (|X| − r)!

2t |X|! .

As a consequence, xt,r ≥ x0,0/(2
t|X|!) for any r ≤ |X|.

When the communication scheme S is completed, only one
instance remains active, i.e., xt,r ≤ 1. By the previous in-
equality, our adversarial scenario guarantees that this can-
not occur before t messages have been sent, where

x0,0

(2t|X|!) ≤ 1 .

Since x0,0 = |I|, we conclude that t ≥ log |I|
|X|! , which com-

pletes the proof of Lemma 1.

Proof of Theorem 2. We first prove that, for any
α < 1/2, there exists ε > 0 such that, for any integer n
greater than some constant, there exists a (2n)-node graph
for which no algorithm can perform wakeup with less than
ε (2n) log(2n) messages, if the oracle size is not more than
α (2n) log(2n).

Fix a positive integer n. Recall that K∗
n is the n-node

complete graph with the following labeling. The nodes of
K∗

n are labeled from 1 to n. The port numbers of the edges
are fixed as follows: for any 1 ≤ i, j ≤ n, the port number
at i of the edge {i, j} is (i − j) mod (n − 1).

For any n-tuple S = (e1, e2, . . . , en) of distinct edges in
K∗

n, let Gn,S be the graph defined from K∗
n as follows. For

any 1 ≤ i ≤ n, a node wi labeled n + i is inserted in the
middle of the edge ei = {ui, vi}. The port number at ui

(resp. at vi), of the edge {ui, wi} (resp. {vi, wi}), is the
same as the port number at ui (resp. at vi), of the former
edge {ui, vi}. Assume, without loss of generality, that the
label of ui is smaller than the label of vi. Then the port
number at wi of the edge {ui, wi}, (resp. {vi, wi}), is 0
(resp. 1). Other port numbers remain unchanged. Let node
with label 1 be the source.

Intuitively, an oracle has to give a lot of information to
help a wakeup algorithm to find the n subdivided edges
with only O(n) messages. This is mainly due to the fact
that there exists a lot of different graphs Gn,S . The graphs
Gn,S are indeed distinct for different sets S. There are

P = n! � (n

2
)

n � such (labeled) graphs, as there are � n
2 � edges in

K∗
n. Let us compute a lower bound on P . First note that,

for any a, b such that 1 ≤ b ≤ a, we have�
a

b � ≥ � a

b 	 b

. (1)

This implies � � n
2 �
n � ≥

� � n
2 �
n � n

.

Moreover, we have � n
2 � = n(n+1)

2
≥ n2/2. Hence

P ≥ n! � n

2 	 n

. (2)

Consider an arbitrary wakeup algorithm using an ora-
cle O. Assume that O has size at most q = α(2n) log(2n)
on all graphs of size 2n, for some α < 1/2. We will prove
that there are many graphs Gn,S for which the oracle has
the same output.

Let us first compute how many different functions f an or-
acle O of size at most q can output for (2n)-node graphs. Let
v1, . . . , v2n be the list of nodes of such a graph, in increasing
order of their identifiers. Consider a function f = O(G). For
any 1 ≤ i ≤ 2n, f(vi) is the (possibly empty) string given by



the oracle to the node vi in the graph G. Let s be the con-
catenation of the strings f(vi) in increasing order of i. Let
q′ be the size of s. By definition of q, we have q′ ≤ q. There

are 2q′ possible different strings s for a given q′. Moreover,
using standard combinatorial arguments, one can show that

there are � q′+2n−1
2n−1 � different ways to partition the q′ bits of

the string s into 2n (possibly empty) substrings f(vi). To

summarize, an oracle of size q′ can output 2q′ � q′+2n−1
2n−1 � dif-

ferent functions for (2n)-node graphs. Since q′ can be chosen
between 0 and q, the oracle has exactly

Q =

q�
q′=0

�
2q′

�
q′ + 2n − 1

2n − 1 � �
possible different outputs.

Let us compute an upper bound on Q. Since 2q′ � q′+2n−1
2n−1 �

is increasing as a function of q′, it follows that Q is at most

(q +1) � 2q � q+2n−1
2n−1 � 	 . Note that � q+2n−1

2n−1 � ≤ � q+2n
2n � because

q ≥ 0. Thus we have

Q ≤ (q + 1)

�
2q

�
q + 2n

2n � � (3)

Recall that q = α(2n) log(2n). Thus we have � q+2n
2n � =� 2n(1+α log(2n))

2n � .
In view of Lemma 1.6 of [18] stating that�

a

b � ≤ � ae

b 	 b

(4)

for 0 < b ≤ a, we get�
2n(1 + α log(2n))

2n � ≤ � e � 1 + α log(2n) � 	 2n

.

For n large enough, we have� e � 1 + α log(2n) � 	 2n

≤ � 6α log(2n) � 2n

and thus

Q ≤ � α (2n) log(2n) + 1 � · 2α (2n) log(2n) · � 6α log(2n) � 2n
.

Take β = 1/4 + α/2. We have α < β, and thus for n large
enough,

Q ≤ 22βn log(n/2) . (5)

The oracle can output at most Q different functions for
the P different graphs Gn,S . Therefore, there exists a func-
tion f such that the oracle will output f for a set G of at
least P/Q different graphs Gn,S . For all these graphs, the
wakeup scheme returned by the algorithm is the same.

To any graph Gn,S ∈ G we can associate an instance
(n, S, � ) of the edge discovery problem, where the special
edges of edge discovery are the subdivided edges of the
graph Gn,S , and the label of a special edge is the rank of
the subdivided edge in S. Let I be the set of instances of
edge discovery obtained from all graphs in G. Clearly, I
and G have the same cardinality. Performing wakeup in a
graph Gn,S requires that, for any e ∈ S, at least one mes-
sage be sent to the node hidden in the edge e. Moreover,
this node has an identifier that corresponds to the position
of e in S. Therefore, performing wakeup in a graph Gn,S

requires at least the same number of messages as solving the
edge discovery problem on the corresponding instance.

Combining Equations 2 and 5, we get

P/Q ≥ n! 2(1−2β)n log(n/2) .

Since |I| ≥ P/Q, the application of Lemma 1 gives a worst-
case message complexity of at least

log(
n! 2(1−2β)n log(n/2)

n!
) = (1 − 2β) n log(n/2) (6)

Since α < 1/2, we have β < 1/2 and thus the above message
complexity is greater than ε (2n) log(2n) for n large enough,
where ε is a positive constant not depending on n.

We can now conclude the proof of the theorem. Assume
that the theorem does not hold. Then there exists an infi-
nite increasing sequence of integers (ni)i≥1, an oracle of size
less than 1

4
ni log ni for the graphs with at most ni nodes,

i ≥ 1, and an algorithm A using this oracle, such that the
algorithm performs wakeup with a linear number of mes-
sages in any graph. Fix i ≥ 1. Let mi = ni if ni is even and
mi = ni − 1 otherwise. For graphs of size at most mi, the
oracle has size at most 1

4
ni log ni. For i large enough, we

have 1
4
ni log ni ≤ 1

3
mi log mi. Applying the previous result

with α = 1/3, there exists a positive constant ε such that A
has a worst-case message complexity of at least ε mi log mi

on mi-node graphs, for i large enough. Thus the message
complexity of A is not linear. This contradiction concludes
the proof of the theorem.

Remark. In the above proof, we obtained a threshold
1/2 for α. Given an arbitrary constant integer c, a thresh-
old c

c+1
can be obtained by subdividing cn edges instead of

only n edges. Hence, one can show that our upper bound
n log n + o(n log n) on oracle size permitting wakeup with a
linear number of messages in graphs with at most n nodes,
is asymptotically optimal.

3. ORACLE SIZE FOR THE BROADCAST
In this section we establish almost tight bounds on the

minimum oracle size permitting the broadcast with a lin-
ear number of messages. In particular, the following upper
bound, together with Theorem 2, shows that an efficient
wakeup requires strictly more information about the net-
work than an efficient broadcast.

Theorem 3. There exists an oracle of size O(n) permit-
ting the broadcast with a linear number of messages in net-
works with at most n nodes.

Proof. We construct an oracle O and a broadcast al-
gorithm A using it, which returns a broadcast scheme B
with linear message complexity. We first describe the ora-
cle O. Let G = (V, E) be any n-node network. Every edge
e = {u, v} ∈ E is given the weight

w(e) = min{portu(e),portv(e)}.
Let #2(w) be the number of bits for encoding a non-negative
integer w using standard binary representation, that is
#2(w) = 1 if w ≤ 1, and #2(w) = blog wc + 1 if w > 1.
Call the number #2(w(e)) the contribution of the edge e.

Claim 3.1. There exists a spanning tree T0 of G, for
which � e∈E(T0) #2(w(e)) ≤ 4n.



We establish the claim by constructing a tree T0 that
yields this contribution. The construction is a variant of
Kruskal’s minimum-weight spanning tree (MST) algorithm
(cf. [6]), similar to the one in [5]. It maintains a collection
of trees. Initially, each node of G forms a tree on its own.
The construction merges these trees into larger trees until
it remains with a single tree giving the solution T0. More
precisely, the construction proceeds in phases. Each phase
k ≥ 1 of the construction consists of four steps. At the be-
ginning of the phase, we identify the collection of “small”
trees for the phase: Tsmall(k) = {T : |T | < 2k}, where |T |
denotes the size (number of nodes) of a tree T . Second, for
each tree T ∈ Tsmall(k), we look at the set S(T ) of edges
that connect T to G \ T , and select an edge e(T ) of mini-
mum weight in S(T ). (Note that S(T ) 6= ∅ since the graph
G is connected.) Third, we add these edges to the collection
of trees, thus merging the trees into subgraphs. Each sub-
graph may contain a cycle, thus, finally, for the last of the
four steps, in each subgraph we arbitrarily select one of the
edges on the cycle and erase it, effectively transforming the
subgraph back into a tree. This process is continued until a
single tree remains, which is the desired tree T0.

To prove the claim, let us denote the collection of trees

at the beginning of the kth phase, k ≥ 1, by T
(k)
1 , . . . , T

(k)
qk

,
where qk is the number of trees maintained in phase k. We

have q1 = n, and |T (1)
i | = 1 for any 1 ≤ i ≤ n. Moreover,

� qk

i=1 |T
(k)
i | = n for every k ≥ 1. By induction, we easily

get that |T (k)
i | ≥ 2k−1 for every k ≥ 1 and 1 ≤ i ≤ qk. Thus

qk ≤ n/2k−1 for every k ≥ 1. In particular, the number of
phases of the construction is at most dlog ne.

Assume that, when considering a small tree T
(k)
i in the

kth phase, the edge e(T
(k)
i ) incident to some node x of T

(k)
i

was selected. The only edges incident to node x excluded

from consideration are the at most |T (k)
i | − 1 edges leading

from x to the other nodes in T
(k)
i . Hence even if all of these

edges are “lighter” than the edges leading outside the tree,

the port number used for e(T
(k)
i ) is at most |T (k)

i |−1, hence

w(e(T
(k)
i )) ≤ |T (k)

i | − 1. Therefore�
#2(w(e(T

(k)
i ))) = 1 if k = 1

#2(w(e(T
(k)
i ))) ≤ blog(|T (k)

i | − 1)c + 1 if k > 1

For T
(k)
i ∈ Tsmall(k), we have log |T (k)

i | < k. Since outgoing
edges are selected only for small trees, we have

#2 � w � e � T
(k)
i 	 	 	 ≤ k .

Hence the total contribution Ck of the edges added to the
structure throughout the kth phase satisfies

Ck ≤ k |Tsmall(k)| ≤ k qk ≤ k n/2k−1 .

Therefore, the total contribution � k≥1 Ck of all edges of the

resulting tree T0 satisfies � k≥1 Ck ≤ � k≥1 kn/2k−1 ≤ 4n.
This completes the proof of Claim 3.1.

For every edge e = {u, v} ∈ E(T0), the oracle O assigns
the binary representation of w(e) to the extremity x ∈ {u, v}
such that w(e) = portx(e), where ties are broken arbitrarily.
The same node may receive binary representations of several
weights w(e1), . . . , w(et), in which case they can be encoded
by one binary string of length 2 � t

i=1 #2(w(ei)). In view of
Claim 3.1, the size of the oracle is at most 8n.

Based on the strings assigned to the nodes of G by oracle
O, Algorithm A constructs the broadcast scheme B defined
in Figure 1.

/* Broadcast Scheme B executed by node x.
M is the source message. */

begin
Kx ← list of port numbers given by the oracle O to x;

/* Kx = incident edges known by x */
Hx ← Kx; /* Hx = incident edges through which “hello”

messages may be sent */
Sx ← ∅; /* Sx = incident edges through which the

message M has been transmitted */
repeat

if x receives the message M via port p then

Kx ← Kx ∪ {p};
Sx ← Sx ∪ {p};

if x receives the message M then

send message M on all ports of Kx \ Sx;
Sx ← Kx;
Hx ← Hx \ Sx;

if Hx 6= ∅ then

send “hello” messages on all ports of Hx;
Hx ← ∅;

if x receives a “hello” message via port p /∈ Kx then

Kx ← Kx ∪ {p};
endrepeat

end

Figure 1: Broadcast Scheme B

Claim 3.2. The scheme B has linear message complexity,
and achieves broadcast in G.

We establish the first part of the claim by combining the
following properties. Clearly, the source message M as well
as the “hello” messages are sent only through the n−1 edges
of T0. The message M does not traverse an edge more than
once because M is sent by x only through edges of Kx \Sx,
where Sx is the set of edges through which either M has
been sent by x before, or M has been received by x. A
“hello” message traverses an edge e of T0 in one direction
only because only one extremity x of e is given the port
number portx(e) by the oracle.

The second part of the claim is established by induction
on the distance d of a node from the source, in the tree T0.
Let P (d) be the property “all nodes at distance ≤ d from the
source in T0 eventually receive the message M”. P (0) clearly
holds. Assume P (d) holds for d ≥ 0, and consider a node x
at distance d+1 from the source in T0. Node x is a neighbor
in T0 of a node y at distance d from the source in T0. The
edge e = {x, y} is eventually discovered by y because, by
definition of the oracle O, either y is given porty(e), or x
is given portx(e), and, in the latter case, x will eventually
send a message “hello” to y, enabling e to be known by y.
By the induction hypothesis, y will eventually receive the
message M . Therefore the message will eventually be sent
through e by y. Therefore P (d + 1) holds too, and hence B
achieves broadcast.

Theorem 4. Any broadcast algorithm using an oracle of
size o(n) in networks with at most n nodes, cannot return a
broadcast scheme of linear message complexity.

Proof. The proof uses a similar construction as for prov-
ing Theorem 2, but requires novel ideas, since the nodes can



now transmit spontaneously. Recall that K∗
n denotes the

n-node complete graph Kn whose vertices are labeled from
1 to n, and the port number at node i of the edge leading to
node j is labeled (i− j) mod (n − 1). For any k and n such
that 4k divides n, and for any (n/k)-tuple S = (e1, . . . , en/k)
of distinct edges of K∗

n, let us consider the graphs obtained
from K∗

n by replacing edge ei by a clique Hi of size k, for
i = 1, . . . , n/k. More precisely, one edge {ai, bi} of the clique
Hi replacing ei is removed from Hi, and ai is connected
to one extremity of ei in K∗

n, while bi is connected to the
other extremity of ei in K∗

n. Nodes of Hi are labeled from
n + (i − 1)k + 1 to n + ik, for i = 1, . . . , n/k. The port
number at node n + (i− 1)k + a of the edge leading to node
n + (i − 1)k + b is labeled (a − b) mod (k − 1). By abuse
of notation, the edge {n + (i − 1)k + a, n + (i − 1)k + b} is
called the edge {a, b} of Hi. The set S does not fully specify
the graph resulting from the above transformation because
edges {ai, bi} are not yet specified. Let

C = � � (a1, b1), . . . , (an/k, bn/k) 	 |

(ai, bi) ∈ {1, . . . , k}2, ai < bi, i = 1, . . . , n/k � .

Any C ∈ C (together with the set S) fully characterizes the
graph as follows. For any edge ei in S, i = 1, . . . , n/k, let
ei = {ui, vi}, where id(ui) < id(vi). The edge ei of K∗

n and
the edge fi = {ai, bi} of Hi are replaced by the edges {ai, ui}
and {bi, vi}. The port number at ui (resp., vi) of the edge
{ai, ui} (resp., {bi, vi}) is the same as the port number at ui

(resp., vi) of the edge ei. Similarly, the port number at ai

(resp., bi) of the edge {ai, ui} (resp., {bi, vi}) is the same
as the port number at ai (resp., bi) of the edge fi. The
resulting graph is denoted by Gn,S,C . Let the node with
label 1 be the source. For any pair of positive integers (n, k)
such that 4k divides n, the family of graphs defined as above
is denoted by Gn,k. In other words, we have

Gn,k = {Gn,S,C |
S is a (n/k)-tuple of edges of K∗

n, C ∈ C } .

Note that, by construction, every graph in Gn,k has 2n
nodes, and in each such graph, all nodes with labels larger
than n (i.e., those in the added cliques) have degree k − 1.

Claim 3.3. For n and k large enough, such that k ≤√
log n and 4k divides n, any broadcast algorithm using an

oracle of size at most n
2k

, for all graphs in Gn,k, cannot re-
turn a broadcast scheme with message complexity less than
n(k − 1)/8.

To establish the claim, let us assume, for the purpose
of contradiction, that there exists a broadcast algorithm A
using an oracle O of size at most n

2k
, for all graphs in Gn,k,

which produces a broadcast scheme of message complexity
less than n(k − 1)/8. Let σi be the sum of numbers of bits

given by the oracle O to the nodes of Hi. Since Σ
n/k
i=1σi ≤ n

2k
,

we get that at least half of the cliques do not receive any bit
of information. On the other hand, if

A( � , 0, n + (i − 1)k + a, k − 1)

is not defined for some pair (i, a), where 1 ≤ i ≤ n/k
and 1 ≤ a ≤ k, then at least one node of Hi requires
some information from the oracle to specify its broadcast
scheme, and thus the clique Hi must receive at least one

bit of information. Such an index i is called heavy. Let
i ∈ {1, . . . , n/k} be a non heavy index (i.e., i is such that
A( � , 0, n + (i − 1)k + a, k − 1) is defined for all a =
1, . . . , k), and let us observe the behavior of the commu-
nication scheme produced by A in the clique Hi, when the
oracle gives no information to the nodes of Hi. If in the
synchronous execution of the scheme, all edges of Hi are
eventually traversed by at least one message, then i is called
internal. Otherwise, i.e., if the communication scheme leaves
at least one edge of Hi not traversed by any message in the
synchronous execution of the scheme, then i is called exter-
nal. External indices result from the fact that the scheme
exchanges messages but lets always one edge free of mes-
sage, or result from the fact that the execution of the scheme
reaches a point at which the action of a node is not defined
(the history of the execution cannot be produced by the
broadcast scheme returned by A).

For every internal index i, let us consider the synchronous
execution of the scheme, and let fi = {ai, bi} be an edge of
Hi that is traversed last. For every external index i, let
us again consider the synchronous execution of the scheme,
and let fi be any edge of Hi that is not traversed by any
message. Finally, for every heavy index i, let fi be any
edge of Hi. This setting of the fi’s defines one (n/k)-tuple
from C, denoted by C∗. We will now restrict attention to
those graphs in Gn,k, for which S takes all possible values of
(n/k)-tuples of edges of K∗

n, but C = C∗.
Fix S and consider Gn,S,C∗ . As observed before, at least

half of the cliques in Gn,S,C∗ receive no information from
the oracle. Let I be the corresponding set of indices. We
have |I| ≥ n/(2k). Indices in I are either internal or ex-
ternal because cliques with heavy indices must receive at
least one bit of information from the oracle. Hence I can
be decomposed into two sets Iint and Iext that are subsets
of internal and external indices, respectively, and such that
I = Iint ∪ Iext. For all cliques Hi with i ∈ Iext, the setting
of the fi’s implies that the broadcast scheme generated by
A has the property that, in its synchronous execution, no
message goes out of Hi before a message goes into Hi from
the rest of the graph. Among all cliques Hi with i ∈ Iint,
some may have the property that, in the synchronous exe-
cution of the broadcast scheme, a message goes out of Hi

before any message goes into Hi from the rest of the graph.
Let I+

int be the indices from Iint, for which this phenomenon
occurs. By the setting of the fi’s, for every i ∈ I+

int, the mes-
sage complexity of the broadcast scheme restricted to Hi is
at least k(k − 1)/2 since fi is one of the edges traversed
last. Therefore, since the broadcast scheme generated by A
has message complexity less than n(k − 1)/8, we get that
|I+

int| < n
4k

. Thus, |I \ I+
int| ≥ n

4k
. This inequality implies

that the number of cliques Hi such that, in the synchronous
execution of the broadcast scheme, no message goes out of
Hi before a message goes into Hi from the rest of the graph,
is at least n

4k
.

In other words, at least n
4k

cliques have to be discovered

from the outside, and at most 3n
4k

can reveal themselves spon-
taneously to the rest of the graph. Therefore, the broad-
cast problem in Gn,S,C∗ is at least as hard as the auxiliary
problem edge discovery with instances (n, X, Y ) satisfying
|X| = n

4k
and |Y | = 3n

4k
. For n, |X|, and Y fixed, there are

|X|!
� � n

2 � − |Y |
|X| �



different instances of edge discovery. Hence, for |X| = n
4k

and |Y | = 3n
4k

, the number of different instances P = |X|! P ′

satisfies

P ′ =

� � n
2 � − 3n

4k
n
4k

� ≥
� � n

2 � − 3n
4k

n
4k

� n

4k

≥�
n2

4
− 3n

4k
n
4k

� n

4k

≥ (nk − 3)
n

4k ≥ � nk

2 � n

4k

(7)

where the first inequality follows from Equation 1. On the
other hand, let Q be the number of possible functions output
by an oracle of size at most q for the graphs of Gn,k. By the
same calculations as for deriving Equation 3, we get

Q ≤ (q + 1)2q

�
2n + q

q � .

It follows from Equation 4 that�
2n + n

2k
n
2k

� =

�
n
2k

(1 + 4k)
n
2k

� ≤ � e(1 + 4k) � n

2k ≤ (24k)
n

2k

for n and k large enough. Since n
2k

+ 1 < n
k
, we get

Q ≤ n

k
2

n

2k (24k)
n

2k , if q ≤ n
2k

.

Therefore, for n and k large enough,

Q ≤ (50k)
n

2k . (8)

There exists a set of graphs of size at least P/Q for which
the oracle returns the same function. Combining Equa-
tions 7 and 8, we conclude that there exists a set of graphs
of size at least

|X|! � n

5000 k 	 n

4k

for which the oracle returns the same function. Applying
Lemma 1 to this set of graphs, we get that the number
of exchanged messages is at least n

4k
log( n

5000 k
). For k ≤√

log n, and for n and k large enough, this number is at
least n(k − 1)/8, a contradiction with the hypothesis that
A produces a broadcast scheme of message complexity less
than n(k − 1)/8. This completes the proof of Claim 3.3.

To complete the proof of the theorem, let us consider a
broadcast algorithm A using an oracle O of size f(n) in

networks of at most n nodes, where f(n) is in o(n). Let �f
be the function defined by �f(n) = max{f(n), n√

log n
}. Hence

A uses an oracle O of size at most �f(n) in networks of at

most n nodes. For any n ≥ 1, let k(n) = n/ �f (n), and let

k′(n) = b k(n)
4

c. Let n′ be the largest integer smaller or equal
to n and divisible by 4k′(n). Note that, since n/k′(n) grows
to infinity, we have n′ ≥ n/2, for n large enough. The oracle

O has size at most �f (n) in networks with at most n′ nodes.
We have �f (n) =

n

k(n)
≤ 2n′

k(n)
≤ n′

2 k′(n)
.

Therefore, O has size at most n′

2 k′(n)
in networks with at

most n′ nodes. By the construction of �f , we get k′(n) ≤√
log n′. Hence Claim 3.3 applies, and we conclude that the

broadcast scheme returned by A on graphs with at most n′

nodes has message complexity at least n′(k′(n)−1)/8, which
is not in O(n′). Therefore, any broadcast algorithm A using
an oracle O of size f(n) in networks with at most n nodes,
where f(n) is in o(n), returns a broadcast scheme that does
not have a linear message complexity.

4. CONCLUSION
We investigated oracles: a new way of modeling knowl-

edge that nodes have about the network. We showed that
the minimum oracle size for which a task can be accom-
plished efficiently, can serve as a measure of difficulty of this
task, and can be used to quantitatively differentiate the dif-
ficulty of related tasks. In this paper we concentrated on two
similar communication tasks, broadcast and wakeup with a
linear number of messages, and used oracle size to strictly
separate their difficulty. However, we conjecture that ora-
cles can be also used to assess difficulty of a broader range
of distributed network problems, not only concerning infor-
mation dissemination but also, e.g., spanner construction or
exploration by mobile entities. Moreover, oracles could be
potentially used to establish precise tradeoffs between the
amount of knowledge available to nodes of a network and
the efficiency (in terms of time or message complexity) of
accomplishing a given task.
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